首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 182 毫秒
1.
2.
From evolutionary and physiological viewpoints, the Escherichia coli bgl operon is intriguing because its expression is silent (Bgl(-) phenotype), at least under several laboratory conditions. H-NS, a nucleoid protein, is known as a DNA-binding protein involved in bgl silencing. However, we previously found that bgl expression is still silent in a certain subset of hns mutations, each of which results in a defect in its DNA-binding ability. Based on this fact, we proposed a model in which a postulated DNA-binding protein(s) has an adapter function by interacting with both the cis-acting element of the bgl promoter and the mutated H-NS. To identify such a presumed adapter molecule, we attempted to isolate mutants exhibiting the Bgl(+) phenotype in the background of hns60, encoding the mutant H-NS protein lacking the DNA-binding domain by random insertion mutagenesis with the mini-Tn10cam transposon. These isolated mutations were mapped to five loci on the chromosome. Among these loci, three appeared to be leuO, hns, and bglJ, which were previously characterized, while the other two were novel. Genetic analysis revealed that the two insertions are within the rpoS gene and in front of the lrhA gene, respectively. The former encodes the stationary-phase-specific sigma factor, sigma(S), and the latter encodes a LysR-like DNA-binding protein. It was found that sigma(S) is defective in both types of mutant cells. These results showed that the rpoS function is involved in the mechanism underlying bgl silencing, at least in the hns60 background used in this study. We also examined whether the H-NS homolog StpA has such an adapter function, as was previously proposed. Our results did not support the idea that StpA has an adapter function in the genetic background used.  相似文献   

3.
In growing Escherichia coli K12 cells, the cryptic bgl operon is activated 98% of the time by insertions of IS1 or IS5 into the control region, designated bglR. The activated bgl operon permits utilization of the beta-glucoside sugar arbutin as a sole carbon and energy source. The bgl operon is also activated by late-occurring mutations during prolonged selection on arbutin. The late-occurring mutations that occurred during prolonged carbon starvation in the presence of arbutin were "adaptive mutations" because they were specific to the presence of arbutin, and they did not occur during prolonged starvation in the absence of arbutin. The spectrum of late-arising mutations differed from that of early-arising, growth-dependent mutations in that 20% of the late-arising mutants resulted from mutations at the hns locus. This provides the first direct evidence for adaptive mutagenesis mediated by the insertion of IS elements. Because no special genetic background is required to select Bgl+ mutants, this affords the opportunity to study IS-element-mediated adaptive mutagenesis in a variety of genetic backgrounds, including the backgrounds of natural isolates of E. coli.   相似文献   

4.
5.
6.
7.
Activation of a cryptic gene by excision of a DNA fragment.   总被引:2,自引:1,他引:1       下载免费PDF全文
The cryptic bgl operon in Escherichia coli K-12 strain 1011A contains a 1.4-kilobase-pair fragment of foreign DNA within the bglF structural gene. The active allele found in its descendant strain, MK1, required the precise excision of that insertion for its activation. Molecular and genetic approaches have shown that strain 1011A possessed an active (bglR+) rather than a silent wild-type (bglR0) allele of the regulatory region and that this change was caused by a point mutation. Our model for the retention of cryptic genes (B. G. Hall, S. Yokoyama, and D. H. Calhoun, Mol. Biol. Evol. 1:109-124, 1983) suggested that the insertion might have been selected to silence a disadvantageous bglR+ allele. We examined the genealogy of strain MK1 and found that the insertion of foreign DNA was not selected for that reason, since it preceded the change to bglR+. This means that the change to bglR+ was also not selected, since the presence of the insertion would not allow expression of the operon. We have calculated the probability of isolating a bglR+ mutation by chance alone as less than 10(-8). We suggest that mutation rates estimated under the usual conditions of exponential growth may be irrelevant to the frequencies of these events under natural conditions.  相似文献   

8.
The ability to metabolize aromatic beta-glucosides such as salicin and arbutin varies among members of the Enterobacteriaceae. The ability of Escherichia coli to degrade salicin and arbutin appears to be cryptic, subject to activation of the bgl genes, whereas many members of the Klebsiella genus can metabolize these sugars. We have examined the genetic basis for beta-glucoside utilization in Klebsiella aerogenes. The Klebsiella equivalents of bglG, bglB and bglR have been cloned using the genome sequence database of Klebsiella pneumoniae. Nucleotide sequencing shows that the K. aerogenes bgl genes show substantial similarities to the E. coli counterparts. The K. aerogenes bgl genes in multiple copies can also complement E. coli mutants deficient in bglG encoding the antiterminator and bglB encoding the phospho-beta-glucosidase, suggesting that they are functional homologues. The regulatory region bglR of K. aerogenes shows a high degree of similarity of the sequences involved in BglG-mediated regulation. Interestingly, the regions corresponding to the negative elements present in the E. coli regulatory region show substantial divergence in K. aerogenes. The possible evolutionary implications of the results are discussed.  相似文献   

9.
Though RpoS, an alternative sigma factor, is required for survival and adaptation of Escherichia coli under stress conditions, many strains have acquired independent mutations in the rpoS gene. The reasons for this apparent selective loss and the nature of the selective agent are not well understood. In this study, we found that some wild type strains grow poorly in succinate minimal media compared with isogenic strains carrying defined RpoS null mutations. Using an rpoS+ strain harboring an operon lacZ fusion to the highly-RpoS dependent osmY promoter as an indicator strain, we tested if this differential growth characteristic could be used to selectively isolate mutants that have lost RpoS function. All isolated (Suc+) mutants exhibited attenuated beta-galactosidase expression on indicator media suggesting a loss in either RpoS or osmY promoter function. Because all Suc+ mutants were also defective in catalase activity, an OsmY-independent, RpoS-regulated function, it was likely that RpoS activity was affected. To confirm this, we sequenced PCR-amplified products containing the rpoS gene from 20 independent mutants using chromosomal DNA as a template. Sequencing and alignment analyses confirmed that all isolated mutants possessed mutated alleles of the rpoS gene. Types of mutations detected included single or multiple base deletions, insertions, and transversions. No transition mutations were identified. All identified point mutations could, under selection for restoration of beta-galactosidase, revert to rpoS+. Revertible mutation of the rpoS gene can thus function as a genetic switch that controls expression of the regulon at the population level. These results may also help to explain why independent laboratory strains have acquired mutations in this important regulatory gene.  相似文献   

10.
Directed evolution of cellobiose utilization in Escherichia coli K12   总被引:7,自引:0,他引:7  
The cellobiose catabolic system of Escherichia coli K12 is being used to study the role of cryptic genes in evolution of new functions. Escherichia coli does not use beta-glucoside sugars; however, mutations in several loci can activate the cryptic bgl operon and permit growth on the beta-glucoside sugars arbutin and salicin. Such Bgl+ mutants do not use cellobiose, which is the most common beta-glucoside in nature. We have isolated a Cel+ (cellobiose-utilizing) mutant from a Bgl+ mutant of E. coli K12. The Cel+ mutant grows well on cellobiose, arbutin, and salicin. Genes for utilization of these beta-glucosides are located at 37.8 min on the E. coli map. The genes of the bgl operon are not involved in cellobiose utilization. Introduction of a deletion covering bgl does not affect the ability to utilize cellobiose, arbutin, or salicin, indicating that the new Cel+ genes provide all three functions. Spontaneous cellobiose negative mutants also become arbutin and salicin negative. Analysis of beta-glucoside positive revertants of these mutants indicates that there are separate loci for utilization of each of the beta-glucoside sugars. The genes are closely linked and may be activated from a single locus. A fourth gene at an unknown location increases the growth rate on cellobiose. The cel genes constitute a second cryptic system for beta-glucoside utilization in E. coli K12.   相似文献   

11.
12.
B. G. Hall 《Genetics》1988,120(4):887-897
Escherichia coli K12 strain chi 342LD requires two mutations in the bgl (beta-glucosidase) operon, bglR0----bglR+ and excision of IS103 from within bglF, in order to utilize salicin. In growing cells the two mutations occur at rates of 4 x 10(-8) per cell division and less than 2 x 10(-12) per cell division, respectively. In 2-3-week-old colonies on MacConkey salicin plates the double mutants occur at frequencies of 10(-8) per cell, yet the rate of an unselected mutation, resistance to valine, is unaffected. The two mutations occur sequentially. Colonies that are 8-12 days old contain from 1% to about 10% IS103 excision mutants, from which the Sal+ secondary bglR0----bglR+ mutants arise. It is shown that the excision mutants are not advantageous within colonies; thus, they must result from a burst of independent excisions late in the life of the colony. Excision of IS103 occurs only on medium containing salicin, despite the fact that the excision itself confers no detectable selective advantage and serves only to create the potential for a secondary selectively advantageous mutation.  相似文献   

13.
Wild-type strains of Escherichia coli are unable to utilize aromatic beta-glucosides such as arbutin and salicin because the major genetic system that encodes the functions for their catabolism, the bgl operon, is silent and uninducible. We show that strains that carry an activated bgl operon exhibit a growth advantage over the wild type in stationary phase in the presence of the rpoS819 allele that causes attenuated rpoS regulon expression. Our results indicate a possible evolutionary advantage in retaining the silent bgl operon by wild-type bacteria.  相似文献   

14.
15.
16.
17.
Escherichia coli K12 does not metabolize beta-glucosides such as arbutin and salicin because of lack of expression of the bglBSRC operon, which contains structural genes for transport (bglC) and hydrolysis (bglB) of phospho-beta-glucosides. Mutants carrying lesions in the cis-acting regulatory site bglR metabolize beta-glucosides as a consequence of expression of this cryptic operon (Prasad and Schaefler 1974). We isolated mutations promoting beta-glucoside metabolism that were unlinked to bglR; some of these mutations were shown to be amber. All of them were mapped at 27 min on the E. coli K12 linkage map and appeared to define a single gene, for which we propose the designation bglY. Utilization of beta-glucosides in bglY mutants appeared to be a consequence of expression of the bglBSRC operon, since bglB bglR and bglB bglY double mutants had the same phenotype. All bglY mutations analyzed were recessive to the wild-type bglY+ allele. Phospho-beta-glucosidase B and beta-glucoside transport activities are inducible in bglY mutants, as they are in bglR mutants. Metabolism of beta-glucosides in both bglR and bglY mutants required cyclic AMP. We propose that bglY encodes a protein acting as a repressor of the bglBSRC operon, active in both the presence and absence of beta-glucosides, whose recognition site would be within the bglR locus.  相似文献   

18.
19.
20.
K Schnetz 《The EMBO journal》1995,14(11):2545-2550
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号