首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Summary A viable protocol has been developed for direct and indirect shoot regeneration of Vernonia cinerea. To establish a stable and high-frequency plant regeneration system, leaf and stem explants were tested with different combinations of α-naphthalene acetic acid (NAA), indole-3-acetic acid (IAA), and benzylaminopurine (BA). Lateral buds on nodal explants grew into shoots within 2 wk of culture in Murashige and Skoog (MS) basal medium supplemented with 20.9 μM BA. Excision and culture of nodal segments from in vitro-raised shoots on fresh medium with the same concentration of BA facilitated development of more than 15 shoots per node. Similarly leaf, nodal, and internodal explants were cultured on MS basal medium supplemented with different concentrations of BA, NAA, and IAA either alone or in combinations for callus induction and organogenesis. Shoot buds and/or roots were regenerated on callus. Shoot buds formed multiple shoots within 4 wk after incubation in induction medium. Adventitious buds and shoots proliferated when callus was cut into pieces and subcultured on MS basal medium containing 20.9 μM BA and 5.3 μM NAA. This combination proved to be the best medium for enhanced adventitious shoot bud multiplication, generating a maximum of 50 shoots in 4 wk. This medium was also used successfully for shoot proliferation in liquid medium. Root formation was observed from callus induced in medium containing 8.05–13.4 μM NAA. Regenerated shoots exhibited flowering and root formation in MS basal medium without any growth regulators. Plantlets established in the field showed 85% survival and exhibited identical morphological characteristics as the donor plant.  相似文献   

2.
Plants were regenerated from cotyledon and hypocotyl explants of watermelon (Citrullus vulgaris). The explants were cultured on a Murashige and Skoog's basal nutrient medium supplemented with auxin, cytokinin and auxin-cytokinin combinations. Green healthy nodular and compact callus was obtained in medium containing naphthalene acetic acid and benzylaminopurine. Shoot differentiation and root differentiation from the cotyledon and hypocotyl after callus formation in different media containing benzylaminopurine or naphthalene acetic acid, respectively. Shoot formation required benzylaminopurine. Kinetin proved ineffective in inducing shoot buds or shoots. Root differentiation occurred in a medium containing naphthalene acetic acid or indole acetic acid. There was a greater proliferation of roots on medium supplemented with naphthalene acetic acid. The regenerated shoots developed roots when transferred to medium containing naphthalene acetic acid and complete plantlets could be transferred to soil for further growth.Abbreviations BAP 6 Benzylaminopurine - NAA -Naphthalene acetic acid - MS Murashige and Skoog's medium - IAA Indole acetic acid - KN Kinetin  相似文献   

3.
The morphogenetic potential of node, internode and leaf explants of Brahmi [Bacopa monniera (L.) Wettst.] was investigated to develop reliable protocols for shoot regeneration and somatic embryogenesis. The explants were excised from shoots raised from axillary buds of nodal explants cultured on Murashige and Skoog (MS) basal medium. Presence of 6-benzylaminopurine (BA) or kinetin influenced the degree of callus formation, from which a large number of shoot buds regenerated. Leaf explants gave the largest number of shoot buds followed by node and internode explants. BA was superior to kinetin; BA at 1.5 – 2.0 mg/l appeared to be optimum for inducing the maximum number of shoot buds. MS + 0.1 mg/l BA + 0.2 mg/l indole-3-acetic acid was the most suitable for shoot elongation. Elongated shoots were rooted on full- or half-strength MS medium with or without 0.5 – 1.0 mg/l indole-3-butyric acid or 0.5 – 1.0 mg/l α-naphthaleneacetic acid. The rooted plants were successfully established in soil. Calli derived from nodal explants cultured on MS medium containing 0.5 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), when subcultured on MS medium containing 0.1 or 0.5 mg/l BA or 0.2 mg/l 2,4-D + 0.1 or 0.5 mg/l kinetin, developed somatic embryos. The somatic embryos germinated either on the same media or on MS basal medium, and the resulting plantlets were successfully transplanted to soil. Received: 25 September 1996 / Revision received: 23 October 1997 / Accepted: 12 November 1997  相似文献   

4.
Summary A protocol for in vitro propagation using direct induction of shoot buds from leaf explants of in vitro-raised shoots of Rosa damascena var. Jwala is reported. The present study is the first report on direct shoot regeneration in scented roses. Elite plants raised from nodal explants and maintained for over 2yr in vitro on a static liquid shoot multiplication Murashige and Skoog (MS) medium supplemented with 5.0 μM benzyladenine (BA) and 3% sucrose were used. Petioles from fully developed young leaves, obtained after 4 wk of pruning of old shoots, were found to be ideal for regeneration of shoots. Initially the explants were cultured in an induction medium [half-strength MS+3% sucrose+6.8μM thidiazuron+0.27 μM α-naphthaleneacetic acid (NAA)+17.7 μM AgNO3] and subsequently transferred to the regeneration medium (MS+2.25 μM BA+0.054 μM NAA) after 7, 14, 21, 28, and 35d. The highest shoot regeneration response (69%) was recorded when shoots were kept in the induction medium for 21 d and later transferred to regeneration medium. Histological studies revealed direct formation of shoot buds without the intervening callus phase. In vitro rooting of micro-shoots was accomplished within 2wk on half-strength MS liquid medium supplemented with 10.0 μM IBA and 3% sucrose for 1 wk in the dark and later transferred to hormone-free medium and kept in the light. Plantlets, remaining in the latter medium for 5–6 wk when transferred to soil, showed 90% survival.  相似文献   

5.
This report describes in vitro shoot induction and plant regeneration from mature nodal explants of Vitex trifolia L. on Murashige and Skoog (MS) medium fortified with benzylaminopurine (BAP), kinetin (KN), thidiazuron (TDZ), adenine (ADE), and 2-isopentenyladenine (2-iP) (0.25 – 10.0 μM). Multiple shoots differentiated directly without callus mediation within 3 weeks when explants were cultured on medium supplemented with cytokinins. The maximum number of shoots (9 shoots per explant) was developed on a medium supplemented with 5.0 μM BAP. Shoot cultures was established repeatedly subculturing the original nodal explant on the same medium. Rooting of shoots was achieved on half strength MS medium supplemented with 0.5 μM naphthaleneacetic acid (NAA). Rooted plantlets transferred to pots containing autoclaved soil and vermiculite mixture (1:1) showed 90 % survival when transferred to outdoor.  相似文献   

6.
Multiple shoot formation was induced from excised leaf explants of Annona squamosa Linn. (custard apple) seedlings on a Murashige and Skoog basal medium containing benzylaminopurine and kinetin. Various auxins in combination with the above medium produced callusing of the explants. In an investigation of environmental factors affecting shoot induction it was seen that the maximum number of shoots were obtained using the leaf base with petiole at a temperature of 27°C and a light intensity of 1000 lux. Roots were initiated erratically when individual shoots were treated with an auxin and then transferred to an auxin free medium. The process of the development of adventitious buds in leaf culture was analysed histologically.NCL Communication No. 3104.  相似文献   

7.
An efficient system was developed for direct plant regeneration from in vitro-derived leaf explants of Pistacia vera L. cv. Siirt. The in vitro procedure involved four steps that included (1) induction of shoot initials from the regenerated mature leaf tissue, (2) regeneration and elongation of shoots from the shoot initials, (3) rooting of the shoots, and (4) acclimatization of the plantlets. The induction of shoot initials was achieved on an agarified Murashige and Skoog (MS) medium with Gamborg vitamins supplemented in different concentrations of benzylaminopurine (BA) and indole-3-acetic acid (IAA). The best medium for shoot induction was a MS medium with 1 mgl−1 IAA and 2 mgl−1 BA. Numerous shoot primordia developed within 2–3 wk on the leaf margin and the midrib region, without any callus phase. In the second step, the shoot clumps were separated from the leaf explants and transferred to a MS medium supplemented with 1 mgl−1 BA, resulting in a differentiation of the shoot initials into well-developed shoots. The elongated shoots (>3 cm long) were rooted on a full-strength MS basal medium supplemented with 2 mgl−1 of indole-3-butyric acid in the third stage. Finally, the rooted plants were transferred to soil with an 80% success rate. This protocol was utilized for the in vitro clonal propagation of this important recalcitrant plant species.  相似文献   

8.
Multiple shoot formation was induced from excised leaf explants of Annona squamosa Linn. (custard apple) seedlings on a Murashige and Skoog basal medium containing benzylaminopurine and kinetin. Various auxins in combination with the above medium produced callusing of the explants. In an investigation of environmental factors affecting shoot induction it was seen that the maximum number of shoots were obtained using the leaf base with petiole at a temperature of 27°C and a light intensity of 1000 lux. Roots were initiated erratically when individual shoots were treated with an auxin and then transferred to an auxin free medium. The process of the development of adventitious buds in leaf culture was analysed histologically.  相似文献   

9.
Cotyledonary explants of 4-day-oldCucumis melo cv. Hale's Best Jumbo in vitro seedlings showed maximum initiation of shoot buds when cultured onto a revised Murashige & Skoog medium supplemented with 5 M indole-3-acetic acid and 5 M benzylaminopurine and cultured at 25–29°C under low light intensity (5–30 mol m-2 s-1). Subculture of the shoot buds onto the same medium without auxin and supplemented with 3 M benzylaminopurine caused the development of shoots from 30% of the buds. The presence of abscisic acid significantly increased the number of explants producing shoot buds. Bud initiation was affected by genotype, seedling age, light intensity, and temperature. Addition of gibberellic acid, thidiazuron or silver nitrate to regeneration medium did not improve either bud initiation or shoot regeneration.  相似文献   

10.
An efficient protocol for shoot bud induction and proliferation employing half cotyledonary node with intact cotyledon explants derived from two-day-old seedlings of mung bean pre-conditioned on 6- benzylaminopurine (BAP) has been achieved. Explants were cultured for four weeks each on MS B5 + 12.5 μM BAP and MS B5 + 5 μM BAP +0.05 μM α-naphthaleneacetic acid (NAA ), respectively, as shoot bud induction and shoot elongation and proliferation media, gave the best regeneration response. The removal of the pre-existing buds from explants at 12 days in shoot bud induction medium led to enhanced regeneration response. Light microscopic observations on 14-day-old explants confirmed direct organogenesis route of regeneration. Elongated shoots (>2 cm) excised from the regenerating cultures were successfully rooted on half MS B5 medium containing 2.46 μM indolebutyric acid (IBA). About 90% of the rooted plantlets, efficiently hardened in pots having soil and farm yard manure, flowered and produced pods with viable seeds upon reaching maturity.  相似文献   

11.
An efficient and reproducible method for the regeneration of Jatropha curcas plants has been developed. The method employed direct induction of shoot buds from petiole explants, without the formation of an intervening callus using a Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ). The best induction of shoot buds (58.35%) and the number of shoot buds per explant (10.10) were observed when in vitro petiole explants were placed horizontally on MS medium supplemented with 2.27 µM TDZ after 6 weeks. The induced shoot buds were transferred to MS medium containing 10 µM kinetin (Kn), 4.5 µM 6-benzyl aminopurine (BAP) and 5.5 µM α-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with different concentrations and combinations of BAP, indole-3-acetic acid (IAA), NAA and indole-3-butyric acid (IBA). MS medium supplemented with 2.25 µM BAP and 8.5 µM IAA was found to be the best combination for shoot elongation and 3.01–3.91 cm elongation was achieved after 6 weeks. However, significant differences in plant regeneration and shoot elongation were observed among the genotypes studied. The orientation (horizontal or vertical) and source (in vitro or in vivo) of explants also significantly influenced plant regeneration. The elongated shoots could be rooted on half-strength MS medium supplemented with 2% sucrose, different concentrations and combinations of IBA, IAA and NAA, and 0.25 mg L−1 activated charcoal. Half-strength MS medium supplemented with 2% sucrose, 15 µM IBA, 5.7 µM IAA, 5.5 µM NAA and 0.25 mg L−1 activated charcoal was found to be the best for promoting rooting. The rooted plants could be established in soil with more than 90% survival.  相似文献   

12.
Summary Factors affecting in vitro shoot production and regeneration of Cercis yunnanensis Hu et Cheng were investigated by comparing various growth regulators and explant types. For optimum shoot production from axillary buds, Murashige and Skoog (MS) media containing 6-benzyladenine, either alone or in combination with a low concentration of thidiazuron, resulted in the greatest number of shoots formed per explant (>3). Explants (2 mm long) containing one axillary bud placed in directcontact with the medium yielded the most shoots per bud (1.6) when grown on growth regulator-free medium. Root formation on 70–80% of shoot explants was accomplished using either indole-3-butyric acid or α-naphthaleneacetic acid in the medium, with significantly more roots formed on explants possessing and apical bud than those without the bud. Direct shoot organogenesis from leaf explants occurred on MS medium containing 10–30 μM thidiazuron, with up to 42% of leaf explants producing shoots.  相似文献   

13.
The present study highlights the importance of preculture time and concentration of TDZ (thidiazuron) for direct regeneration from in vitro leaves (attached to shoots) in Arnebia euchroma. Shoot buds proliferated to form multiple shoots on MS medium (Murashige and Skoog medium) with 5.0 μM Kn. Different additives viz. ascorbic acid, PVP (polyvinylpyrrolidone), PVPP (polyvinylpolypyrrolidone) or activated charcoal (50, 100 and 250 mg/l each) were used to check the phenolic exudations. Direct shoot regeneration was obtained when shoots were initially precultured for 40 days on medium with a higher concentration of TDZ (20.0 μM) and then transferred to a lower concentration (5.0 μM TDZ). The identity of shoot buds was confirmed by histological studies. Regenerated shoots were cultured for 30 days on medium containing Kn (5.0 μM) for proliferation and then transferred to IBA (0.25 μM)‐containing medium for rooting. Rooted plantlets were transferred to greenhouse with 45–50% survival.  相似文献   

14.
Summary The in vitro plant regeneration potential of vegetatively propagated geraniums (Pelargonium x hortorum) has been investigated. Using various combinations of growth regulators and a choice of different explants, a regeneration protocol has been developed to raise in vitro plantlets from young petiole and leaf explants from three different cultivars of geraniums. In all three cultivars, very young petiole explants exhibited a higher regeneration potential as compared with leaf explants. Regeneration efficiencies were found to be highly dependent on the cultivar, with cv. Samba showing the highest regeneration potential, followed by cvs. Yours Truly and then Sincerity. Samba also showed the highest number of shoots from both the petiole [57 shoot buds per petiole explant in the presence of 3 μM zeatin and 1 μM indole-3-acetic acid (IAA) and leaf explants (43 shoots per leaf explant with 10 μM zeatin and 2 μM IAA). Shoot buds transferred to Murashige and Skoog (MS) medium supplemented with 0.44 μM N6-benzyladenine and 0.11 μM IAA grew vigorously and attained 1–2 cm in length in 3–4 wk. These shoots rooted with 100% efficiency on MS basal medium, and plants developed that showed normal growth and flowering under greenhouse conditions.  相似文献   

15.
Summary A method for adventitious shoot induction from petiole explants of Heracleum candicans is reported. Shoot buds were induced on Murashige and Skoog (MS) medium with 4.4μM 6-benzylaminopurine (BA) and 1.1 μM 2,4-dichlorophen-oxyacetic acid (2,4-D). A wound response in the presence of BA and 2,4-D at the time of culture was necessary for inducing shoot buds. The shoot bud regeneration was significantly influenced by size, type and orientation of explants on the culture medium. These shoot buds developed into 4–5 cm shoots upon transfer to a medium containing 1.1μM BA and 0.5 μM α-naphthaleneacetic acid (NAA). The regenerated shoots formed rooted plantlets on MS medium supplemented with 4.9 μM indole-3-butyric acid (IBA). About 15 plants were established in the field for further evaluation.  相似文献   

16.
Different plant explants of Persian buttercup (Ranunculus asiaticus L.) were screened for callus induction and adventitious shoot regeneration on different media to establish totipotent cultures. Murashige & Skoog (MS) medium was used, supplemented with different concentrations of the following growth regulators: kinetin, benzyladenine (BA), naphthaleneacetic acid (NAA) and indoleacetic acid (IAA). Callus was induced and adventitious buds regenerated only from cotyledonary explants after 4–5 weeks. Subculture of the regenerated buds on the same basal medium in presence of gibberellic acid (GA3) and BA produced well-organized shoots. Rooting was obtained by transferring shoots to growth regulator-free MS medium. A high rate of shoot multiplication has been achieved on medium with high concentration of kinetin and long-day photoperiod. Finally the plants were successfully transferred to soil and grown in a greenhouse.  相似文献   

17.
Callus formation was achieved with root, hypocotyl, and cotyledon explants of niger (Guizotia abyssinica Cass.) cultivar Sahyadri on Murashige and Skoog medium containing 0.5 mg l–1 β-indoleacetic acid + 1.5 mg l–1 6-benzylaminopurine (BAP). Hypocotyl and cotyledon-derived calli when transferred onto a medium with 0.5 mg l–1 BAP produced an average of 12–32 shoots/ callus culture. The callus retained its potential for shoot regeneration for more than 19 months. The shoots formed an extensive root system and were transferred to pots kept in a greenhouse, where the survival rate was 98%. The plantlets flowered in vitro if transfer to fresh medium or to soil was delayed by 40–50 days. All regenerants were diploid with 2n=30. Received: 13 March 1997 / Revision received: 17 May 1997 / Accepted: 5 July 1997  相似文献   

18.
The induction of adventitious buds from apical shoot explants of Euphorbia tirucalli was studied. On average, 10.5 adventitious buds were efficiently induced in a ring on the segment from one apical explant on MS (Murashige and Skoog) medium supplemented with 0.5 mg l−1 thidiazuron and 0.5 mg l−1 benzylaminopurine. The adventitious buds could develop into adventitious shoots during subsequent cultures on hormone-free MS medium. For rooting, shoot clumps were cultured on half-strength MS medium containing 0.2 mg l−1 α-naphthaleneacetic acid or indole-3-butyric acid. All the rooted plants survived establishment in soil within 2 months.  相似文献   

19.
Node and internode explants of Mallotus repandus were precultured on basal medium (BM: Murashige and Skoog (MS) medium with 3% sucrose and 0.55% Agargel) for 0–18 d before culture on shoot induction Medium (SIM: BM added with 4.44 μM of benzylaminopurine) for 4 wk. The cultures were subsequently transferred to BM for 4 wk for shoot elongation. Node explants precultured on BM for 14 d before incubation on SIM were at an optimum for shoot regeneration with the response rate of 95%, compared to a 21% response for the control without preculture. Internode explants precultured on BM for 16 d responded with an optimal shoot formation response rate of 69%, whereas the control response rate was 6%. The maximum shoot regeneration rates were 3.1 ± 0.3 and 2.7 ± 0.4 shoots/responding explant in node and internode explants, respectively. This study demonstrates for the first time that shoot organogenesis can be induced from internode explants of M. repandus. Furthermore, the results suggest that the explants need to acquire competence before shoot organogenesis. Rooting was obtained by incubation of regenerated shoots on half-strength MS with 10.74 μM of 1-naphthylacetic acid for a week before culture on half-strength MS for 4 wk. Regenerated plants were successfully transferred to soil.  相似文献   

20.
Multiple Shoot Regeneration from Immature Embryo Explants of Papaya   总被引:1,自引:1,他引:0  
A simple and rapid method for multiple shoot formation in vitro from immature embryo axis explants of Carica papaya L. cvs. Honey Dew, Washington and Co2 is described. Multiple shoot regeneration was achieved by culture of the explants on modified Murashige and Skoog (MS) medium supplemented either with thidiazuron (TDZ; 0.45–22.7 μM) or a combination of benzylaminopurine (BAP; 0.2 – 8.84 μM) and naphthalene acetic acid (NAA; 0.5 – 2.64 μM). Highest frequency of shoot regeneration occurred on medium supplemented either with 2.25 μM TDZ or a combination of BAP (4.4 μM) and NAA (0.5 μM). Composition of the basal media influenced the frequency of multiple shoot initiation. Stunted shoots regenerated at 4.5 μM and higher concentrations of TDZ. Such shoots could, however, be elongated by transfer to medium containing 5.7 μM GA3. Rooting of the regenerated shoots was achieved in presence of indolebutyric acid (IBA; 4.92 – 19.68 μM), however, least response was in presence of 14.7 μM IBA. Rooted plants were hardened and transferred to pots. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号