首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
Brain-specific expression of MAP2 detected using a cloned cDNA probe   总被引:13,自引:6,他引:7       下载免费PDF全文
We describe the isolation of a set of overlapping cDNAs encoding mouse microtubule associated protein 2 (MAP2), using an anti-MAP antiserum to screen a mouse brain cDNA expression library cloned in bacteriophage lambda gt11. The authenticity of these clones was established by the following criteria: (a) three non-identical clones each expressing a MAP2 immunoreactive fusion protein were independently isolated from the expression library; each of these clones cross-hybridized at the nucleic acid level; (b) anti-MAP antiserum was affinity purified using nitrocellulose-bound fusion protein; these antibodies detected only MAP2 in an immunoblot experiment of whole brain microtubule protein; (c) a series of cDNA "walking" experiments was done so as to obtain a non-overlapping cloned fragment corresponding to a different part of the same mRNA molecule. Upon subcloning this non-overlapping fragment into plasmid expression vectors, a fusion protein was synthesized that was immunoreactive with an anti-MAP2 specific antiserum. Thus, a single contiguous cloned mRNA molecule encodes at least two MAP2-specific epitopes; (d) the cloned cDNA probes detect an mRNA species in mouse brain that is of a size (approximately 9 kb) consistent with the coding capacity required by a 250,000-D protein. The MAP2-specific cloned cDNA probes were used in RNA blot transfer experiments to assay for the presence of MAP2 mRNA in a variety of mouse tissues. Though brain contained abundant quantities of MAP2 mRNA, no corresponding sequences were detectable in RNA prepared from liver, kidney, spleen, stomach, or thymus. We conclude that the expression of MAP2 is brain-specific. Use of the MAP2 specific cDNA probes in genomic Southern blot transfer experiments showed the presence of a single gene encoding MAP2 in mouse. The microheterogeneity of MAP2 is therefore ascribable either to alternative splicing within a single gene, or to posttranslational modification(s), or both. Under conditions of low stringency, the mouse MAP2 cDNA probe cross-hybridizes with genomic sequences from rat, human, and (weakly) chicken, but not with sequences in frog, Drosophila, or sea urchin DNA. Thus, there is significant interspecies divergence of MAP2 sequences. The implications of the above observations are discussed in relationship to the potential biological function of MAP2.  相似文献   

3.
A recombinant DNA plasmid has been constructed that contains sequences of the gene coding for the acetylcholine binding subunit (alpha-subunit, 40 000 daltons) of Torpedo marmorata acetylcholine receptor protein (AChR). Polyadenylated RNA purified from Torpedo electric organ was used to construct a cDNA library. The AChR alpha-subunit cDNA clone was then identified by a two-step screening of 700 recombinant clones. As AChR is present in Torpedo electric organ but not in Torpedo liver or spleen, differential screening led to the selection of 12 clones specific for the electric organ. We then tested the ability of cDNA inserts to hybridize alpha-subunit mRNA specifically, as judged by cell-free translation and immunoprecipitation. The insert from one clone, p alpha-1, selectively hybridized with a mRNA species which elicited the synthesis of a 38 000 mol. wt. polypeptide. This polypeptide was precipitated by: (1) a rabbit serum raised against purified denatured alpha-subunit (the pure alpha-subunit displaced the complex); and (2) a rat monoclonal antibody specific for the denatured alpha-subunit. It was thus identified as a precursor of the alpha chain. Blot hybridization analysis of polyadenylated RNA from Torpedo electric organ with the p alpha-1 probe revealed a major species of 2.0 kb, which thus contains approximately 800 non-coding nucleotides.  相似文献   

4.
5.
6.
The neural cell adhesion molecules, or N-CAMs, are a group of structurally and immunologically related glycoproteins found in vertebrate neural tissues. Adult brain N-CAMs have apparent molecular weights of 180,000, 140,000, and 120,000. In this article we identify, using monoclonal antibody (Mab) 3G6.41, an immunologically distinct adult rat N-CAM form and show that this form is selectively expressed by some clonal neural cell lines. Consecutive immunoprecipitation experiments indicate that rabbit anti-N-CAM can remove from solubilized cerebellar neuron primary cultures all 180,000- and 140,000-mol-wt N-CAM molecules that react with Mab 3G6.41. However Mab 3G6.41 cannot remove all N-CAM molecules that react with rabbit anti-N-CAM. Rabbit anti-N-CAM binds to and immunoprecipitates N-CAM forms from the rat neuronal cell lines B35, B65, and B104, the glial lines B12 and C6, and L6 myoblasts. Mab 3G6.41 does not bind to or immunoprecipitate N-CAM from the B12 and B65 lines but does react with the other four lines by both criteria. Many cells in primary cultures of postnatal rat that express glial fibrillary acidic protein also bind Mab 3G6.41. Thus a unique form of rat N-CAM recognized by Mab 3G6.41 is found on some but not all neuronal, glial, and muscle cells.  相似文献   

7.
Screening of a bacteriophage lambda gt11 cDNA expression library with a polyclonal anti-microtubule associated protein (MAP) antiserum resulted in the isolation of two non-cross-hybridizing sets of cDNA clones. One set was shown to encode MAP2 (Lewis, S. A., A. Villasante, P. Sherline, and N. J. Cowan, 1986, J. Cell Biol., 102:2098-2105). To determine the specificity of the second set, three non-overlapping fragments cloned from the same mRNA molecule via a series of "walking" experiments were separately subcloned into inducible plasmid expression vectors in the appropriate orientation and reading frame. Upon induction and analysis by immunoblotting, two of the fusion proteins synthesized were shown to be immunoreactive with an anti-MAP1-specific antibody, but not with an anti-MAP2-specific antibody. Since these MAP1-specific epitopes are encoded in non-overlapping cDNAs cloned from a single contiguous mRNA, these clones cannot encode polypeptides that contain adventitiously cross-reactive epitopes. Furthermore, these cDNA clones detected an abundant mRNA species of greater than 10 kb in mouse brain, consistent with the coding requirement of a 350,000-D polypeptide and the known abundance of MAP1 in that tissue. The MAP1-specific cDNA probes were used in blot transfer experiments with RNA prepared from brain, liver, kidney, stomach, spleen, and thymus. While detectable quantities of MAP1-specific mRNA were observed in these tissues, the level of MAP1 expression was approximately 500-fold lower than in brain. The levels of both MAP1-specific and MAP2-specific mRNAs decline in the postnatal developing brain; the level of MAP1-specific mRNA also increases slightly in rat PC12 cells upon exposure to nerve growth factor. These surprising results contrast sharply with reported dramatic developmental increases in the amount of MAP1 in brain and in nerve growth factor-induced PC12 cells. The cDNA clones encoding MAP1 detect a single copy sequence in mouse DNA, even under conditions of low stringency that would allow the detection of related but mismatched sequences. The cDNAs cross-hybridize with genomic sequences in rat, human, and chicken DNA, but not with DNA from frog, Drosophila, or sea urchin. These data are discussed in terms of the evolution and possible biological role of MAP1.  相似文献   

8.
Alternative splicing generates a secreted form of N-CAM in muscle and brain   总被引:31,自引:0,他引:31  
A number of different membrane associated isoforms of the neural cell adhesion molecule (N-CAM) have previously been identified. Here the structure of a novel secreted isoform of N-CAM is established by analysis of a cDNA corresponding to an N-CAM mRNA from human skeletal muscle. The mRNA incorporates a novel sequence block into the extracellular domain, which introduces an in-frame stop codon and thus prematurely terminates the coding sequence, generating a truncated N-CAM polypeptide. Analysis of genomic clones indicates that the inserted sequence is present as a discrete exon within the human N-CAM gene, and Northern analysis shows it to be associated specifically with a 5.2 kb mRNA species from skeletal muscle and brain. Stable transfectants expressing the secreted isoform accumulate it in the cytoplasm and release it to the culture medium. In contrast, cells transfected with cDNA encoding lipid-tailed N-CAM express it predominantly at the cell surface. The existence of a secreted isoform may further expand the spectrum of N-CAM function beyond its known involvement in intercellular adhesion to extracellular matrix interactions.  相似文献   

9.
Structural and functional studies on N-CAM neural cell adhesion molecules   总被引:2,自引:0,他引:2  
The neural cell adhesion molecules N-CAM are to date the best characterized adhesion molecules of the nervous system. They have a high content of sialic acid residues which are present in the form of unusual sialic acid polymers. During development, a 3 fold decrease in the sialic acid content is observed. These changes in the degree of sialylation profoundly affect the binding properties of the molecules. A subpopulation of mouse brain N-CAM bears a carbohydrate determinant shared with other brain cell surface proteins and with the HNK-1 antigen of natural killer cells. Not only the carbohydrate side chains but also the protein moieties of the N-CAMs are heterogeneous. Three polypeptides of 180 K, 140 K and 120 K have been characterized in mouse brain. The 180 K and 140 K chains span the membrane. They differ mainly by the length of their cytoplasmic extensions. These intracellular domains are unusually long and contain phosphorylated serine residues. The 120 K chain exists in two forms, one membrane-bound and one soluble. Earlier studies had shown the presence of N-CAM on neurones and astrocytes of the mouse central nervous system, whereas cultured astrocytes had been reported to be N-CAM-negative. Recent results show that N-CAM is also expressed on astrocytes in culture. To study expression and heterogeneity of N-CAM polypeptides at the mRNA and gene level, cDNA clones for mouse N-CAM have been isolated. They reveal multiple mRNA species in mouse brain. By contrast, the corresponding sequences seem to be present only a few times, perhaps only once, in the mouse genome.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
N-CAM at the vertebrate neuromuscular junction   总被引:27,自引:22,他引:5  
We have detected the neural cell adhesion molecule, N-CAM, at nerve-muscle contacts in the developing and adult mouse diaphragm. Whereas we found N-CAM staining with fluorescent antibodies consistently to overlap with the pattern of alpha-bungarotoxin staining at nerve-muscle contacts both during development and in the adult, we observed N-CAM staining on the surfaces of developing myofibers and at much lower levels on adult myofibers. Consistent with its function, N-CAM was also detected on axons and axon terminals. Immunoblotting experiments with anti-N-CAM antibodies on detergent extracts of embryonic (E) diaphragm muscle revealed a polydisperse polysialylated N-CAM polypeptide, which in the adult (A) was converted to a discrete form of Mr 140,000; this change, called E-to-A conversion, was previously found to occur in different neural tissues at different rates. The Mr 140,000 component was not recognized by monoclonal antibody anti-N-CAM No. 5, which specifically recognizes antigenic determinants associated with N-linked oligosaccharide determinants on N-CAM from neural tissue. The relative concentration of the Mr 140,000 component prepared from diaphragm muscle increased during fetal development and then decreased sharply to reach adult values. Nevertheless, expression of N-CAM in muscle could be induced after denervation: one week after the sciatic nerve was severed, the relative amount of N-CAM increased dramatically as detected by immunoblots of extracts of whole muscle. Immunofluorescent staining confirmed that there was an increase in N-CAM, both in the cell and at the cell surface; at the same time, however, staining at the motor endplate was diminished. Our findings indicate that, in muscle, in addition to chemical modulation, cell-surface modulation of N-CAM occurs both in amount and distribution during embryogenesis and in response to denervation.  相似文献   

11.
A cDNA expression library prepared from rat liver RNA was screened with a polyclonal antibody specific for mitochondrial vitamin D3 25-hydroxylase and a cDNA for rabbit liver mitochondrial cytochrome P450c26 (CYP 26), yielding cDNA clones with identical sequences. The deduced amino acid sequence derived from a 1.9-kb full-length cDNA was 73% identical to that of rabbit cytochrome P450c26. A monoclonal antibody was used to demonstrate that the product of the 1.9-kb cDNA clone was targeted to the mitochondrial compartment when expressed in COS cells. Mitochondrial membranes containing the expressed protein showed both vitamin D3 25-hydroxylase and cholesterol 26-hydroxylase activities when reconstituted with ferredoxin reductase and ferredoxin, demonstrating that the same P450, designated as P450c26/25, can catalyze both reactions. Northern blot analysis revealed that the P450c26/25 cDNA hybridizes with a 2.4-kb RNA from rat liver and unstimulated ovaries. Treatment of rats with pregnant mare's serum gonadotropin resulted in a fivefold increase in the 2.4-kb mRNA as well as the appearance of a 2.1-kb mRNA species in the ovaries. Our findings document the presence of a regulated bifunctional mitochondrial cytochrome P450 capable of catalyzing the 25-hydroxylation of vitamin D3 and the 26-hydroxylation of cholesterol.  相似文献   

12.
Lysyl oxidase cDNA clones were identified by their reactivity with anti-bovine lysyl oxidase in a neonatal rat aorta cDNA lambda gt11 expression library. A 500-bp cDNA sequence encoding four of six peptides derived from proteolytic digests of bovine aorta lysyl oxidase was found from the overlapping cDNA sequences of two positive clones. The library was rescreened with a radiolabeled cDNA probe made from one of these clones, thus identifying an additional 13 positive clones. Sequencing of the largest two of these overlapping clones resulted in 2672 bp of cDNA sequence containing partial 5'- and 3'-untranslated sequences of 286 and 1159 nucleotides, respectively, and a complete open reading frame of 1227 bp encoding a polypeptide of 409 amino acids (46 kDa), consistent with the 48 +/- 3 kDa cell-free translation product of rat smooth muscle cell RNA that was immunoprecipitated by anti-bovine lysyl oxidase. The rat aorta cDNA-derived amino acid sequence contains the sequence of each of the six peptides isolated and sequenced from the 32-kDa bovine aorta enzyme, including the C-terminal peptide with sequence identity of 96%. Northern blots screened with lysyl oxidase cDNA probes identified hybridizing species of 5.8 and 4.5 kb in mRNA of rat aorta and lung, while dot blot analyses were negative for lysyl oxidase mRNA in preparations of rat brain, liver, kidney, and heart. A 258-bp segment of the 3'-untranslated region of lysyl oxidase cDNA is 93% identical with a highly conserved region of the 3'-untranslated sequence of rat elastin cDNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
A previously isolated mouse Cl-1D derived cell line (B-1/25) overproduces adenosine deaminase (EC 3.5.4.4) by 3200-fold. The present studies were undertaken to determine the molecular basis of this phenomenon. Rabbit reticulocyte lysate and Xenopus oocyte translation studies indicated that the B-1/25 cells also overproduced adenosine deaminase mRNA. Total poly(A+) RNA derived from B-1/25 was used to construct a cDNA library. After prehybridization with excess parental Cl-1D RNA to selectively prehybridize nonamplified sequences, 32P-labeled cDNA probe synthesized from B-1/25 total poly(A+) RNA was used to identify recombinant colonies containing amplified mRNA sequences. Positive clones containing adenosine deaminase gene sequences were identified by blot hybridization analysis and hybridization-selected translation in both rabbit reticulocyte lysate and Xenopus oocyte translation systems. Adenosine deaminase cDNA clones hybridized with three poly(A+) RNA species of 1.5, 1.7, and 5.2 kilobases in length, all of which were overproduced in the B-1/25 cell line. Dot blot hybridization analysis using an adenosine deaminase cDNA clone showed that the elevated adenosine deaminase level in the B-1/25 cells was fully accounted for by an increase in adenosine deaminase gene copy number. The adenosine deaminase cDNA probes and the cell lines with amplified adenosine deaminase genes should prove extremely useful in studying the structure and regulation of the adenosine deaminase gene.  相似文献   

14.
15.
We have developed a technique to establish catalogues of protein products of arrayed cDNA clones identified by DNA hybridisation or sequencing. A human fetal brain cDNA library was directionally cloned in a bacterial vector that allows IPTG-inducible expression of His6-tagged fusion proteins. Using robot technology, the library was arrayed in microtitre plates and gridded onto high-density in situ filters. A monoclonal antibody recognising the N-terminal RGSH6sequence of expressed proteins (RGS.His antibody, Qiagen) detected 20% of the library as putative expression clones. Two example genes, GAPDH and HSP90alpha, were identified on high-density filters using DNA probes and antibodies against their proteins.  相似文献   

16.
CgA is a 72Kd protein of unknown function that is present in many neuroendocrine tissues and co-secreted with their resident hormones. We prepared a cDNA library to the mRNA from CgA-producing human medullary thyroid carcinoma (MTC) cells in the expression vector lambda gt11. The library was screened with a panel of one polyclonal and two monoclonal antibodies to CgA. The specificity of the antibodies for CgA was demonstrated by immunoassay, immunohistology, and immunoprecipitation of the in vitro translation products of mRNA from CgA-producing tissues. A chromogenic second antibody identified five immunoreactive clones. Their cDNA inserts were isolated after EcoRI digestion and agarose gel electrophoresis. These cDNAs were 32P-labelled and used as probes in Northern hybridization studies. An mRNA of approximately 2.3Kb was detected with the cDNA probes in human cell lines from MTC and lung cancers that were shown to produce CgA and in human pheochromocytoma and bovine adrenal medulla tissue. To confirm its identity, one of the putative CgA cDNAs was subcloned into a plasmid and was used to hybridization-arrest the in vitro translation of CgA mRNA. These studies demonstrate the cloning of cDNAs which hybridize with CgA mRNA from diverse neuroendocrine tissues.  相似文献   

17.
Molecular cloning of rabbit gamma heavy chain mRNA.   总被引:5,自引:1,他引:4       下载免费PDF全文
A cDNA library of rabbit spleen mRNA was screened for immunoglobulin heavy chain sequences. In this paper we report the nucleotide sequence of two cDNA clones containing part of the constant region of the rabbit gamma heavy chain mRNA. The sequence encodes part of the CH2 domain (amino acids 268 to 340), the entire CH3 domain (amino acids 341 to 447) and the 3' untranslated region. This nucleotide sequence has been compared to the corresponding sequences of mouse gamma 1, gamma 2a and gamma 2b genes. The homologies between rabbit gamma chain gene sequence and each of the mouse gamma chain gene sequences are of the same magnitude order. This comparison shows that the CH2 domains are more homologous to each other than CH3 domains or 3' untranslated sequences. The presence of species specific nucleotide positions suggests that mouse gamma chain genes could have evolved from a common ancestor shortly after the mouse-rabbit species separation. Genomic blot analysis of rabbit liver DNA with the rabbit C gamma probes shows a limited number of related sequences, with little restriction site polymorphism between individual rabbits.  相似文献   

18.
To provide access to synapsin I-specific DNA sequences, we have constructed cDNA clones complementary to synapsin I mRNA isolated from rat brain. Synapsin I mRNA was specifically enriched by immunoadsorption of polysomes prepared from the brains of 10-14 day old rats. Employing this enriched mRNA, a cDNA library was constructed in pBR322 and screened by differential colony hybridization with single-stranded cDNA probes made from synapsin I mRNA and total polysomal poly(A)+ RNA. This screening procedure proved to be highly selective. Five independent recombinant plasmids which exhibited distinctly stronger hybridization with the synapsin I probe were characterized further by restriction mapping. All of the cDNA inserts gave restriction enzyme digestion patterns which could be aligned. In addition, some of the cDNA inserts were shown to contain poly(dA) sequences. Final identification of synapsin I cDNA clones relied on the ability of the cDNA inserts to hybridize specifically to synapsin I mRNA. Several plasmids were tested by positive hybridization selection. They specifically selected synapsin I mRNA which was identified by in vitro translation and immunoprecipitation of the translation products. The established cDNA clones were used for a blot-hybridization analysis of synapsin I mRNA. A fragment (1600 bases) from the longest cDNA clone hybridized with two discrete RNA species 5800 and 4500 bases long, in polyadenylated RNA from rat brain and PC12 cells. No hybridization was detected to RNA from rat liver, skeletal muscle or cardiac muscle.  相似文献   

19.
A novel method was used to screen differentially a cDNA library for clones representing serum-regulated mRNA species of low abundance. To increase the amount of probe available for screening, the cDNA probe was cloned and amplified. Two separate cDNA 'probe' libraries were constructed in the Escherichia coli plasmid vector pDE613, using poly(A)+mRNA from murine cells at 0 and 16 h after stimulation of a G0 population. Radiolabelled plasmid DNA from each library was hybridized sequentially to colony blots of the third 'target' library, constructed with mRNA from serum-stimulated cells in the Bacillus subtilis vector pBD214. Differential screening of the target cDNA library with the two probe libraries identified novel murine cDNA clones, some representing cytoplasmic poly(A)+RNA species of low (0.01%) abundance, accumulating after serum stimulation of a quiescent mouse embryo fibroblast population. One cDNA clone was found to correspond to mitochondrial 16S rRNA and a second was identified as the murine equivalent of previously described cDNA clones for the hamster 78-kDa glucose-regulated protein (GRP78) and the rat immunoglobulin heavy-chain-binding protein. GRP78 mRNA has not previously been recognized as a serum-inducible message.  相似文献   

20.
We earlier identified the GTPBP1 gene which encodes a putative GTPase structurally related to peptidyl elongation factors. This finding was the result of a search for genes, the expression of which is induced by interferon-gamma in a macrophage cell line, THP-1. In the current study, we probed the expressed sequence tag database with the deduced amino acid sequence of GTPBP1 to search for partial cDNA clones homologous to GTPBP1. We used one of the partial cDNA clones to screen a mouse brain cDNA library and identified a novel gene, mouse GTPBP2, encoding a protein consisting of 582 amino acids and carrying GTP-binding motifs. The deduced amino acid sequence of mouse GTPBP2 revealed 44.2% similarity to mouse GTPBP1. We also cloned a human homologue of this gene from a cDNA library of the human T cell line, Jurkat. GTPBP2 protein was found highly conserved between human and mouse (over 99% identical), thereby suggesting a fundamental role of this molecule across species. On Northern blot analysis of various mouse tissues, GTPBP2 mRNA was detected in brain, thymus, kidney and skeletal muscle, but was scarce in liver. Level of expression of GTPBP2 mRNA was enhanced by interferon-gamma in THP-1 cells, HeLa cells, and thioglycollate-elicited mouse peritoneal macrophages. In addition, we determined the chromosomal localization of GTPBP1 and GTPBP2 genes in human and mouse. The GTPBP1 gene was mapped to mouse chromosome 15, region E3, and human chromosome 22q12-13.1, while the GTPBP2 gene is located in mouse chromosome 17, region C-D, and human chromosome 6p21-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号