首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accumulation of beta-amyloid peptide (Abeta), which is a landmark of Alzheimer's disease, may alter astrocyte functions before any visible symptoms of the disease occur. Here, we examined the effects of Abeta on biosynthesis and release of diazepam-binding inhibitor (DBI), a polypeptide primarily expressed by astroglial cells in the CNS. Quantitative RT-PCR and specific radioimmunoassay demonstrated that aggregated Abeta(25-35), at concentrations up to 10(-4) m, induced a dose-dependent increase in DBI mRNA expression and DBI-related peptide release from cultured rat astrocytes. These effects were totally suppressed when aggregation of Abeta(25-35) was prevented by Congo red. Measurement of the number of living cells revealed that Abeta(25-35) induced a trophic rather than a toxic effect on astrocytes. Administration of cycloheximide blocked Abeta(25-35)-induced increase of DBI gene expression and endozepine accumulation in astrocytes, indicating that protein synthesis is required for DBI gene expression. Altogether, the present data suggest that Abeta-induced activation of endozepine biosynthesis and release may contribute to astrocyte proliferation associated with Alzheimer's disease.  相似文献   

2.
We previously demonstrated that phosphorylation of somatostatin receptor 2A (sst2A) is rapidly increased in transfected cells both by agonist and by the protein kinase C (PKC) activator phorbol myristate acetate (PMA). Here, we investigate whether PKC-mediated receptor phosphorylation is involved in the homologous or heterologous regulation of endogenous sst2 receptors in AR42J pancreatic acinar cells upon stimulation by agonist or by cholecystokinin (CCK) or bombesin (BBS). Somatostatin, PMA, CCK, and BBS all increased sst2A receptor phosphorylation 5- to 10-fold within minutes. Somatostatin binding also caused rapid internalization of the ligand-receptor complex, and PMA, CCK, and BBS all stimulated this internalization further. Additionally, sst2 receptor-mediated inhibition of adenylyl cyclase was desensitized by all treatments. Somatostatin, as well as peptidic (SMS201-995) and nonpeptidic (L-779,976) sst2 receptor agonists increased the EC(50) for somatostatin inhibition 20-fold. In contrast, pretreatment with BBS, CCK, or PMA caused a modest 2-fold increase in the EC(50) for cyclase inhibition. Whereas the PKC inhibitor GF109203X abolished sst2A receptor phosphorylation by CCK, BBS, and PMA, it did not alter the effect of somatostatin, demonstrating that these reactions were catalyzed by different kinases. Consistent with a functional role for PKC-mediated receptor phosphorylation, GF109203X prevented PMA stimulation of sst2 receptor internalization. Surprisingly, however, GF109203X did not inhibit BBS and CCK stimulation of sst2A receptor endocytosis. These results demonstrate that homologous and heterologous hormones induce sst2A receptor phosphorylation by PKC-independent and -dependent mechanisms, respectively, and produce distinct effects on receptor signaling and internalization. In addition, the heterologous hormones also modulate sst2 receptor internalization by a novel mechanism that is independent of receptor phosphorylation.  相似文献   

3.
Somatostatin receptor gene expression in neuroblastoma   总被引:2,自引:0,他引:2  
Somatostatin receptor expression is a favorable prognostic factor in human neuroblastoma. Somatostatin receptors have been demonstrated in vitro by pharmacologic analysis of tumor tissue and in vivo by diagnostic radioreceptor scintigraphy. However, which receptor subtypes (sst(1), sst(2), sst(3), sst(4), and sst(5)) are expressed in these tumors has not yet been delineated. We used RT-PCR to analyze expression of the five somatostatin receptor genes in 32 neuroblastoma tumor specimens. All 32 tumor specimens expressed mRNA for c-abl and sst(1); sst(2) mRNA was detected in 27/32 samples and somatostatin mRNA was detected in 30/32 tumor specimens. The remaining receptor subtypes, sst(3), sst(4), and sst(5) were variably expressed. Receptor protein for sst(1) and sst(2) was visualized in tumor neuroblasts as well as in endothelial cells of tumor vessels using immunostaining with specific anti-receptor antibodies. The effect of high expression of somatostatin receptors on cell proliferation was examined in SKNSH neuroblastoma cells transfected with sst(1) and sst(2). SS(14) binding to wild-type SKNSH cells was undetectable; but the native peptide bound with high affinity to the SKNSH/sst(1) and SKNSH/sst(2) neuroblastoma cell lines. Pharmacologic analysis of binding with two long-acting analogues, CH275 and octreotide, confirmed selective expression of sst(1) and sst(2) in stably transfected SKNSH cells. Formation of neuroblastoma xenograft tumors in nude mice was significantly delayed for both SKNSH/sst(1) (P<0.001) and SKNSH/sst(2) (P<0.05) cells compared to wild-type SKNSH. We conclude that: (1) Somatostatin receptors, sst(1) and sst(2), are expressed in the majority of neuroblastomas at diagnosis; and (2) upregulation of functional sst(1) or sst(2) in neuroblastoma cell lines suppresses tumorigenicity in a xenograft model. These observations suggest that somatostatin receptors may be a useful therapeutic target in neuroblastoma.  相似文献   

4.
Somatostatin (SST) regulates growth hormone (GH) secretion from pituitary somatotrophs by interacting with members of the SST family of G-protein-coupled receptors (sst1-5). We have used potent, nonpeptidyl SST agonists with sst2 and sst5 selectivity to determine whether these receptor subtypes are involved in regulating growth hormone releasing hormone (GHRH) stimulated secretion. GHRH stimulated GH release from pituitary cells in a dose-dependent manner, and this secretion was inhibited by Tyr(11)-SST-14, a nonselective SST analog. A sst2 selective agonist, L-779,976, potently inhibited GHRH-stimulated GH release. In addition, L-817, 818, a potent sst5 receptor selective agonist, also inhibited GH secretion, but was approximately 10-fold less potent (P < 0.01, ANOVA) in inhibiting GH release than either Tyr(11)-SST-14 or L-779, 976. These results show that both sst2 and sst5 receptor subtypes regulate GHRH-stimulated GH release from rat pituitary cells.  相似文献   

5.
Somatostatin is an inhibitor of hormone secretion through specific receptors (sst1-5). The aim of this study was to investigate the putative regulatory role of somatostatin analogues on the secretion of insulin and glucagon by rat pancreatic islets. After 48 h exposure only the non-selective agonists (somatostatin, octreotide and SOM-230) inhibited insulin accumulation. The inhibition of insulin secretion was accompanied by increased islet insulin contents. None of the analogues showed a consistent effect on the glucagon accumulation in the medium after 48 h. Since we observed a difference in the regulatory effect between the non-selective and selective analogues, combinations of selective analogues were studied. Combination of sst2+sst5 agonists inhibited the medium insulin accumulation, while combination of sst1+sst2 analogues caused a decrease in glucagon accumulation. After removal of somatostatin a rebound effect with increased insulin secretion were observed. This effect was reversed after 6 h. For SOM-230 insulin secretion continued to be suppressed even after the analogue was removed and returned to control values after 3 h. As for glucagon secretion there was an initial decline after culture with octreotide, while the other substances failed to induce any changes. In summary, non-selective somatostatin analogues or combinations of receptor selective analogues may cause inhibition of hormone secretion from rat pancreatic islets. For insulin and glucagon, combinations of sst2+sst5 and sst1+sst2, respectively may exert this effects. Thus, our data suggest that more than one sst must be involved to down-regulate islet glucagon and insulin secretion.  相似文献   

6.
7.
Somatostatin acts as an inhibitory peptide of various secretory and proliferative responses. Its effects are mediated by a family of G-protein-coupled receptors (sst1-5) that can couple to diverse signal transduction pathways such as inhibition of adenylate cyclase and guanylate cyclase, modulation of ionic conductance channels, and protein dephosphorylation. The five receptors bind the natural peptide with high affinity but only sst2, sst5 and sst3 bind the short synthetic analogues. Somatostatin negatively regulates the growth of various normal and tumour cells. This effect is mediated indirectly through inhibition of secretion of growth-promoting factors, angiogenesis and modulation of the immune system. Somatostatin can also act directly through sst receptors present on target cells. The five receptors are expressed in various normal and tumour cells, the expression of each receptor being receptor subtype and cell type specific. According to the receptor subtypes, distinct signal transduction pathways are involved in the antiproliferative action of somatostatin. Sst1, 4 and 5 modulate the MAP kinase pathway and induce G1 cell cycle arrest. Sst3 and sst2 promote apoptosis by p53-dependent and -independent mechanisms, respectively.  相似文献   

8.
9.
Abstract: Mitogen-activated protein kinase (MAP kinase) was activated by stimulation of glutamate receptors in cultured rat hippocampal neurons. Ten micromolar glutamate maximally stimulated MAP kinase activity, which peaked during 10 min and decreased to the basal level within 30 min. Experiments using glutamate receptor agonists and antagonists revealed that glutamate stimulated MAP kinase through NMDA and metabotropic glutamate receptors but not through non-NMDA receptors. Glutamate and its receptor agonists had no apparent effect on MAP kinase activation in cultured cortical astrocytes. Addition of calphostin C, a protein kinase C (PKC) inhibitor, or down-regulation of PKC activity partly abolished the stimulatory effect by glutamate, but the MAP kinase activation by treatment with ionomycin, a Ca2+ ionophore, remained intact. Lavendustin A, a tyrosine kinase inhibitor, was without effect. In experiments with 32P-labeled hippocampal neurons, MAP kinase activation by glutamate was associated with phosphorylation of the tyrosine residue located on MAP kinase. However, phosphorylation of Raf-1, the c- raf protooncogene product, was not stimulated by treatment with glutamate. Our observations suggest that MAP kinase activation through glutamate receptors in hippocampal neurons is mediated by both the PKC-dependent and the Ca2+-dependent pathways and that the activation of Raf-1 is not involved.  相似文献   

10.
The sst2A receptor is expressed in the endocrine, gastrointestinal, and neuronal systems as well as in many hormone-sensitive tumors. This receptor is rapidly internalized and phosphorylated in growth hormone-R2 pituitary cells following somatostatin binding (Hipkin, R. W., Friedman, J., Clark, R. B., Eppler, C. M., and Schonbrunn, A. (1997) J. Biol. Chem. 272, 13869-13876). The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), also stimulates sst2A phosphorylation. Here we examine the mechanisms and consequences of PMA and agonist-induced sst2A phosphorylation. Like somatostatin, both PMA and bombesin increased sst2A receptor phosphorylation within 2 min. The PKC inhibitor GF109203X blocked PMA- and bombesin- stimulated sst2A phosphorylation, whereas stimulation by the somatostatin analog SMS 201-995 was unaffected. Agonist and PMA each stimulated phosphorylation in two receptor domains, the third intracellular loop and the C-terminal tail. Functionally, PMA dramatically increased the internalization of the sst2A receptor-ligand complex. This PMA stimulation was blocked by GF109203X, whereas basal internalization was unaffected. However, neither basal nor PMA-stimulated internalization was altered by pertussis toxin, whereas both were blocked by hypertonic sucrose. Therefore PKC activation and agonist binding stimulate sst2A phosphorylation by distinct mechanisms, and PKC potentiates internalization of the sst2A receptor via clathrin-coated pits. Thus, hormonal stimulation of PKC-coupled receptors may provide a mechanism for regulating the inhibitory actions of somatostatin in target tissue.  相似文献   

11.
Somatostatin and its analogs such as WOC 3B were compared for their ability to alter the release of 5-hydroxytryptamine (5-HT) and prostaglandins and to affect chloride secretory capacity, determined by activity of neural reflexes or by the influence of immune mediators and other secretagogues. In guinea pig colon set up in flux chambers, the multi-tyrosinated sst1/sst2 receptor preferring somatostatin agonist, WOC 3B, inhibited stroking-evoked 5-HT release without affecting basal release. WOC 3B had no effect on stroking-induced or basal prostaglandin E2 release (PGE2). Neither 5-HT nor PGE2 release was dependent on neural input. Tetrodotoxin induced a decrease in basal short circuit current (Isc) indicative of a decrease in chloride secretion. The decrease in basal Isc during neural blockade was highly correlated with the decrease in basal Isc when WOC 3B was used. In piroxicam- and atropine-treated tissues, to eliminate prostaglandins and cholinergic muscarinic input to crypts, WOC 3B further reduced the piroxicam-resistant and not the atropine resistant Isc during brush stroking the mucosa. Somatostatin and WOC 3B reduced the stroking-evoked Isc with similar half maximum concentrations of 1-2 nM. WOC 3B reduced by more than 50% dimaprit-evoked cyclical Isc. The rank order of potencies in inhibiting dimaprit-evoked Isc was: Somatostatin-14=WOC 3B>CH275=DC-32-92>DC-23-48> >DC-32-87=DC-32-97. Low nanomolar concentrations of WOC 3B primarily inhibited the neural effects of carbachol and forskolin on Isc without altering their epithelial effects. Equi-molar concentrations (4 nM) of CH275, a somatostatin sst1 receptor agonist, and the somatostatin sst2 receptor agonist, [Tyr(3)]-octreotide, inhibited dimaprit-evoked Isc by 25% and 26%, and their effects were additive. The results suggest that WOC 3B, a somatostatin analogue containing three tyrosine residues, has anti-secretory effects due to activation of somatostatin sst1 and sst2 receptors on enteric neurons.  相似文献   

12.
The present study investigated the presence of somatostatin receptor subtypes (ssts) and the endogenous peptides somatostatin and cortistatin in rat Kupffer cells, since modulation of these cells by somatostatin may be important for the beneficial effect of somatostatin analogues in a selected group of hepatocellular carcinoma patients. Kupffer cells were isolated from rat liver in agreement with national and EU guidelines. RT-PCR was employed to assess the expression of somatostatin, cortistatin and ssts in Kupffer cells. Western blot analysis and immunocytochemistry were employed to assess the expression and the localization of the receptors, respectively. Quiescent Kupffer cells were found to express sst(1-4) mRNA, while immunocytochemical studies supported the presence of only the sst(3) and sst(4) receptors, which were found to be internalized. However, sst1 and sst(2A) receptors were detected by western blotting. RT-PCR and RIA measurements support the presence of both somatostatin and cortistatin. Stimulation of the cells with LPS activated the expression of the sst(2), sst(3) and sst(4) receptors. The present data provide evidence to support the presence of ssts and the endogenous neuropeptides somatostatin and CST in rat Kupffer cells. Both peptides may act in an autocrine manner to regulate sst receptor distribution. Studies are in progress in order to further characterize the role of ssts in Kupffer cells and in hepatic therapeutics.  相似文献   

13.
The aim of the study was to examine the effect of somatostatin (SST) and its analogs on the release of chromogranin A (CgA) and alpha-subunit (alpha-SU) from clinically non-functioning pituitary adenomas incubated in vitro. Seven pituitary macroadenomas surgically removed were investigated. All of the tumors were diagnosed before surgery as non-functioning, but they expressed either gonadotropins or their subunits as detected by immunohistochemistry. Two tumors additionally expressed prolactin and growth hormone. All adenomas also expressed chromogranin A (CgA) and at least 3 of 5 subtypes of somatostatin receptors. The cells isolated from the examined tumors were exposed in vitro to either native SST-14 or the following receptor-specific SST analogs: BIM-23926 (agonist of sst1 receptor), BIM-23120 (agonist of sst2 receptor), BIM-23206 (agonist of sst5 receptor) and BIM23A387 (somatostatin/dopamine chimera). The concentration of CgA was measured by means of ELISA method and of alpha-SU was measured by an immunoradiometric method. It was found that the exposure on SST-14 resulted in the decrease of CgA and alpha-SU release from tumor cells in majority of samples, and the effect on CgA was positively correlated with the expression of sst3 and also with the sst2A/sst2B expressions ratio. The inhibitory effect of SST-14 on CgA and alpha-SU seems also to correlate negatively with the expression of sst2B. CgA inhibition also correlates positively with sst5 expression. Among the other compounds studied, only the sst2 agonist decreased the release in all the investigated samples. The remaining substances (agonists of sst1 and sst5 and SST/DA chimera) produced the divergent changes (increased or decreased release, depending on the sample). The data suggest that the inhibition of CgA (and possibly of alpha-SU) release by SST is mediated via subtypes sst2A, sst3 and sst5, whereas sst2B subtype may induce the opposite effect.  相似文献   

14.
15.
Somatostatin mediates its multiple biological effects via specific plasma membrane receptors belonging to the family of G-protein coupled receptors with seven putative membrane-spanning domains. Five somatostatin receptor subtypes (sst1-sst5) have been cloned in human, mouse, and rat. We have raised specific antibodies against the five human somatostatin receptors by using the fusion protein technique. DNA sequences encoding C-terminal parts of the somatostatin receptors were inserted into a pGEX-2T plasmid vector. E. coli bacteria were transformed with the recombinant plasmid and fusion proteins were expressed and purified using the glutathione S-transferase Gene Fusion System. The fusion proteins were emulsified with Freund's complete adjuvant and polyclonal antibodies were raised in rabbits. The antisera were tested for specificity in Western blot analysis of membrane preparations from cell lines expressing the receptors and in membrane preparations of brain tissues. The receptors were visualized at the light microscopical level in paraformaldehyde fixed tissue sections by use of biotin labelled secondary antibodies as well as by amplification with biotinylated tyramide. The final step in the immunohistochemical visualization of the receptors was done by both peroxidase labelled streptavidin/biotin and different fluorophores. At the electron microscopical level, some of the receptors could be visualized in tissues fixed with a combination of paraformaldehyde and low concentrations of glutaraldehyde. In the hamster brain, sst2 receptors labelling was observed in both neuronal processes and perikarya. The staining was present in neo-, and allocortical areas of the forebrain, the hypothalamus, brain stem, and spinal cord. In the rat and human, sst1 receptor was shown to be an auto receptor on somatostatinergic neurons located in the hypothalamus. In the retina both sst1 and sst2 receptors were present. sst1 receptors were confined to amacrine cells, few ganglionic cells, and Müller cell-end feet. sst2 receptors were more widespread than the sst1 receptors. sst2-immunoreactivity was present in dopaminergic amacrine cells, the Müller cell-end feet, and in the inner segments of the cone photoreceptors. Thus, the availability of subtype specific antibodies against the five somatostatin receptors makes it possible to identify the receptors involved in the multiple somatostatinergic system in the body.  相似文献   

16.
17.
18.
The present study investigated the effect of somatostatin in the regulation of cGMP levels in rat retina and the mechanisms involved in this process. Isolated rat retinas were treated alone or in the presence of somatostatin (0.01-10 microM), BIM23014 (sst2 agonist, 0.01-10 microM), L-796,778 (sst3 agonist, 10 microM), somatostatin (0.1 microM) in combination with CYN154806 (sst2 antagonist, 1 microM), N(G)-methyl-L-arginine acetate salt (NMMA, inhibitor of the nitric oxide synthase (NOS), 250 microM), orthovanadate (inhibitor of tyrosine phosphatase, SHP-1, 1 microM), and arginine alone (250 microM). cGMP levels were quantified by ELISA. Immunohistochemistry studies were performed for the detection of cGMP and nNOS, while Western blot analysis was employed for the detection of SHP-1. Somatostatin increased cGMP levels in a concentration-dependent manner. This increase was inhibited by CYN154806. BIM23014 increased cGMP levels only at the concentration of 10 microM, while L-796,778 had no effect. NMMA blocked completely the somatostatin stimulated increase of cGMP levels and nNOS was detected in rat retina. cGMP immunoreactivity was observed primarily in bipolar cells only of nitroprusside-treated retinas. SHP-1 inhibition by orthovanadate reduced the somatostatin effect in a statistically significant manner. These results suggest that a SRIF/SHP-1/NO/cGMP mechanism underlies the actions of somatostatin in the retina and in its influence of retinal circuitry.  相似文献   

19.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin F2 alpha (PGF2 alpha) stimulated arachidonic acid (AA) release in a dose-dependent manner in the range between 1 nM and 10 microM. 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, which by itself had little effect on AA release, markedly amplified the release of AA stimulated by PGF2 alpha in a dose-dependent manner. 4 alpha-phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect on the PGF2 alpha-induced AA release. 1-oleoyl-2-acetylglycerol (OAG), a specific activator for PKC, mimicked TPA by enhancement of the AA release induced by PGF2 alpha. H-7, a PKC inhibitor, markedly suppressed the effect of OAG on PGF2 alpha-induced AA release. Quinacrine, a phospholipase A2 inhibitor, showed partial inhibitory effect on PGF2 alpha-induced AA release, while it suppressed the amplification by OAG of PGF2 alpha-induced AA release almost to the control level. Furthermore, TPA enhanced the AA release induced by melittin, known as a phospholipase A2 activator. On the other hand, TPA inhibited the formation of inositol trisphosphate stimulated by PGF2 alpha. Under the same condition, PGF2 alpha indeed stimulated prostaglandin E2 (PGE2) synthesis and TPA markedly amplified the PGF2 alpha-induced PGE2 synthesis as well as AA release. These results indicate that the activation of PKC amplifies PGF2 alpha-induced both AA release and PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like cells.  相似文献   

20.
Atrial natriuretic peptide (ANP) as well as its receptor, NPR-A, have been identified in gastric antral mucosa, suggesting that ANP may act in a paracrine fashion to regulate gastric secretion. In the present study, we have superfused antral mucosal segments obtained from rat stomach to examine the paracrine pathways linking ANP and somatostatin secretion in this region.ANP (0.1 pM to 0.1 microM) caused a concentration-dependent increase in somatostatin secretion (EC(50), 0.3 nM). The somatostatin response to ANP was unaffected by the axonal blocker tetrodotoxin but abolished by addition of the selective NPR-A antagonist, anantin. Anantin alone inhibited somatostatin secretion by 18+/-3% (P<0.005), implying that endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion. Somatostatin (1 pM to 1 microM) caused a concentration-dependent decrease in ANP secretion (EC(50), 0.7 nM) that was abolished by addition of the somatostatin subtype 2 receptor (sst2) antagonist, PRL2903. Neutralization of ambient somatostatin with somatostatin antibody (final dilution 1:200) increased basal ANP secretion by 70+/-8% (P<001), implying that endogenous somatostatin inhibits ANP secretion. We conclude that antral ANP and somatostatin secretion are linked by paracrine feedback pathways: endogenous ANP, acting via the NPR-A receptor, stimulates somatostatin secretion, and endogenous somatostatin, acting via the sst2 receptor, inhibits ANP secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号