首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Glycerolipid synthesis was studied in isolated hepatocytes by using 177 microM [14C]oleate and 1 mM [3H]glycerol. Chlorpromazine (25-400 microM) inhibited the synthesis of phosphatidylcholine and triacylglycerol. This was accompanied by an average increase of 12-fold in the accumulation of the labelled precursors in phosphatidate at 200 microM chlorpromazine and a decrease in the conversion of phosphatidate to diacylglycerol of 76%. These results indicate that part of the inhibition of the synthesis of phosphatidylcholine and triacylglycerol occurs at the level of phosphatidate phosphohydrolase. The relative rate of triacylglycerol synthesis at different concentrations of chlorpromazine was approximately proportional to the rate of conversion of phosphatidate to diacylglycerol. Phosphatidylcholine synthesis increased at higher rates of conversion of phosphatidate to diacylglycerol, but it was relatively independent of the latter rate when this was inhibited by more than about 30% with chlorpromazine. The addition of oleate to the hepatocytes caused a translocation of phosphatidate phosphohydrolase from the cytosol to the membrane-associated compartment. Chlorpromazine had the opposite effect and displaced the phosphohydrolase from the membranes in the presence or absence of oleate. There was a highly significant correlation between the activity of phosphatidate phosphohydrolase that was associated with the membranes of the hepatocytes and the calculated conversion of [3H]phosphatidate to diacylglycerol. Chlorpromazine also antagonized the association of the phosphohydrolase with microsomal membranes when cell-free preparations were incubated with combinations of oleate and spermine. Furthermore, it inhibited the transfer of the soluble phosphohydrolase to microsomal membranes that were labelled with [14C]phosphatidate and thereby decreased diacylglycerol production. It is concluded that part of the action of chlorpromazine in inhibiting the synthesis of triacylglycerol and phosphatidylcholine occurs because it prevents the interaction of the soluble phosphatidate phosphohydrolase with the membranes on which glycerolipid synthesis occurs. This in turn prevents the conversion of phosphatidate to diacylglycerol.  相似文献   

2.
The relative significance of alterations in precursor supply and enzyme activities for the rate of triacylglycerol synthesis was studied in isolated hepatocytes and perfused livers. Precursor availability was varied in vitro by changing the fatty acid concentration in the incubation medium or adding ethanol to the perfusion medium in order to increase the cellular glycerol 3-phosphate concentration. The rate of glycerolipid synthesis in hepatocytes, measured in terms of the label incorporated into the various lipid classes from tritiated glycerol, was strongly dependent on the fatty acid concentration up to 2 mm of oleate (fatty acid/albumin molar ratio 71). Ethanol in vitro increased the incorporation of labeled oleate into phosphatidic acid and diacylglycerol in the isolated perfused liver, but its effect on the incorporation into triacylglycerol was small. Ethanol in vitro increased the label incorporation into both diacylglycerol and triacylglycerol in the livers from cortisol-treated rats. Although cortisol treatment increased the soluble phosphatidate phosphohydrolase activity 4.4-fold in the hepatocytes, it had no effect on the rate of triacylglycerol synthesis, whereas fasting increased this rate about 3-fold, although only a moderate concomitant increase in soluble phosphatidate phosphohydrolase activity was observed. Neither cortisol treatment nor fasting affected the microsomal glycerol-3-phoshate acyltransferase activity. The results demonstrate that substrate availability can override enzyme modulations in the regulation of triacylglycerol synthesis and that phosphatidate phosphohydrolase is not the main regulator of triacylglycerol synthesis.  相似文献   

3.
Incubation of A549 cells with digitonin for 4 min resulted in the release of over 90% of the lactate dehydrogenase activity into the medium. Approximately 80% of the Mg2+-dependent but only 7% of the Mg2+-independent phosphatidate phosphohydrolase activity was released in the presence of digitonin. Pretreatment of the cells with oleate reduced the efflux of the Mg2+-dependent phosphatidate phosphohydrolase activity to approximately 5% of total. Oleate did not affect the release of lactate dehydrogenase or the release of the Mg2+-independent phosphohydrolase activity. Incubation of A549 cells with [3H]oleate for 60 min led to incorporation of the label into phosphatidic acid, phosphatidylethanolamine, phosphatidylcholine, diacylglycerol, monoacylglycerol, and triacylglycerol, in ascending order. When the level of exogenous oleate was increased to over 2.0 mM, there was a marked increase in the incorporation into monoacylglycerol and diacylglycerol. Only small amounts of radioactivity were associated with phosphatidic acid. Time course studies revealed that the amount of radioactive phosphatidate remained low throughout the incubation period. These investigations were interpreted to indicate that free fatty acids can promote the translocation of the Mg2+-dependent phosphatidate phosphohydrolase activity from cytosol to membrane fractions. This translocation could, at least theoretically, function to facilitate the metabolism of increased amounts of phosphatidate.  相似文献   

4.
Isolated rat hepatocytes responded to a variety of Ca2+-mobilizing agents (vasopressin, angiotensin II, epinephrine, epidermal growth factor, ATP, and ADP) with a rapid increase in phosphatidate mass, as measured by a sensitive new method. When hepatocytes were incubated with vasopressin (10(-8) M), phosphatidate levels increased 2-3-fold in 2 min, but there was no significant increase in diacylglycerol at this time. Changes in the fatty acid composition of phosphatidate also preceded those in diacylglycerol. De novo synthesis of phosphatidate from [3H]glycerol was unaffected by vasopressin in short-term incubation. Incubation of washed rat liver plasma membranes with GTP gamma S caused a time-dependent increase in phosphatidate. When membranes were incubated with GTP gamma S and [gamma-32P]ATP, no incorporation of 32P into phosphatidate was observed. This excludes the phospholipase C-diacylglycerol kinase pathway and suggests that a phospholipase D activity produced the phosphatidate. At submaximal concentrations of GTP gamma S, ATP and ADP stimulated membrane phosphatidate formation, presumably by acting through P2-purinergic receptors. Only phosphatidylcholine, among the major phospholipids, decreased in the membranes in response to GTP gamma S. The fatty acid composition of the phosphatidate produced in response to vasopressin in hepatocytes also suggests that phosphatidylcholine may be the source of hormonally elicited phosphatidate. We conclude that Ca2+-mobilizing hormones mainly increase phosphatidate levels in hepatocytes by a mechanism that does not involve phosphorylation of diacylglycerol or de novo synthesis but involves a guanine nucleotide-binding protein coupled to phospholipase D.  相似文献   

5.
1. Male rats were injected daily for 5 days with 0.15m-NaCl, corticotropin, cortisol or l-thyroxine and the rates of glycerolipid synthesis were measured in the livers after intraportal injection of [(14)C]palmitate and [(3)H]glycerol. 2. Injection of all three hormones decreased the rates of body-weight gain. 3. Cortisol treatment increased the weight of the liver relative to body weight. 4. Thyroxine treatment increased the relative rate of triacylglycerol synthesis from [(3)H]glycerol and decreased the relative accumulation of (3)H and (14)C in diacylglycerol. It did not significantly alter the accumulation of these isotopes in phosphatidate nor the activity of the soluble phosphatidate phosphohydrolase in the total liver. However, this activity increased by 1.5-fold when expressed relative to the soluble protein of the liver. The increased triacylglycerol synthesis appears to be related to a general increase in the turnover of fatty acids in the liver. 5. Treatment with cortisol and corticotropin increased the relative rate of triacylglycerol synthesis from [(3)H]glycerol, decreased the accumulation of (3)H in phosphatidate and increased the flux of both isotopes from phosphatidate to diacylglycerol. This appeared to be caused by the increased activity of the soluble phosphatidate phosphohydrolase that was observed in the livers of the cortisol-treated rats. 6. It is proposed that cortisol could be directly or indirectly involved in increasing the activity of hepatic phosphatidate phosphohydrolase in starvation, diabetes, laparotomy, subtotal hepatectomy, liver damage, ethanol feeding and in obesity. This enzyme adaptation could contribute to the potential of the liver to increase its synthesis and accumulation of triacylglycerols or to secrete very-low-density lipoproteins.  相似文献   

6.
Rat hepatocytes were incubated in monolayer culture for 8 h. Glucagon (10nM) increased the total phosphatidate phosphohydrolase activity by 1.7-fold. This effect was abolished by adding cycloheximide, actinomycin D or 500 pM-insulin to the incubations. The glucagon-induced increase was synergistic with that produced by an optimum concentration of 100 nM-dexamethasone. Theophylline (1mM) potentiated the effect of glucagon, but it did not affect the dexamethasone-induced increase in the phosphohydrolase activity. The relative proportion of the phosphohydrolase activity associated with membranes was decreased by glucagon when 0.15 mM-oleate was added 15 min before the end of the incubations to translocate the phosphohydrolase from the cytosol. This glucagon effect was not seen at 0.5 mM-oleate. Since glucagon also increased the total phosphohydrolase activity, the membrane-associated activity was maintained at 0.15 mM-oleate and was increased at 0.5 mM-oleate. This activity at both oleate concentrations was also increased in incubations that contained dexamethasone, particularly in the presence of glucagon. Insulin increased the relative proportion of phosphatidate phosphohydrolase that was associated with membranes at 0.15 mM-oleate, but not at 0.5 mM-oleate. It also decreased the absolute phosphohydrolase activity on the membranes at both oleate concentrations in incubations that also contained glucagon and dexamethasone. None of the hormonal combinations significantly altered the total glycerol phosphate acyltransferase activity. However, glucagon significantly increased the microsomal activities, and insulin had the opposite effect. Glucagon also decreased the mitochondrial acyltransferase activity. There was a highly significant correlation between the total phosphatidate phosphohydrolase activity and the synthesis of neutral lipids from glycerol phosphate and 0.5 mM-oleate in homogenates of cells from all of the hormonal combinations. Phosphatidate phosphohydrolase activity is increased in the long term by glucocorticoids and also by glucagon through cyclic AMP. In the short term, glucagon increases the concentration of fatty acid required to translocate the cytosolic reservoir of activity to the membranes on which phosphatidate is synthesized. Insulin opposes the combined actions of glucagon and glucocorticoids. The long-term events explain the large increases in the phosphohydrolase activity that occur in vivo in a variety of stress conditions. The expression of this activity depends on increases in the net availability of fatty acids and their CoA esters in the liver.  相似文献   

7.
A translocation of phosphatidate phosphohydrolase from the cytosolic to the microsomal fraction was promoted in cell-free extracts of rat liver by oleate and palmitate and their CoA esters. Oleate was more potent in this respect than palmitate and the CoA esters were more effective than the unesterified acids. Octanoate, octanoyl-CoA and CoA did not cause the translocation. It is proposed that the interaction of phosphatidate phosphohydrolase with the membranes that synthesize glycerolipids causes it to become metabolically active. This enables the liver to increase its capacity for triacylglycerol synthesis in response to an increased supply of fatty acids.  相似文献   

8.
1. Male rats were fed for 14 days on diets containing (by wt.) 53% of starch, or on diets in which 20% of the starch was replaced by sucrose, corn oil or lard. 2. The hepatic activities of the microsomal glycerol phosphate acyltransferase, dihydroxyacetone phosphate acyltransferase, phosphatidate cytidylyltransferase, diacylglycerol acyltransferase and choline phosphotransferase, and of the soluble phosphatidate phosphohydrolase, were measured. 3. The soluble phosphatidate phosphohydrolase activity was higher in those rats fed on lard than in those fed on the starch diet. Choline phosphotransferase activity was higher in the rats fed on corn oil than in those fed on the starch diet. 4. The rate of hepatic glycerolipid synthesis was measured in vivo 1 min after injection of [1,3-3H]glycerol and [1-14C]palmitate into the portal veins. 5. The relative rate of phosphatidylcholine synthesis in vivo was increased after feeding with corn oil and the higher specific activity of choline phosphotransferase may contribute to this result. The equivalent rate of triacylglycerol synthesis was increased by feeding with lard rather than corn oil, and the increased activity of phosphatidate phosphohydrolase may partly explain this. The latter changes probably contribute to the increased concentration of triacylglycerol which other authors have observed in the livers and sera of animals fed on saturated and monounsaturated fats.  相似文献   

9.
The translocation of phosphatidate phosphohydrolase between the cytosol and the microsomal membranes was investigated by using a cell-free system from rat liver. Linoleate, alpha-linolenate, arachidonate and eicosapentenoate promoted the translocation to membranes with a similar potency to that of oleate. The phosphohydrolase that associated with the membranes in the presence of [14C]oleate or 1mM-spermine coincided on Percoll gradients with the peak of rotenone-insensitive NADH-cytochrome c reductase, and in the former case with a peak of 14C. Microsomal membranes were enriched with the phosphohydrolase activity by incubation with [14C]oleate or spermine and then incubated with albumin. The phosphohydrolase activity was displaced from the membranes by albumin, and this paralleled the removal of [14C]oleate from the membranes when this acid was present. Chlorpromazine also displaced phosphatidate phosphohydrolase from the membranes, but it did not displace [14C]oleate. The effects of spermine in promoting the association of the phosphohydrolase with the membranes was inhibited by ATP, GTP, CTP, AMP and phosphate. ATP at the same concentration did not antagonize the translocating effect of oleate. From these results and previous work, it was concluded that the binding of long-chain fatty acids and their CoA esters to the endoplasmic reticulum acts as a signal for more phosphatidate phosphohydrolase to associate with these membranes and thereby to enhance the synthesis of glycerolipids, especially triacylglycerol. The translocation of the phosphohydrolase probably depends on the increased negative charge on the membranes, which could also be donated by the accumulation of phosphatidate. Chlorpromazine could oppose the translocation by donating a positive charge to the membranes.  相似文献   

10.
The incubation of hepatocytes with 1-4mM-oleate increased the total activity of phosphatidate phosphohydrolase that was measured in the presence of Mg2+ to about 2-fold. This was accompanied by an increase in the proportion of the enzyme that was isolated with the particulate fractions. Conversely, the addition of up to 4mM-oleate decreased the recovery of phosphatidate phosphohydrolase in the cytosolic fraction from about 70% to 3% when hepatocytes were lysed with digitonin. Most of the increase in the membrane-associated phosphohydrolase activity was isolated after cell fractionation in the microsomal fraction that was enriched with the endoplasmic-reticulum marker arylesterase. It is proposed that the translocation of phosphatidate phosphohydrolase facilitates the increased synthesis of triacylglycerols in the liver when it is presented with an increased supply of fatty acids.  相似文献   

11.
In rats fed a fish oil-enriched diet, plasma triacylglycerols were lowered 51%. At the same time there was a mean 45% reduction in Mg2+-dependent phosphatidate phosphohydrolase activity in liver microsomes and a mean 20% decrease in microsomal triacylglycerol (neutral) and diacylglycerol hydrolase activities, but not of diacylglycerol acyltransferase. These observations support the hypothesis that decreases in the activities of phosphatidate phosphohydrolase and of both lipases are involved in the expression of the inhibitory effects of fish oil feeding on hepatic lipoprotein triacylglycerol secretion. Conversely, the feeding of a sucrose-enriched diet resulted in a mean 39% rise in plasma triacylglycerols, a 19% increase in triacylglycerol hydrolase and a mean 45% increase in Mg2+-dependent microsomal phosphohydrolase activity. The effects of the two nutritional interventions on phosphatidate phosphohydrolase activity confirm a key function for this enzyme in triacylglycerol formation.  相似文献   

12.
Incubating the particle-free supernatant of rat liver with alkaline phosphatase decreased the activity of phosphatidate phosphohydrolase by 21-29%. When the particle-free supernatant was incubated with various combinations of Mg2+, ATP, cyclic AMP and cyclic AMP-dependent protein kinase this failed to alter significantly phosphatidate phosphohydrolase activity under the conditions employed. The incubation of hepatocytes in monolayer culture with 0.5 mM-8-(4-chlorophenylthio)adenosine 3',5'-monophosphate increased the total activity of phosphatidate phosphohydrolase as measured in vitro. This also decreased the proportion of the phosphohydrolase that was associated with the membrane fraction of the cells and increased that in the cytosolic fraction. Adding 1 mM-oleate to the hepatocytes promoted the translocation of phosphatidate phosphohydrolase from the cytosol to the membrane-associated compartment. Oleate overcame the effect of the cyclic AMP analogue in favouring the cytosolic distribution of the phosphohydrolase. These results are discussed in relation to the interaction of hormonal balance and substrate supply in controlling the synthesis of phosphatidylcholine and triacylglycerol in the liver in stress and in diabetes. It is proposed that the cytosolic phosphatidate phosphohydrolase activity represents a reservoir of potential activity that becomes expressed when the enzyme translocates to the membranes on which the synthesis of glycerolipids occurs.  相似文献   

13.
Incubation of hepatocyte monolayers with oleate or palmitate (1.0 mM) for 2-48 h, increased (20 to 80%) the incorporation of [1,3-14C]glycerol and palmitate into triacyglycerol but not phosphatidylcholine. The effect of fatty acids on liver cell triacylglycerol formation correlated well (r = 0.990) with a simultaneous rise (2-4-fold) in phosphatidate phosphatase (EC 3.1.3.4) activity. Phosphatidate phosphatase activity and triacylglycerol biosynthesis are also increased (2-fold) after hepatocyte monolayers are incubated for 24 h with cyclic GMP in the absence of fatty acids. Fatty acid-dependent increases in liver cell triacylglycerol formation and phosphatidate phosphatase activity are not blocked by cycloheximide. Phosphatidylcholine biosynthesis was also elevated in homogenates of liver cells exposed (24-48 h) to 1.0 mM oleate when exogenous CDPcholine was added to the incubation mixture. Apparently, the phosphatidate phosphatase-dependent rise in diacylglycerols that occurs after fatty acid exposure is primarily shunted into triacylglycerols because liver cell CDPcholine content is not correspondingly increased, and high levels of diacylglycerol acyltransferase (EC 2.3.1.20) and fatty acyl-CoA derivatives are present.  相似文献   

14.
1. The effects of the intramuscular administration of glycerol and dihydroxyacetone (40mmol per kg body wt.), sorbitol and glucose (20mmol per kg body wt.) or NaCl (1.5mmol per kg body wt. in 10ml of water per kg body wt.) were investigated on soluble phosphatidate phosphohydrolase and certain metabolites in rat liver. 2. The effects of ethanol and glycerol on phosphatidate phosphohydrolase were also studied in isolated perfused livers. 3. The administration of glycerol, sorbitol and dihydroxyacetone in vivo increased hepatic phosphatidate phosphohydrolase activity by 137, 63 and 32% respectively in 4h. 4. A significant positive correlation was found between the hepatic sn-glycerol 3-phosphate concentration and phosphatidate phosphohydrolase after the administration of various substrates in vivo. 5. The soluble phosphatidate phosphohydrolase activity tended to increase during perfusions of isolated rat livers without added substrates, and neither ethanol nor glycerol produced additional effects. 6. The activity of soluble phosphatidate phosphohydrolase was 2.5 times higher in the livers of hyperthyroid rats than in normal rats. This activity was not influenced by intragastric ethanol or glycerol administration, nor was the concentration of sn-glycerol 3-phosphate changed by these compounds. 7. It is concluded that the ethanol-induced increase in hepatic phosphatidate phosphohydrolase may at least in part be mediated by the hepatic concentration of metabolites, probably by the concentration of sn-glycerol 3-phosphate.  相似文献   

15.
Rat hepatocytes were incubated in monolayer culture in modified Leibovitz L-15 medium containing either 10% (v/v) newborn-calf serum or 0.2% (w/v) fatty-acid-poor bovine serum albumin. The addition of 100 nM-dexamethasone increased the activities of both phosphatidate phosphohydrolase and tyrosine aminotransferase by about 3.5-fold after 8h, and these activities continued to rise until at least 24h. Incubating the hepatocytes in the albumin-containing medium with 10 microM- or 100 microM-8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate increased the activities of the phosphohydrolase and aminotransferase by 2.6- and 3.4-fold respectively after 8h. These increases were blocked by actinomycin D. The increases in the activities that were produced by the cyclic AMP analogue and dexamethasone were independent and approximately additive. Insulin when added alone did not alter the phosphohydrolase activity, but it increased the aminotransferase activity by 34%. The dexamethasone-induced increase in the phosphohydrolase activity was completely blocked by 7-144 microM-insulin, whereas that of the aminotransferase was only partly suppressed. Insulin had no significant Effects on the increases in the activities of phosphatidate phosphohydrolase and tyrosine aminotransferase that were produced by the cyclic AMP analogue, but this may be because the analogue is fairly resistant to degradation by the phosphodiesterase. The activity of glycerol kinase was not significantly changed by incubating the hepatocytes with insulin, dexamethasone and the cyclic AMP analogue alone or in combinations. It is proposed that high concentrations of cyclic AMP and glucocorticoids increase the total activity of phosphatidate phosphohydrolase in the liver and provide it with an increased capacity for synthesizing triacylglycerols and very-low-density lipoproteins, which is expressed when the availability of fatty acids is high. There appears to be a co-ordinated hormonal control of triacyglycerol synthesis and gluconeogenesis in diabetes and in metabolic stress to enable the liver to supply other organs with energy.  相似文献   

16.
The effects of oleate, spermine and chlorpromazine were assayed in the presence or absence of 0.15 M KCl on the translocation of phosphatidate phosphohydrolase activity from cytosol to endoplasmic reticulum membranes in liver homogenates obtained from rats aged 1, 30, 60, 180 and 360 days. Marked age-associated decreases in phosphatidate phosphohydrolase distribution onto the membranes were demonstrated under nearly all conditions. In liver homogenates taken from 1-day-old rats and incubated with 0.15 M KCl, most of the enzyme was active (associated with the membranes). Physiological salt concentration (0.15 M KCl) produced a 2-fold increase of oleate-induced translocation of phosphatidate phosphohydrolase activity in liver homogenates from 1-day-old rats; it had no effect on those from 60-day-old rats, and produced a notable decline in liver homogenates obtained from 180- and 360-day-old rats. The promoting effect of spermine on oleate-induced translocation of this enzyme activity was higher in younger rats when incubated in the absence of 0.15 M KCl. Chlorpromazine did not show its usual antagonizing effect on oleate-induced translocation of phosphatidate phosphohydrolase when added to homogenates taken from 1-day-old rats. The antagonizing effect was slightly apparent in liver homogenates from 30-day-old rats and was more pronounced in those from 60-day-old rats in which the values diminished to one-half and to one-third either in the presence or absence of 0.15 M KCl.  相似文献   

17.
Possible effects of adrenaline, noradrenaline, vasopressin, and angiotensin II to increase 14CO2 production from [1-14C]oleate were examined in hepatocytes from fed L-triiodothyronine (T3)-treated or control rats. Rates of 14CO2 production were decreased and rates of ketogenesis increased in hepatocytes from T3-treated rats. These changes were accompanied by a marked shift of the 3-hydroxybutyrate:acetoacetate concentration ratio towards acetoacetate. Rates of glucose and lactate release were decreased. Whereas the Ca2+-mobilizing hormones increased 14CO2 production from [1-14C]oleate by 64-84% with hepatocytes from control rats, they increased 14CO2 production from [1-14C]oleate by on 24-32% with hepatocytes from T3-treated rats. The magnitude of the response to the Ca2+-mobilizing hormones in hepatocytes from T3-treated rats was increased by the addition of 3-mercaptopicolinate, an inhibitor of phosphoenolpyruvate carboxykinase, to the incubation medium (increases of 52-88%). In the presence of 3-mercaptopicolinate, the 3-hydroxybutyrate:acetoacetate concentration ratio in hepatocytes from fed, T3-treated rats was similar to that in hepatocytes from control rats in the absence of 3-mercaptopicolinate. The results demonstrate that hyperthyroidism per se does not lead to a loss of sensitivity, in terms of oleate oxidation, either to the catecholamines or to vasopressin and angiotensin II. The impaired ability of hepatocytes from T3-treated rats to respond to these hormones is a consequence of decreased net glycolytic flux or a more oxidized mitochondrial redox state.  相似文献   

18.
Assays for two distinct phosphatidate phosphohydrolase activities were established based upon a differential inhibition by N-ethylmaleimide (NEM). The activity that is insensitive to this reagent in rat liver is predominantly in the plasma membrane fraction, whereas the NEM-sensitive activity is in the cytosolic and microsomal fractions. The NEM-insensitive activity is further distinguished from the NEM-sensitive phosphohydrolase by: (a) being relatively stable to heat; (b) not being inhibited by phenylglyoxal, butane-2,3-dione, cyclohexane-1,2-dione, 2,4-dinitrofluorobenzene, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole, and diethyl pyrocarbonate; (c) being inhibited by NaF and phosphatidylcholine; and (d) not being stimulated by Mg2+. The NEM-insensitive activity was specific for phosphatidate. Both phosphohydrolase activities could be inhibited by chlorpromazine, propranolol, sphingosine, and spermine. The NEM-sensitive phosphatidate phosphohydrolase activity was increased by incubating hepatocytes for 12 h with glucagon and dexamethasone, and this effect was antagonized by insulin. The NEM-sensitive phosphohydrolase is concluded to be involved in glycerolipid synthesis. The activity of the NEM-insensitive phosphohydrolase was not altered by preincubation of rat hepatocytes in the short or long term with vasopressin, glucagon, insulin, triiodothyronine, or dexamethasone, but it might be modulated indirectly by sphingosine. The NEM-insensitive enzyme of the plasma membranes could be involved in signal transduction via the agonist-stimulated degradation of phosphatidylcholine through the phospholipase D pathway.  相似文献   

19.
Obesity in obese-hyperglycaemic mouse is associated with an increase in number and size of adipocytes. Adipocytes from the obese mouse showed increased incorporation of [14C]acetate and[14C]glucose into triacylglycerol. This increased capacity of triacylglycerol formation was correlated with increased activities of various triacylglycerol-forming enzymes measured in the microsomal fraction of adipose tissue from obese mice. Microsomal fractions from lean and obese mice contained sn-glycerol 3-phosphate acyltransferase, phosphatidate phosphohydrolase and diacylglycerol acyltransferase. Phosphatidate phosphohydrolase was also detected in the soluble fraction. In the presence of Mg2+, the phosphatidate phsophohydrolase from the soluble and the microsomal fractions was active towards membrane-bound phosphatidate. Among the three enzymes studied here, the increase in Mg2+-dependent phosphatidate phosphohydrolase was most prominent in adipose tissue of obese mice.  相似文献   

20.
1. The association between hepatic microsomal enzyme induction and triacylglycerol metabolism was examined in fasting male rabbits (2kg body wt.) injected intra-peritoneally with 50 mg of phenobarbital per kg for 10 days. 2. Occurrence of enzyme induction was established by a significant increase in hepatic aminopyrine N-demethylase activity and cytochrome P-450 content, as well as a doubling of microsomal protein per g of liver and a 54% increase in liver weight. Parallel increments in hepatic gamma-glutamyltransferase (EC 2.3.2.2) activity occurred; these were more pronounced in the whole homogenate than in the microsomes, which only accounted for 12.5% of the total enzyme activity in the controls and 17.0% in the animals given phenobarbital. Increased activity of gamma-glutamyltransferase activity was also observed in the blood serum of the test animals. 3. The rabbits given phenobarbital manifested increased hepatic triacylglycerol content and the triacylglycerol concentration of blood serum was also elevated. These changes were accompanied by a significantly enhanced ability of cell-free fractions of liver from the test animals (postmitochondrial supernatant and microsomal fractions) to synthesize glycerolipids in vitro from sn-[14C] glycerol 3-phosphate and fatty acids, when expressed per whole liver. Relative to the protein content of the fraction, glycerolipid synthesis in vitro was significantly decreased in the microsomes, presumably consequent upon the dramatic increase in their total protein content, whereas no change occurred in the postmitochondrial supernatant, possibly due to the protective effect of cytosolic factors present in this fraction and known to enhance glycerolipid synthesis. 4. Microsomal phosphatidate phosphohydrolase accounted for 85% of the total liver activity of this enzyme and its specific activity was 20-fold higher than that of the cytosolic phosphatidate phosphohydrolase (EC 3.1.3.4), when each was measured under optimal conditions. A significant increase in the activity of both enzymes per whole liver occurred in the rabbits given phenobarbital. A closer correlation between hepatic triacylglycerol content and and microsomal phosphatidate phosphohydrolase, as well as the above observation, suggest that this, rather than the cytosolic enzyme, may be rate-limiting for triacylglycerol synthesis in rabbit liver. 5. Significant correlations were observed between the various factors of hepatic microsomal-enzyme induction (aminopyrine N-demethylase and gamma-glutamyltransferase activity as well as cytochrome P-450 content) and hepatic triacylglycerol content, suggesting that that microsomal enzyme induction may promote hepatic triacylglycerol synthesis and consequently hypertriglyceridaemia in the rabbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号