首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bacteriophage therapy to reduce salmonella colonization of broiler chickens   总被引:1,自引:0,他引:1  
Acute enteric infections caused by salmonellas remain a major public health burden worldwide. Poultry, particularly chickens, are known to be the main reservoir for this zoonotic pathogen. Although some progress has been made in reducing Salmonella colonization of broiler chickens by using biosecurity and antimicrobials, it still remains a considerable problem. The use of host-specific bacteriophages as a biocontrol is one possible intervention by which Salmonella colonization could be reduced. A total of 232 Salmonella bacteriophages were isolated from poultry farms, abattoirs, and wastewater in 2004 and 2005. Three phages exhibiting the broadest host ranges against Salmonella enterica serotypes Enteritidis, Hadar, and Typhimurium were characterized further by determining their morphology and lytic activity in vitro. These phages were then administered in antacid suspension to birds experimentally colonized with specific Salmonella host strains. The first phage reduced S. enterica serotype Enteritidis cecal colonization by > or = 4.2 log10 CFU within 24 h compared with controls. Administration of the second phage reduced S. enterica serotype Typhimurium by > or = 2.19 log10 CFU within 24 h. The third bacteriophage was ineffective at reducing S. enterica serotype Hadar colonization. Bacteriophage resistance occurred at a frequency commensurate with the titer of phage being administered, with larger phage titers resulting in a greater proportion of resistant salmonellas. The selection of appropriate bacteriophages and optimization of both the timing and method of phage delivery are key factors in the successful phage-mediated control of salmonellas in broiler chickens.  相似文献   

2.
One of the major causes of morbidity and mortality in man and economically important animals is bacterial infections of the gastrointestinal (GI) tract. The emergence of difficult-to-treat infections, primarily caused by antibiotic resistant bacteria, demands for alternatives to antibiotic therapy. Currently, one of the emerging therapeutic alternatives is the use of lytic bacteriophages. In an effort to exploit the target specificity and therapeutic potential of bacteriophages, we examined the utility of bacteriophage tailspike proteins (Tsps). Among the best-characterized Tsps is that from the Podoviridae P22 bacteriophage, which recognizes the lipopolysaccharides of Salmonella enterica serovar Typhimurium. In this study, we utilized a truncated, functionally equivalent version of the P22 tailspike protein, P22sTsp, as a prototype to demonstrate the therapeutic potential of Tsps in the GI tract of chickens. Bacterial agglutination assays showed that P22sTsp was capable of agglutinating S. Typhimurium at levels similar to antibodies and incubating the Tsp with chicken GI fluids showed no proteolytic activity against the Tsp. Testing P22sTsp against the three major GI proteases showed that P22sTsp was resistant to trypsin and partially to chymotrypsin, but sensitive to pepsin. However, in formulated form for oral administration, P22sTsp was resistant to all three proteases. When administered orally to chickens, P22sTsp significantly reduced Salmonella colonization in the gut and its further penetration into internal organs. In in vitro assays, P22sTsp effectively retarded Salmonella motility, a factor implicated in bacterial colonization and invasion, suggesting that the in vivo decolonization ability of P22sTsp may, at least in part, be due to its ability to interfere with motility… Our findings show promise in terms of opening novel Tsp-based oral therapeutic approaches against bacterial infections in production animals and potentially in humans.  相似文献   

3.
Wisner AL  Potter AA  Köster W 《PloS one》2011,6(12):e29787
In order to better identify the role of the Salmonella pathogenicity island 2 (SPI-2) type III secretion system (T3SS) in chickens, we used the well-known gentamicin protection assay with activated HD11 cells. HD11 cells are a macrophage-like chicken cell line that can be stimulated with phorbol 12-myristate 13-acetate (PMA) to exhibit more macrophage-like morphology and greater production of reactive oxygen species (ROS). Activated HD11 cells were infected with a wild-type Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) strain, a SPI-2 mutant S. Typhimurium strain, a wild-type Salmonella enterica subspecies enterica serovar Enteritidis (S. Enteritidis) strain, a SPI-2 mutant S. Enteritidis strain, or a non-pathogenic Escherichia coli (E. coli) strain. SPI-2 mutant strains were found to survive as well as their parent strain at all time points post-uptake (PU) by the HD11 cells, up to 24 h PU, while the E. coli strain was no longer recoverable by 3 h PU. We can conclude from these observations that the SPI-2 T3SS of S. Typhimurium and S. Enteritidis is not important for survival of Salmonella in the activated macrophage-like HD11 cell line, and that Salmonella must employ other mechanisms for survival in this environment, as E. coli is effectively eliminated.  相似文献   

4.
Salmonella enterica consists of over 2,000 serovars that are major causes of morbidity and mortality associated with contaminated food. Despite similarities among serovars of Salmonella enterica, many demonstrate unique host specificities, epidemiological characteristics, and clinical manifestations. One of the unique epidemiological characteristics of the serovar Enteritidis is that it is the only bacterium routinely transmitted to humans through intact chicken eggs. Therefore, Salmonella enterica serovar Enteritidis must be able to persist inside chicken eggs to be transmitted to humans, and its survival in egg is important for its transmission to the human population. The ability of Salmonella enterica serovar Enteritidis to survive in and transmit through eggs may have contributed to its drastically increased prevalence in the 1980s and 1990s. In the present study, using transposon-mediated mutagenesis, we have identified genes important for the association of Salmonella enterica serovar Enteritidis with chicken eggs. Our results indicate that genes involved in cell wall structural and functional integrity, and nucleic acid and amino acid metabolism are important for Salmonella enterica serovar Enteritidis to persist in egg albumen. Two regions unique to Salmonella enterica serovar Enteritidis were also identified, one of which enhanced the survival of a Salmonella enterica serovar Typhimurium isolate in egg albumen. The implication of our results to the serovar specificity of Salmonella enterica is also explored in the present study.  相似文献   

5.
Acute enteric infections caused by salmonellas remain a major public health burden worldwide. Poultry, particularly chickens, are known to be the main reservoir for this zoonotic pathogen. Although some progress has been made in reducing Salmonella colonization of broiler chickens by using biosecurity and antimicrobials, it still remains a considerable problem. The use of host-specific bacteriophages as a biocontrol is one possible intervention by which Salmonella colonization could be reduced. A total of 232 Salmonella bacteriophages were isolated from poultry farms, abattoirs, and wastewater in 2004 and 2005. Three phages exhibiting the broadest host ranges against Salmonella enterica serotypes Enteritidis, Hadar, and Typhimurium were characterized further by determining their morphology and lytic activity in vitro. These phages were then administered in antacid suspension to birds experimentally colonized with specific Salmonella host strains. The first phage reduced S. enterica serotype Enteritidis cecal colonization by ≥4.2 log10 CFU within 24 h compared with controls. Administration of the second phage reduced S. enterica serotype Typhimurium by ≥2.19 log10 CFU within 24 h. The third bacteriophage was ineffective at reducing S. enterica serotype Hadar colonization. Bacteriophage resistance occurred at a frequency commensurate with the titer of phage being administered, with larger phage titers resulting in a greater proportion of resistant salmonellas. The selection of appropriate bacteriophages and optimization of both the timing and method of phage delivery are key factors in the successful phage-mediated control of salmonellas in broiler chickens.  相似文献   

6.
Salmonella enterica serovar Enteritidis has remained a major food-borne pathogen in humans. We isolated a virulent S. enterica serovar Enteritidis bacteriophage, SE2, which belongs to the family Siphoviridae. Phage SE2 could lyse S. enterica serovar Enteritidis PT-4, and its virulence was maintained even at ambient temperature. The genomic sequence of phage SE2 was composed of 43,221 bp with close similarity to those of Salmonella phage SETP3 and Salmonella phage SS3e. The strong and stable lytic activity of this phage might enable its use as a therapeutic or biocontrol agent against S. enterica serovar Enteritidis.  相似文献   

7.
AIMS: To evaluate the ability of Salmonella enterica ser. Enteritidis outer membrane proteins (OMPs) of 75.6 and 82.3 kDa to inhibit or reduce in vivo colonization of S. Enteritidis on intestinal mucosa in chickens. METHODS AND RESULTS: Nine-week-old specific-pathogen-free chickens were subcutaneously immunized with 75.6 or 82.3 kDa protein, and challenged with a virulent strain of S. Enteritidis. Chickens were killed, and portions of small intestine and caecum were removed at necropsy. The population of S. Enteritidis attached to chicken intestinal mucosa was determined. The population of S. Enteritidis recovered from the small intestine and caecum of chickens immunized with 75.6 or 82.3 kDa protein was significantly (P < 0.05) lower than that recovered from the control birds. CONCLUSIONS: Salmonella Enteritidis OMPs 75.6 kDa and 82.3 kDa were effective in reducing colonization of S. Enteritidis on intestinal mucosa in chickens. SIGNIFICANCE AND IMPACT OF THE STUDY: Salmonella Enteritidis OMPs 75.6 or 82.3 kDa could be used as potential vaccines to reduce S. Enteritidis colonization in chickens.  相似文献   

8.
Salmonella enterica serovar Enteritidis, a major cause of food poisoning, can be transmitted to humans through intact chicken eggs when the contents have not been thoroughly cooked. Infection in chickens is asymptomatic; therefore, simple, sensitive, and specific detection methods are crucial for efforts to limit human exposure. Suppression subtractive hybridization was used to isolate DNA restriction fragments present in Salmonella serovar Enteritidis but absent in other bacteria found in poultry environments. Oligonucleotide primers to candidate regions were used in polymerase chain reactions to test 73 non-Enteritidis S. enterica isolates comprising 34 different serovars, including Dublin and Pullorum, two very close relatives of Enteritidis. A primer pair to one Salmonella difference fragment (termed Sdf I) clearly distinguished serovar Enteritidis from all other serovars tested, while two other primer pairs only identified a few non-Enteritidis strains. These primer pairs were also useful for the detection of a diverse collection of clinical and environmental Salmonella serovar Enteritidis isolates. In addition, five bacterial genera commonly found with Salmonella serovar Enteritidis were not detected. By treating total DNA with an exonuclease that degrades sheared chromosomal DNA but not intact circular plasmid DNA, it was shown that Sdf I is located on the chromosome. The Sdf I primers were used to screen a Salmonella serovar Enteritidis genomic library and a unique 4,060-bp region was defined. These results provide a basis for developing a rapid, sensitive, and highly specific detection system for Salmonella serovar Enteritidis and provide sequence information that may be relevant to the unique characteristics of this serovar.  相似文献   

9.
AIMS: To develop a multiplex PCR assay for the detection of Salmonella enterica serovar Enteritidis in human faeces. METHODS AND RESULTS: A total of 54 Salmonella strains representing 19 serovars and non-Salmonella strains representing 11 different genera were used. Five primer pairs were employed in the assay. Three of them targeted to the genes hilA, spvA and invA that encode virulence-associated factors. A fourth primer pair amplified a fragment of a unique sequence within S. enterica serovar Enteritidis genomes. An internal amplification control (a fragment of a conservative sequence within the 16S rRNA genes) was targeted by a fifth primer pair. The assay produced two or three amplicons from the invA, hilA and 16S rRNA genes for 19 Salmonella serovars. All Salmonella and non-Salmonella strains yielded a band of an internal amplification control. For S. enterica serovar Typhimurium, four products (the fourth from the spvA gene), and for S. enterica serovar Enteritidis five amplicons (the fifth from the sdf gene) were observed. S. enterica serovar Enteritidis was cultured from three of 71 rectal swabs from diarrhoeal patients. Five specific amplicons were generated with the multiplex PCR assay only from culture-positive faecal samples. CONCLUSION: The multiplex PCR assay specifically detects S. enterica serovar Enteritidis. SIGNIFICANCE AND IMPACT OF THE STUDY: This is a novel multiplex PCR assay, which contains an internal amplification control and enables concurrent survey for Salmonella virulence genes.  相似文献   

10.
A number of inbred lines of chickens have been shown to be resistant or susceptible to systemic salmonellosis caused by Salmonella enterica serovar Gallinarum in adult birds, or by S. enterica serovar Enteritidis and S. enterica serovar Typhimurium in young chicks. Resistant lines show only moderate pathology and low mortality rates, whereas susceptible lines display extensive pathological changes and higher levels of mortality following Salmonella infection. Genetic resistance to salmonellosis is dominant and not linked to sex, MHC or Slc11a1 (formerly known as Nramp1), which leads to resistance in mice and other species. A novel locus encoding resistance to salmonellosis has been identified on chicken chromosome 5, and designated SAL1. The nature of the differences in pathology found between resistant and susceptible chicken lines in vivo indicates that resistance is expressed at the level of the mononuclear phagocyte system. Macrophages from adult resistant line birds cleared Salmonella serovar Gallinarum from infected macrophages within 24 h, whereas Salmonella bacteria persisted within macrophages from susceptible line birds for at least 48 h. Clearance of Salmonella by macrophages was accompanied by a strong and reproducible respiratory burst response in resistant lines, but little or no response in susceptible lines. Macrophages from an outbred chicken line showed variable responses. No differences were seen in macrophage nitric oxide production in cells from resistant or susceptible lines. These differences suggest that increased macrophage antimicrobial activity correlates with resistance and that macrophage activity plays an important role in genetic resistance to systemic salmonellosis in the chicken.  相似文献   

11.
PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.  相似文献   

12.
Antibiogram patterns and chromosomal DNA typing were used to compare 151 non-typhoidal Salmonella spp. (NTS) isolated from patients and 78 from animals, environmental or food specimens obtained within or near the homes of patients with invasive salmonellosis. The majority of NTS from humans (137; 90.7%) were Salmonella enterica serotype Typhimurium (S. Typhimurium) and S. Enteritidis. Chicken specimens and feeds produced (24; 52.2%) S. Enteritidis, while S. Agona was the predominant (20; 77%) serovar among pigs and dairy cows. The majority (97; 64.2%) of NTS from humans were multidrug resistant, while NTS from cows, pigs, beef carcass swabs and sewers were fully susceptible to all antibiotics tested. Pulsed-field gel electrophoresis patterns of XbaI-digested genomic DNA of NTS from the humans and the chickens were different. However, S. Enteritidis from chickens, and S. Braenderup and S. Agona from cows and pigs were clustered together in one group. There was no significant relatedness between NTS isolates from humans and those from animals, food or the environment in close contact to humans.  相似文献   

13.
The Salmonella enterica serovar Typhimurium strain UK-1 exhibits the highest invasion and virulence attributes among the most frequently studied strains. S. Typhimurium UK-1 has been used as the foundation for developing recombinant vaccines and has been used extensively on virulence and colonization studies in chickens and mice. We describe here the complete genome sequence of S. Typhimurium UK-1. Comparative genomics of Salmonella Typhimurium will provide insight into factors that determine virulence and invasion.  相似文献   

14.
The ability of salmonellae to become internalized and to survive and replicate in amoebae was evaluated by using three separate serovars of Salmonella enterica and five different isolates of axenic Acanthamoeba spp. In gentamicin protection assays, Salmonella enterica serovar Dublin was internalized more efficiently than Salmonella enterica serovar Enteritidis or Salmonella enterica serovar Typhimurium in all of the amoeba isolates tested. The bacteria appeared to be most efficiently internalized by Acanthamoeba rhysodes. Variations in bacterial growth conditions affected internalization efficiency, but this effect was not altered by inactivation of hilA, a key regulator in the expression of the invasion-associated Salmonella pathogenicity island 1. Microscopy of infected A. rhysodes revealed that S. enterica resided within vacuoles. Prolonged incubation resulted in a loss of intracellular bacteria associated with morphological changes and loss of amoebae. In part, these alterations were associated with hilA and the Salmonella virulence plasmid. The data show that Acanthamoeba spp. can differentiate between different serovars of salmonellae and that internalization is associated with cytotoxic effects mediated by defined Salmonella virulence loci.  相似文献   

15.
The ability to detect Salmonella spp. is essential in the prevention of foodborne illness. This study examined a Salmonella spp. detection method involving the application of immunomagnetic separation and immunoliposomes (IMS/IL) encapsulating sulforhodamine B (SRB), a fluorescent dye. A quantitative assay was conducted by measuring the fluorescence intensity of SRB that was produced from an immunomagnetic bead-Salmonella spp.-immunoliposome complex. The results indicated detection limits of 2.7x10(5) and 5.2x10(3) CFU/ml for Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) and Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium), respectivley. The signal/noise ratio was improved by using 4% skim milk as a wash solution rather than 2% BSA. In addition, higher fluorescence intensity was obtained by increasing the liposome size. Compared with the conventional plating method, which takes 3-4 days for the isolation and identification of Salmonella spp., the total assay time of 10 h only including 6 h of culture enrichment was necessary for the Salmonella detection by IMS/IL. These results indicate that the IMS/ IL has great potential as an alternative rapid method for Salmonella detection.  相似文献   

16.
A robust duplex 5' nuclease (TaqMan) real-time PCR was developed and in-house validated for the specific detection of Salmonella enterica subspecies enterica serovar Enteritidis in whole chicken carcass rinses and consumption eggs. The assay uses specifically designed primers and a TaqMan probe to target the Prot6e gene located on the S. Enteritidis specific 60-kb virulence plasmid. As an internal amplification control to monitor Salmonella DNA in the sample, a second primer/TaqMan probe set detects simultaneously the Salmonella specific invA gene. The assay identified correctly 95% of the 79 Salmonella Enteritidis strains tested comprising 19 different phage types. None of the 119 non-Enteritidis strains comprising 54 serovars was positive for the Prot6e gene. The assay detection probability was for 10(2) or more genome equivalents 100% and for 10 equivalents 83%. A pre-PCR sample preparation protocol including a pre-enrichment step in buffered peptone water, followed by DNA extraction was applied on low levels of artificially contaminated whole chicken carcass rinses and eggs from hens as well as 25 potentially naturally contaminated chickens. The detection limit was less than three CFU per 50 ml carcass rinse or 10 ml egg. The sensitivity and specificity compared to the traditional culture-based detection method and serotyping were both 100%. Twenty-five potentially naturally contaminated chickens were compared by the real-time PCR and the traditional cultural isolation method resulting in four Salmonella positive samples of which two were positive for the Prot6e gene and serotyped as S. Enteritidis. We show also that Salmonella isolates which have a rough lipopolysaccharide structure could be assigned to the serovar Enteritidis by the real-time PCR. This methodology can contribute to meet the need of fast identification and detection methods for use in monitoring and control measures programmes.  相似文献   

17.
Variability in the lipopolysaccharide (LPS) of the two most prevalent Salmonella serotypes causing food-borne salmonellosis was assessed using gas chromatography analysis of neutral sugars from 43 Salmonella enterica serovar Enteritidis ( S . Enteritidis) and 20 Salmonella enterica serovar Typhimurium ( S . Typhimurium) isolates . Four substantially different types of O-chain chemotypes were detected using cluster analysis of sugar compositions; these were low-molecular-mass (LMM) LPS, glucosylated LMM LPS, high-molecular-mass (HMM) LPS and glucosylated HMM LPS. Nineteen out of 20 S . Typhimurium isolates yielded glucosylated LMM . In contrast, S . Enteritidis produced a more diverse structure, which varied according to the source and history of the isolate: 45.5% of egg isolates yielded glucosylated HMM LPS; 100% of stored strains lacked glucosylation but retained chain length in some cases; and 83.3% of fresh isolates from the naturally infected house mouse Mus musculus produced glucosylated LMM LPS. A chain length determinant ( wzz ) mutant of S . Enteritidis produced a structure similar to that of S . Typhimurium and was used to define what constituted significant differences in structure using cluster analysis. Fine mapping of the S . Enteritidis chromosome by means of a two-restriction enzyme-ribotyping technique suggested that mouse isolates producing glucosylated LMM LPS were closely related to orally invasive strains obtained from eggs, and that stored strains were accumulating genetic changes that correlated with suppression of LPS O-chain glucosylation. These results suggest that the determination of LPS chemotype is a useful tool for epidemiological monitoring of S . Enteritidis , which displays an unusual degree of diversity in its LPS O-chain.  相似文献   

18.
The genotype of Salmonella enterica serovar Enteritidis was correlated with the phenotype using DNA-DNA microarray hybridization, ribotyping, and Phenotype MicroArray analysis to compare three strains that differed in colony morphology and phage type. No DNA hybridization differences were found between two phage type 13A (PT13A) strains that varied in biofilm formation; however, the ribotype patterns were different. Both PT13A strains had DNA sequences similar to that of bacteriophage Fels2, whereas the PT4 genome to which they were compared, as well as a PT4 field isolate, had a DNA sequence with some similarity to the bacteriophage ST64b sequence. Phenotype MicroArray analysis indicated that the two PT13A strains and the PT4 field isolate had similar respiratory activity profiles at 37 degrees C. However, the wild-type S. enterica serovar Enteritidis PT13A strain grew significantly better in 20% more of the 1,920 conditions tested when it was assayed at 25 degrees C than the biofilm-forming PT13A strain grew. Statistical analysis of the respiratory activity suggested that S. enterica serovar Enteritidis PT4 had a temperature-influenced dimorphic metabolism which at 25 degrees C somewhat resembled the profile of the biofilm-forming PT13A strain and that at 37 degrees C the metabolism was nearly identical to that of the wild-type PT13A strain. Although it is possible that lysogenic bacteriophage alter the balance of phage types on a farm either by lytic competition or by altering the metabolic processes of the host cell in subtle ways, the different physiologies of the S. enterica serovar Enteritidis strains correlated most closely with minor, rather than major, genomic changes. These results strongly suggest that the pandemic of egg-associated human salmonellosis that came into prominence in the 1980s is primarily an example of bacterial adaptive radiation that affects the safety of the food supply.  相似文献   

19.
Salmonella were isolated from 106 (0.032%) of 331,644 fecal samples from food handlers, and from 144 of 11,478 fecal samples from symptomatic patients in Japan to determine the incidence and features of Salmonella serovars among food handlers. S. enterica subspecies enterica serovar Infantis (S. serovar Infantis) was the dominant serovar (accounting for 48.1%), followed by S. serovar Corvallis, which showed poor genetic diversity, and S. serovar Enteritidis among food handlers. The former two serovars were not dominant among symptomatic patients. The present study demonstrates the need for education on the sanitary handling of chicken eggs and chicken meat, which are possible infectious sources of these Salmonella serovars.  相似文献   

20.
Free-range geese were sampled longitudinally and Salmonella isolates characterized to reveal highly diverging colonization dynamics. One flock was intermittently colonized with one strain of Salmonella enterica serovar Enteritidis from 2 weeks of age, while in another, S. enterica serovar Mbandaka appeared after 9 weeks, without dissemination but with multiple serovars appearing at later stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号