首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I V Sarkissian 《Enzyme》1977,22(4):270-275
This study considers differential sensitivity of citrate synthase (citrate oxaloacetatelyase [CoA acetylating]) EC 4.1.3.7. from an osmoconforming animal (sea anemone) and an osmoregulating animal (the pig) to salt. Attention is drawn to the fact that the osmoconforming sea anemone is in essence a sessile creature while the pig is readily mobile and able to change its ionic environment at will. It had been shown earlier that citrate synthase from another osmoconformer (oyster) is also not sensitive to ionic strength while citrate synthase from osmoregulating white shrimp is sensitive to increasing levels of salt. However, these enzymes are characteristically regulated by ATP and alpha-ketoglutarate. Both forms of citrate synthase are denatured by 6 M guanidine hydrochloride and are aided by salt levels in their refolding but the rate and extent of refolding of the osmoconformer citrate synthase are greater than those of the osmoregulator citrate synthase. Catalytic activity of both forms of citrate synthase is inhibited by incubation in distilled water; osmoconformer citrate synthase was inhibited completely in 7 h while osmoregulator citrate synthase was inhibited only 60% in this time and 80% after 22 h in distilled water. The eco-adaptive and evolutionary implications of these findings are discussed.  相似文献   

2.
A refolding strategy was described for on-column refolding of recombinant human interferon-gamma (rhIFN-gamma) inclusion bodies by expanded bed adsorption (EBA) chromatography. After the denatured rhIFN-gamma protein bound onto the cation exchanger of STREAMLINE SP, the refolding process was performed in expanded bed by gradually decreasing the concentration of urea in the buffer and the refolded rhIFN-gamma protein was recovered by the elution in packed bed mode. It was demonstrated that the denatured rhIFN-gamma protein could be efficiently refolded by this method with high yield. Under appropriate experimental conditions, the protein yield and specific activity of rhIFN-gamma was up to 52.7% and 8.18 x 10(6) IU/mg, respectively.  相似文献   

3.
Human brain serine racemase (hSR) was expressed in large amounts in E. coli with N-terminal His-tag (His-hSR). His-hSR expressed in inclusion body was solubilized and purified to homogeneity by Ni-NTA affinity column. Purified His-hSR was refolded in Tween 20/cycloamylose with approximately 50% efficiency, and refolded His-hSR was isolated by Q Sepharose column chromatography. The refolding conditions are described in detail. His-hSR catalyzed the elimination of L-Ser as well as L-Ser-O-sulfate to form pyruvate.  相似文献   

4.
Molecular chaperone-like activity for protein refolding was investigated using nanogels of self-assembly of cholesterol-bearing pullulan. Nanogels effectively prevented protein aggregation (i.e. carbonic anhydrase and citrate synthase) during protein refolding from GdmCl denaturation. Enzyme activity recovered in high yields upon dissociation of the gel structure in which the proteins were trapped, by the addition of cyclodextrins. The nanogels assisted protein refolding in a manner similar to the mechanism of molecular chaperones, namely by catching and releasing proteins. The nanogels acted as a host for the trapping of refolded intermediate proteins. Cyclodextrin is an effector molecule that controls the binding ability of these host nanogels to proteins. The present nanogel system was also effective at the renaturation of inclusion body of a recombinant protein of the serine protease family.  相似文献   

5.
Urea denatured lipase from Chromobacterium viscosum lipase could be refolded by addition of alginate with high guluronic acid content. The refolded molecule could be recovered by affinity precipitation. This approach resulted in recovery of 80% (of original activity) as compared to classical dilution method which gave only 21% activity recovery. Dynamic light scattering showed that binding required about 45 min and activity data obtained from affinity precipitation experiments indicated that refolding was almost instantaneous after binding. Circular dichroism (CD) and fluorescence data showed that refolded molecule was identical to the native molecule. It also showed that refolding takes place at the binding stage and not at the precipitation stage. Preliminary studies showed that the refolding strategy worked equally well with lipases from wheat germ and porcine pancreas.  相似文献   

6.
Efficient refolding process of denatured mature microbial transglutaminase (MTG) without pro-peptide sequence was studied in the model system using urea-denatured pure MTG. Recombinant MTG, produced and purified to homogeneity according to the protocol previously reported, was denatured with 8M urea at neutral pH and rapidly diluted using various buffers. Rapid dilution with neutral pH buffers yielded low protein recovery. Reduction of protein concentration in the refolding solution did not improve protein recovery. Rapid dilution with alkaline buffers also yielded low protein recovery. However, dilution with mildly acidic buffers showed quantitative protein recovery with partial enzymatic activity, indicating that recovered protein was still arrested in the partially refolded state. Therefore, we further investigated the efficient refolding procedures of partially refolded MTG formed in the acidic buffers at low temperature (5 degrees C). Although enzymatic activity remained constant at pH 4, its hydrodynamic properties changed drastically during the 2h after the dilution. Titration of partially refolded MTG to pH 6 after 2h of incubation at pH 4.0 improved the enzymatic activity to a level comparable with that of the native enzyme. The same pH titration with incubation shorter than 2h yielded less enzymatic activity. Refolding trials performed at room temperature led to aggregation, with almost half of the activity yield obtained at 5 degrees C. We conclude that rapid dilution of urea denatured MTG under acidic pH at low temperature results in specific conformations that can then be converted to the native state by titration to physiological pH.  相似文献   

7.
DsbG, a protein disulfide isomerase present in the periplasm of Escherichia coli, is shown to function as a molecular chaperone. Stoichiometric amounts of DsbG are sufficient to prevent the thermal aggregation of two classical chaperone substrate proteins, citrate synthase and luciferase. DsbG was also shown to interact with refolding intermediates of chemically denatured citrate synthase and prevents their aggregation in vitro. Citrate synthase reactivation experiments in the presence of DsbG suggest that DsbG binds with high affinity to early unstructured protein folding intermediates. DsbG is one of the first periplasmic proteins shown to have general chaperone activity. This ability to chaperone protein folding is likely to increase the effectiveness of DsbG as a protein disulfide isomerase.  相似文献   

8.
In this study, we evaluated, for the first time, the application of molecular tube based alpha-cyclodextrin for improving the refolding yields of two different enzymes: carbonic anhydrase and alkaline phosphatase. Our results indicate that under the optimal developed refolding environments, the denatured carbonic anhydrase and alkaline phosphatase were refolded with a yield of 51 and 61% using 15 and 5 mg/ml of the molecular tube, respectively. Regardless of lower refolding yields compared with liquid-phase artificial chaperone assisted approach, the new technique (solid-phase artificial chaperone assisted refolding) benefits from easier and faster separation of the refolded product from the refolding environment, recycling of the stripping agent, and finally, significantly less environmental effect at the industrial levels. However, further improvements in solid-phase artificial chaperone assisted technique are needed either through synthesizing better stripping agents or by optimizing and defining better refolding environments.  相似文献   

9.
For production of active proteins using heterologous expression systems, refolding of proteins from inclusion bodies often creates a bottleneck due to its poor yield. In this study, we show that molecularly imprinted polymer (MIP) toward native lysozyme promotes the folding of chemically denatured lysozyme. The MIP, which was prepared with 1 M acrylamide, 1 M methacrylic acid, 1 M 2-(dimethylamino)ethyl methacrylate, and 5 mg/mL lysozyme, successfully promoted the refolding of lysozyme, whereas the non-imprinted polymer did not. The refolding yield of 90% was achieved when 15 mg of the MIP was added to 0.3 mg of the unfolded lysozyme. The parallel relationship between the refolding yield and the binding capacity of the MIP suggests that MIP promotes refolding through shifting the folding equilibrium toward the native form by binding the refolded protein.  相似文献   

10.
Expression of recombinant proteins as inclusion bodies in bacteria is one of the most efficient ways to produce cloned proteins, as long as the inclusion bodies can be successfully refolded. In this study, the different parameters were investigated and optimized on the refolding of denatured lipase. The maximum lipase activity of 5000 U/L was obtained after incubation of denatured enzyme in a refolding buffer containing 20 mM Tris–HCl (pH 7.0), 1 mM Ca2+ at 20 °C. Then, the refolded lipase was purified to homogeneity by anion exchange chromatography. The purified refolded lipase was stable in broad ranges of temperatures and pH values, as well as in a series of water-miscible organic solvents. In addition, some water-immiscible organic solvents, such as petroleum ether and isopropyl ether, could reduce the polarity and increase the nonpolarity of the refolding system. The results of Fourier transform infrared (FT-IR) microspectroscopy were the first to confirm that lipase refolding could be further improved in the presence of organic solvents. The purified refolded lipase could enantioselectively hydrolyze trans-3-(4-methoxyphenyl) glycidic acid methyl ester [(±)-MPGM]. These features render the lipase attraction for biotechnological applications in the field of organic synthesis and pharmaceutical industry.  相似文献   

11.
A Rhodococcus erythropolis expression system for the bovine lactoferrin C-lobe was constructed. The DNA fragments encoding the BLF C-lobe were amplified and cloned into vector pTip LCH1.2. R. erythropolis carrying the pTip-C-lobe was cultured at 30 degrees C with shaking, and expression of the rBLF C-lobe was induced by adding 1 microg/ml (final concentration) thiostrepton. The rBLF C-lobe was isolated in native and denatured (8 M urea) form by Ni-NTA affinity chromatography. To obtain a bioactive rBLF C-lobe, the protein isolated in the denatured form was refolded by stepwise dialysis against refolding buffers. The antibacterial activity of the rBLF C-lobe was tested by the filter-disc plate assay method. The refolded rBLF C-lobe demonstrated antibacterial activity against selected strains of Escherichia coli.  相似文献   

12.
Protein substrates of the proteasome must apparently be unfolded and translocated through a narrow channel to gain access to the proteolytic active sites of the enzyme. Protein folding in vivo is mediated by molecular chaperones. Here, to test for chaperone activity of the proteasome, we assay the reactivation of denatured citrate synthase. Both human and yeast proteasomes stimulate the recovery of the native structure of citrate synthase. We map this chaperone-like activity to the base of the regulatory particle of the proteasome, that is, to the ATPase-containing assembly located at the substrate-entry ports of the channel. Denatured but not native citrate synthase is bound by the base complex. Ubiquitination of citrate synthase is not required for its binding or refolding by the base complex of the proteasome. These data suggest a model in which ubiquitin-protein conjugates are initially tethered to the proteasome by specific recognition of their ubiquitin chains; this step is followed by a nonspecific interaction between the base and the target protein, which promotes substrate unfolding and translocation.  相似文献   

13.
Roy I  Gupta MN 《Protein engineering》2003,16(12):1153-1157
A pH-responsive polymer Eudragit S-100 has been found to assist in correct folding of alpha-chymotrypsin denatured with 8 M urea and 100 mM dithiothreitol at pH 8.2. The complete activity could be regained within 10 min during refolding. Both native and refolded enzymes showed emission of intrinsic fluorescence with lambda(max) of 342 nm. Gel electrophoresis showed that the presence of Eudragit S-100 led to dissociation of multimers followed by the appearance of a band at the monomer position. The unfolding (by 8 M urea) and folding (assisted by the polymer) also led to complete renaturation of alpha-chymotrypsin initially denatured by 90% dioxane. The implications of the data in recovery of enzyme activity from inclusion bodies and the interesting possibility in the in vivo context of reversing protein aggregation in amyloid-based diseases have been discussed.  相似文献   

14.
A continuous refolding method with addition of denatured protein solution in a fed-batch manner through a ceramic membrane tube was developed. Denatured and fully reduced lysozyme was continuously refolded with high refolding efficiencies. In this method, a denatured lysozyme solution was gradually added from the outer surface of the membrane tube into a refolding buffer flowing continuously inside the tube under controlled mixing conditions. The refolding efficiencies of lysozyme in this continuous refolding were higher than those in a batch dilution method. This method has applicability to large-scale downstream processes and can attain a high efficiency and protein concentration in refolding. Refolded proteins can be supplied continuously following purification steps.  相似文献   

15.
This article reports that a reversed micellar solution is useful for refolding proteins directly from a solid source. The solubilization of denatured RNase A, which had been prepared by reprecipitation from the denaturant protein solution, into reversed micelles formulated with sodium di-2-ethylhexyl sulfosuccinate (AOT) has been investigated by a solid-liquid extraction system. This method is an alternative to the ordinary protein extraction in reversed micelles based on the liquid-liquid extraction. The solid-liquid extraction method was found to facilitate the solubilization of denatured proteins more efficiently in the reversed micellar media than the ordinary phase transfer method of liquid extraction. The refolding of denatured RNase A entrapped in reversed micelles was attained by adding a redox reagent (reduced and oxidized glutathion). Enzymatic activity of RNase A was gradually recovered with time in the reversed micelles. The denatured RNase A was completely refolded within 30 h. In addition, the efficiency of protein refolding was enhanced when reversed micelles were applied to denatured RNase A containing a higher protein concentration that, in the case of aqueous media, would lead to protein aggregation. The solid-liquid extraction technique using reversed micelles affords better scale-up advantages in the direct refolding process of insoluble protein aggregates.  相似文献   

16.
将尖吻蝮蛇毒酸性磷脂酶 A2 I( A.a A P L A2 I) 的基因克隆至表达载体p B L M V L2 , 在大肠杆菌 R R1 中成功表达。表达产物 A.a A P L A2 I约占细菌蛋白质总量的30 % , 以包含体的形式存在。纯化包含体后, 将产物变性、复性, 然后用 F P L C Superose T M12 纯化, 产物经过 S D S P A G E 检测只有单一条带。对表达的 A.a A P L A2 I进行了酶活性、抑制血小板聚集活性和溶血活性的测定。结果显示, 表达的 A.a A P L A2 I的酶活性同变性后复性江浙蝮蛇酸性磷脂酶 A2( A P L A2) 的酶活性相近, 既具有抑制血小板聚集活性也具有溶血活性。最后对磷脂酶 A2( P L A2) 的结构与这些活性的关系进行了讨论  相似文献   

17.
Protein folding liquid chromatography (PFLC) is a powerful tool for simultaneous refolding and purification of recombinant proteins in inclusion bodies. Urea gradient size exclusion chromatography (SEC) is a recently developed protein refolding method based on the SEC refolding principle. In the presented work, recombinant human granulocyte colony-stimulating factor (rhG-CSF) expressed in Escheriachia coli (E. coli) in the form of inclusion bodies was refolded with high yields by this method. Denatured/reduced rhG-CSF in 8.0 mol.L(-1) urea was directly injected into a Superdex 75 column, and with the running of the linear urea concentration program, urea concentration in the mobile phase and around the denatured rhG-CSF molecules was decreased linearly, and the denatured rhG-CSF was gradually refolded into its native state. Aggregates were greatly suppressed and rhG-CSF was also partially purified during the refolding process. Effects of the length and the final urea concentration of the urea gradient on the refolding yield of rhG-CSF by using urea gradient SEC were investigated respectively. Compared with dilution refolding and normal SEC with a fixed urea concentration in the mobile phase, urea gradient SEC was more efficient for rhG-CSF refolding--in terms of specific bioactivity and mass recovery, the denatured rhG-CSF could be refolded at a larger loading volume, and the aggregates could be suppressed more efficiently. When 500 microL of solubilized and denatured rhG-CSF in 8.0 mol.L(-1) urea solution with a total protein concentration of 2.3 mg.mL(-1) was loaded onto the SEC column, rhG-CSF with a specific bioactivity of 1.0 x 10(8) IU.mg(-1) was obtained, and the mass recovery was 46.1%.  相似文献   

18.
尖吻蝮蛇毒碱性磷脂酶A2的表达及其生化特征   总被引:3,自引:0,他引:3  
将尖吻蝮蛇毒碱性磷脂酶A2 (A .aBPLA2 )基因克隆至温敏表达载体 pBLMVL2 ,在大肠杆菌RR1中成功诱导表达 .表达产物A .aBPLA2 约占细菌蛋白质总量的 2 0 % ,并以包涵体的形式存在 .纯化包涵体后 ,将产物变性、复性 ,然后用FPLCSuperoseTM12纯化 ,产物经过SDS 聚丙烯酰胺凝胶电泳检测只有单一条带 .对纯化后的表达A .aBPLA2 进行了酶活性、抑制血小板聚集活性和溶血活性的测定 .结果显示 ,表达A .aBPLA2的酶活性与变性后复性江浙蝮蛇酸性磷脂酶A2 酶活性相近 ,具有类似变性后复性江浙蝮蛇碱性磷脂酶A2 的溶血活性 ,没有抑制血小板聚集活性 .最后对磷脂酶A2 的结构与这些活性的关系进行了讨论  相似文献   

19.
Multi-walled carbon nanotubes were used as refolding aid for xylanase unfolded with 8 M urea. The hydrophobic surface of the nanotubes enabled the binding, refolding, purification and simultaneous immobilization of the enzyme. While 55% activity could be regained while working with the denatured form of a purified preparation of xylanase, 92% activity could be obtained with the commercial preparation of xylanase in 8 M urea. These activities were obtained with refolded xylanase bound to the carbon nanotubes. Hence an immobilization efficiency of 0.92 was observed. The FT-IR spectroscopy showed that alpha-helical content of xylanase decreased from 17% to 14%, beta-sheet content increased from 53% to 61% and beta-turns decreased from 20% to 15% upon immobilization on the nanotubes. The refolded xylanase molecule bound to the carbon nanotube gave various secondary structure contents very similar to the bound (to carbon nanotubes) native xylanase.  相似文献   

20.
The genes encoding carboxypeptidase Y (CPY) and CPY propeptide (CPYPR) from Saccharomyces cerevisiae were cloned and expressed in Escherichia coli. Six consecutive histidine residues were fused to the C-terminus of the CPYPR for facilitated purification. High-level expression of CPY and CPYPR-His(6) was achieved but most of the expressed proteins were present in the form of inclusion bodies in the bacterial cytoplasm. The CPY and CPYPR-His(6) produced as inclusion bodies were separated from the cells and solubilized in 6 and 3 M guanidinium chloride, respectively. The denatured CPYPR-His(6) was refolded by dilution 1:30 into the renaturation buffer (50 mM Tris-HCl containing 0.5 M NaCl and 3 mM EDTA, pH 8.0), and the refolded CPYPR-His(6) was further purified to 90% purity by single-step immobilized metal ion affinity chromatography. The denatured CPY was refolded by dilution 1:60 into the renaturation buffer containing CPYPR-His(6) at various concentrations. Increasing the molar ratio of CPYPR-His(6) to CPY resulted in an increase in the CPY refolding yield, indicating that the CPYPR-His(6) plays a chaperone-like role in in vitro folding of CPY. The refolded CPY was purified to 92% purity by single-step p-aminobenzylsuccinic acid affinity chromatography. When refolding was carried out in the presence of 10 molar eq CPYPR-His(6), the specific activity, N-(2-furanacryloyl)-l-phenylalanyl-l-phenylalanine hydrolysis activity per milligram of protein, of purified recombinant CPY was found to be about 63% of that of native S. cerevisiae CPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号