首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Ferguson  E.  Mosto  P.  Nordone  N.  Perez  C.Iii.  & Wojs  J. 《Journal of phycology》2000,36(S3):22-22
Information on the population structure of planktonic dinoflagellates is reported in the coral reef-mangrove ecosystem at Pelican Cays, Belize. Six sites examined included: Cat Cay, Douglas Cay, Elbow Cay, Fisherman's Cay, Lagoon Cay and Manatee Cay. A spectacular and rich dinoflagellate taxa including oceanic, coastal and offshore species are illustrated. The presence of oceanic species in the studied cays is an unexpected observation since dinolfagellate assemblages are virtually enclosed within ponds bordered by coral ridges that limits water exchange with the open ocean except during storm events. I am also reporting significant differences in the dinoflagellate associations among the studied cays. Dominant taxa included 16 Proroperidinium species, 11 Gonyaulax species, and ten Ceratium species. Only six planktonic species were harmful. Bloom forming species included Ceratium furca and Gonyaulax polygramma. A much more diverse authotrophic and heterotrophic dinoflagellate population characterizes the Pelican Cays than previously suspected. Some species are reported the first time: Protoperidinium belizeanum sp. nov., P. pyrum Balech, P. steidingerae Balech, P. depressum (Bailey) Balech, and P. divergens (Ehrenberg) Balech. These results demonstrate that the Belizean coral reef-mangrove ecosystem is a delicate and species-rich environment, and as such, should be protected and preserved.  相似文献   

2.
Information on the population structure of planktonic dinoflagellates is reported in the coral reef‐mangrove ecosystem at Pelican Cays, Belize. Six sites examined included: Cat Cay, Douglas Cay, Elbow Cay, Fisherman's Cay, Lagoon Cay and Manatee Cay. A spectacular and rich dinoflagellate taxa including oceanic, coastal and offshore species are illustrated. The presence of oceanic species in the studied cays is an unexpected observation since dinolfagellate assemblages are virtually enclosed within ponds bordered by coral ridges that limits water exchange with the open ocean except during storm events. I am also reporting significant differences in the dinoflagellate associations among the studied cays. Dominant taxa included 16 Proroperidinium species, 11 Gonyaulax species, and ten Ceratium species. Only six planktonic species were harmful. Bloom forming species included Ceratium furca and Gonyaulax polygramma. A much more diverse authotrophic and heterotrophic dinoflagellate population characterizes the Pelican Cays than previously suspected. Some species are reported the first time: Protoperidinium belizeanum sp. nov., P. pyrum Balech, P. steidingerae Balech, P. depressum (Bailey) Balech, and P. divergens (Ehrenberg) Balech. These results demonstrate that the Belizean coral reef‐mangrove ecosystem is a delicate and species‐rich environment, and as such, should be protected and preserved.  相似文献   

3.
A new thecate, phototrophic, marine, sand‐dwelling dinoflagellate, Thecadinium mucosum Hoppenrath et Taylor sp. nov., is described from a culture isolated from Boundary Bay, British Columbia, Canada. It was illustrated with LM as well as SEM and TEM, and its position in the phylogenetic tree of dinoflagellates was investigated using molecular methods. Cells are asymmetrical, oval, laterally flattened, and strongly pigmented, with the plate formula P 3′ 1a 6′′ 7/8c 5 s 6′′′ 2′′′′. Thecal plates are smooth with scattered pores, and there is a distinctive anterior intercalary plate that could be involved in mucus secretion. Thecadinium inclinatum Balech (=Sabulodinium inclinatum (Balech) Saunders et Dodge), a thecate, marine, sand‐dwelling species that has been previously confused with what we now call T. mucosum, was also examined and illustrated through LM and SEM. New information on T. inclinatum is provided, including its plate formula P 3′ 6′′ 7c ?s 5′′′ 1p 1′′′′; we consider T. inclinatum to be related to most other Thecadinium species and not to Sabulodinium. Molecular phylogenetic analyses based on the small subunit ribosomal gene of T. mucosum, T. kofoidii (the type species of the genus), and T. dragescoi weakly support earlier suspicions based on morphology that T. dragescoi is not a member of Thecadinium. Tabulational patterns of the species suggest a relationship to the genus Amphidiniopsis.  相似文献   

4.
In Japan, the bloom seasons of two toxic species, namely, Alexandrium catenella (Whedon et Kof.) Balech and Alexandrium tamiyavanichii Balech, sometimes overlap with those of three nontoxic Alexandrium species, namely, Alexandrium affine (H. Inouye et Fukuyo) Balech, Alexandrium fraterculus (Balech) Balech, and Alexandrium pseudogoniaulax (Biecheler) T. Horig. ex Y. Kita et Fukuyo. In this study, a multiplex PCR assay has been developed that enables simultaneous detection of six Alexandrium species on the basis of differences in the lengths of the PCR products. The accuracy of the multiplex PCR system was assessed using 101 DNA templates of the six target Alexandrium species and 27 DNA templates of 11 nontarget species (128 DNA templates in total). All amplicons obtained from the 101 DNA templates of the target species were appropriately identified, whereas all 27 DNA templates of the nontarget species were not amplified. Species‐specific identification by the multiplex PCR assay was certainly possible from single cells of the target species.  相似文献   

5.
SYNOPSIS. A large heterotrich ciliate (Family: Bursariidae) found in a papyrus swamp in Uganda was used for oxygen tension experiments by Beadle & Nilsson, 1959, under the name of Bursaria sp. This organism has now been identified as Neobursaridium gigas Balech. The morphology of the organism was studied in living and stained specimens, especially with the silver impregnation technique, and the present findings are compared to those of Balech.  相似文献   

6.
In a previous study large-subunit ribosomal RNA gene (LSU rDNA) sequences from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech were compared to assess inter- and intraspecific relationships. Many cultures compared in that study contained more than one class of LSU rDNA. Sequencing pooled clones of rDNA from single cultures revealed length heterogeneities and sequence ambiguities. This complicated sequence comparisons because multiple rDNA clones from a single culture had to be sequenced individually to document the different classes of molecules present in that culture. A further complication remained as to whether or not the observed intraculture sequence variations were reliable genetic markers or were instead artifacts of the polymerase chain reaction (PCR) amplification, cloning, and/or sequencing methods employed. The goals of the present study were to test the accuracy of Alexandrium LSU rDNA sequences using restriction fragment-length polymorphism (RFLP) analysis and to devise RFLP-based assays for discriminating among representatives of that group. Computer-assisted examination of the sequences allowed us to identify a set of restriction enzymes that were predicted to reveal species, strain, and intraculture LSU rDNA heterogeneities. All groups identified by sequencing were revealed independently and repeatedly by RFLP analysis of PCR-amplified material. Five ambiguities and one length heterogeneity, each of which ascribes a unique group of Alexandrium species or strains, were confirmed by restriction digests. Observed intraculture LSU rDNA heterogeneities were not artifacts of cloning and sequencing but were instead a good representation of the spectrum of molecules amplified during PCR reactions. Intraculture LSU rDNA heterogeneities thus serve as unique genetic markers for particular strains of Alexandrium, particularly those of A. tamarense, A. catenella, and A. fundyense. However, some of these “signature heterogeneities” represented a smaller portion of PCR product than was expected given acquired sequences. Other deviations from predicted RFLP patterns included incomplete digestions and appearance of spurious products. These observations indicate that the diversity of sequences in PCR product pools were greater than that observed by cloning and sequencing. The RFLP tests described here are useful tools for characterizing Alexandrium LSU rDNA to define the evolutionary lineage of cultures and are applicable at a fraction of the time, cost, and labor required for sequencing.  相似文献   

7.
8.
A fragment of the large-subunit (LSU) ribosomal RNA gene (rDNA) from the marine dinoflagellates Alexandrium tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech, A. affine (Fukuyo et Inoue) Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech was cloned and sequenced to assess inter- and intraspecific relationships. Cultures examined were from North America, western Europe, Thailand, Japan, Australia, and the ballast water of several cargo vessels and included both toxic and nontoxic isolates. Parsimony analyses revealed eight major classes of sequences, or “ribotypes,” indicative of both species- and strain-specific genetic markers. Five ribotypes subdivided members of the A. tamarense/catenella/ fundyense species cluster (the “tamarensis complex”) but did not correlate with morphospecies designations. The three remaining ribotypes were associated with cultures that clearly differ morphologically from the tamarensis complex. These distinct sequences were typified by 1) A. affine, 2) A. minutum and A. lusitanicum, and 3) A. andersoni. LSU rDNA from A. minutum and A. lusitanicum was indistinguishable. An isolate's ability to produce toxin, or lack thereof, was consistent within phylogenetic terminal taxa. Results of this study are in complete agreement with conclusions from previous work using restriction fragment-length polymorphism analysis of small subunit rRNA genes, but the LSU rDNA sequences provided finer-scale species and population resolution. The five divergent lineages of the tamarensis complex appeared indicative of regional populations; representatives collected from the same geographic region were the most similar, regardless ofmorphotype, whereas those from geographically separated populations were more divergent even when the same morphospecies were compared. Contrary to this general pattern, A. tamarense and A. catenella from Japan were exceptionally heterogeneous, displaying sequences associated with Australian, North American, and western European isolates. This diversity may stem from introductions of A., tamarense to Japan from genetically divergent sources in North America and western Europe. Alexandrium catenella from Japan and Australia appeared identical, suggesting that these two regional populations share a recent, common ancestry. One explanation for this genetic continuity was suggested by A. catenella cysts transported from Japan to Australia via ships' ballast water: the cysts contained LSU rDNA sequences that were indistinguishable from those of known populations of A. catenella in both Japan and Australia. Ships ballasted in South Korea and Japan have also fostered a dispersal of viable A. tamarense cysts to Australia, but their LSU rDNA sequences indicated they are genetically distinct from A. tamarense/catenella previously found in Australia and genetically distinct from each other, as well. Human-assisted dispersal is a plausible mechanism for inoculating a region with diverse representatives of the tamarensis complex from geographically and genetically distinct source populations. The D1-D2 region of Alexandrium LSU rDNA is a valuable taxo-nomic and biogeographic marker and a useful genetic reference for addressing dispersal hypotheses.  相似文献   

9.
The heterotrophic marine dinoflagellate genus Protoperidinium is the largest genus in the Dinophyceae. Previously, we reported on the intrageneric and intergeneric phylogenetic relationships of 10 species of Protoperidinium, from four sections, based on small subunit (SSU) rDNA sequences. The present paper reports on the impact of data from an additional 5 species and, therefore, an additional two sections, using the SSU rDNA data, but now also incorporating sequence data from the large subunit (LSU) rDNA. These sequences, in isolation and in combination, were used to reconstruct the evolutionary history of the genus. The LSU rDNA trees support a monophyletic genus, but the phylogenetic position within the Dinophyceae remains ambiguous. The SSU, LSU and SSU + LSU rDNA phylogenies support monophyly in the sections Avellana, Divergentia, Oceanica and Protoperidinium, but the section Conica is paraphyletic. Therefore, the concept of discrete taxonomic sections based on the shape of 1′ plate and 2a plate is upheld by molecular phylogeny. Furthermore, the section Oceanica is indicated as having an early divergence from other groups within the genus. The sections Avellana and Excentrica and a clade combining the sections Divergentia/Protoperidinium derived from Conica‐type dinoflagellates independently. Analysis of the LSU rDNA data resulted in the same phylogeny as that obtained using SSU rDNA data and, with increased taxon sampling, including members of new sections, a clearer idea of the evolution of morphological features within the genus Protoperidinium was obtained. Intraspecific variation was found in Protoperidinium conicum (Gran) Balech, Protoperidinium excentricum (Paulsen) Balech and Protoperidinium pellucidum Bergh based on SSU rDNA data and also in Protoperidinium claudicans (Paulsen) Balech, P. conicum and Protoperidinium denticulatum (Gran et Braarud) Balech based on LSU rDNA sequences. The common occurrence of base pair substitutions in P. conicum is indicative of the presence of cryptic species.  相似文献   

10.
A 5‐year sediment trap survey in the upwelling area off Cape Blanc (NW Africa) provides information on the seasonal and annual resting cyst production of dinoflagellates, their sinking characteristics and preservation potential. Strong annual variation in cyst production characterizes the region. Cyst production of generally all investigated species, including Alexandrium pseudogonyaulax (Biecheler) T. Horig. ex T. Kita et Fukuyo (cyst genus Impagidinium) and Gonyaulax spinifera (Clap. et J. Lachm.) Diesing (cyst genus Nematosphaeropsis) was enhanced with increasing upper water nutrient and trace‐element concentrations. Cyst production of Lingulodinium polyedrum (F. Stein) J. D. Dodge was the highest at the transition between upwelling and upwelling‐relaxation. Cyst production of Protoperidinium americanum (Gran et Braarud) Balech, Protoperidinium monospinum (Paulsen) K. A. F. Zonn. et B. Dale, and Protoperidinium stellatum (D. Wall) Balech, and heterotrophic dinoflagellates forming Brigantedinium spp. and Echinidinium aculeatum Zonn., increased most pronouncedly during upwelling episodes. Production of Protoperidinium conicum (Gran) Balech and Protoperidinium pentagonum (Gran) Balech cysts and total diatom valves were related, providing evidence of a predator–prey relationship. The export cyst‐flux of E. aculeatum, P. americanum, P. monospinum, and P. stellatum was strongly linked to the flux of total diatom valves and CaCO3, whereas the export production of Echinidinium granulatum Zonn. and Protoperidinium subinerme (Paulsen) A. R. Loebl. correlated with total organic carbon, suggesting potential consumption of diatoms, prymnesiophytes, and organic matter, respectively. Sinking velocities were at least 274 m · d?1, which is in range of the diatom‐ and coccolith‐based phytoplankton aggregates and “slower” fecal pellets. Species‐selective degradation did not occur in the water column, but on the ocean floor.  相似文献   

11.
Two distinct small-subunit ribosomal RNA genes (SSU rDNAs), termed the “A gene” and “B gene,” were recently found in the toxic dinoflagellate Alexandrium fundyense Balech. A restriction fragment length polymorphism (RFLP) assay was developed to rapidly detect the A and B genetic markers. SSU rDNA from 58 cultures with species designations of A. tamarense (Lebour) Balech, A. catenella (Whedon et Kofoid) Balech, A. fundyense, A. affine (Fukuyo et Inoue)Balech, A. minutum Halim, A. lusitanicum Balech, and A. andersoni Balech were screened. These cultures represent toxic and non-toxic isolates from North America, western Europe, Thailand, Japan, Australia, and the ballast water of several cargo ships. The RFLP assay revealed five distinct groups. Three subdivided the A. tamarense/catenella/fundyense“species complex” into clusters defined by geographic origin, not by morphospecies designations. The fourth group consisted of A. affine, whereas the fifth group was represented by A. minutum, A. lusitanicum, and A. andersoni. The B gene was only found in A. tamarense, A. catenella, and A. fundyense, but not in all isolates. However, all North American isolates of this closely related group harbored this gene, and it also was found in some A. tamarense from scattered locations in Japan and in the ballast water of one ship that operated exclusively between Japan and Australia. Isolates without the B gene appeared to have only a single class of SSU rDNA. The B sequence was not essential for toxin production, but thus far those organisms harboring it were toxic. The A. tamarense/catenella/fundyense complex is composed of genetically distinct populations, within which may exist two or all three of the mophotypically defined species. The B gene is a promising taxonomic and biogeographic marker and may be useful for tracking the regional and/or global dispersal of particular populations.  相似文献   

12.
The heteroduplex mobility assay (HMA) reveals sequence dissimilarity between DNA by measuring the retarded migration of the hybrid or heteroduplex using polyacrylamide gel electrophoresis. Heterogeneity in some cultures of toxic dinoflagellates of the genus Alexandrium (Halim) Balech was observed during comparison of the amplified D1–D2 region of the large subunit rRNA gene (rDNA) using this method. HMA also allowed grouping of clones obtained from toxic bloom events in the Chilean, southernmost Pacific within the Asian Southern Pacific lineage of A. catenella (Whedon et Kofoid) Balech. The applied methodology provides a rapid and simple tool for use in assessing heterogeneity as well as for molecular grouping of strains among the genus Alexandrium.  相似文献   

13.
Fluorescent DNA probes (cCAT-F1 and cTAM-Fl) complementary to the 3′ end of ribosomal RNA (rRNA) internal transcribed spacer 1 sequences (ITS 1: positions 154–176) of toxic species of Alexandrium catenella (Whedon and Kofoid) Taylor and A. tamarense (Lebour) Taylor were applied to various cultures of the genus Alexandrium and several other phytoplankters using whole-cell fluorescent in situ hybridization. cCAT-F1 and cTAM-F1 reacted with targeted strains of A. catenella (catenella type) and A. tamarense (tamarense type), respectively, and did not react with isolates of A. affine (Inoue et Fukuyo) Balech, A. fraterculus (Balech) Balech, A. insuetum Balech, A. lusitanicum Balech, A. pseudogonyaulux (Biecheler)Horiguchi ex Yuki et Fukuyo comb. nov., nor isolates of Prorocentrum micans Ehrenberg, Amphidinium carterae Hulburt, Heterocapsa triquetra (Ehrenberg) Stein, Gymnodinium mikimotoi Miyake et Kominami ex Oda, Skeletonema costatum (Greville) Cleve, Heterosigma akashiwo (Hada) Hada, and Chattonella antiqua (Hada) Ono. DNase I and RNase A treatment showed that probes hybridized to ribosomal DNA, not rRNA. Probes were localized at the bottom of the U-shaped nucleus, a region that corresponds to the nucleolus. The probes are highly specific for particular strains of A. catenella and A. tamarense and are applicable for identifying these species collected from cultured and possibly natural populations.  相似文献   

14.
15.
Alexandrium catenella (Whedon et Kof.) Balech, A. tamarense (M. Lebour) Balech, and A. fundyense Balech comprise the A. tamarense complex, dinoflagellates responsible for paralytic shellfish poisoning worldwide. The relationships among these morphologically defined species are poorly understood, as are the reasons for increases in range and bloom occurrence observed over several decades. This study combines existing data with new ribosomal DNA sequences from strains originating from the six temperate continents to reconstruct the biogeography of the complex and explore the origins of new populations. The morphospecies are examined under the criteria of phylogenetic, biological, and morphological species concepts and do not to satisfy the requirements of any definition. It is recommended that use of the morphospecies appellations within this complex be discontinued as they imply erroneous relationships among morphological variants. Instead, five groups (probably cryptic species) are identified within the complex that are supported on the basis of large genetic distances, 100% bootstrap values, toxicity, and mating compatibility. Every isolate of three of the groups that has been tested is nontoxic, whereas every isolate of the remaining two groups is toxic. These phylogenetic groups were previously identified within the A. tamarense complex and given geographic designations that reflected the origins of known isolates. For at least two groups, the geographically based names are not indicative of the range occupied by members of each group. Therefore, we recommend a simple group‐numbering scheme for use until the taxonomy of this group is reevaluated and new species are proposed.  相似文献   

16.
A PCR (polymerase chain reaction)-based assay for the detection of Alexandrium species in cultured samples using rDNA-targeted probes was developed. The internal transcribed spacers 1 and 2 (ITS1 and ITS2) and the 5.8S ribosomal RNA gene (rDNA) from cultured isolates of A. tamarense (Lebour) Taylor, A. catenella (Whedon et Kofoid) Balech, A. fundyense Balech and A. lusitanicum Balech were amplified using PCR and sequenced. Sequence comparisons showed that the 5.8S and ITS1-ITS2 regions contain sequences specific for the Alexandrium genus, especially at the 3' end of the 5.8S coding region. PCR primers and a radioactive 32P-labeled DNA probe were devised for this region. The cross-reactivity of the PCR primers and probe was tested against cultured isolates of Alexandrium and other dinoflagellates and diatoms. All the Alexandrium isolates screened reacted toward the genus-specific probe; in contrast, the other groups of microalgae (dinoflagellates and diatoms) did not react with the probe. Furthermore, the PCR amplification technique combined with the use of the rDNA-target probe allowed us to develop a method for the detection of Alexandrium cells in cultured samples. This PCR method might offer a new approach for the identification and enumeration of the HAB (harmful algal bloom) species present in natural phytoplankton populations.  相似文献   

17.
18.
In the present study, we investigated the intrageneric and intergeneric phylogenetic relationships of the heterotrophic marine dinoflagellate genus Protoperidinium. Using single‐cell polymerase chain reaction methods, we determined small subunit ribosomal RNA gene sequences for 10 Protoperidinium species belonging to four sections and two subgenera. Phylogenetic trees were constructed using maximum parsimony, neighbor joining and maximum likelihood methods. We found intraspecific variability of small subunit rDNA sequences in Protoperidinium conicum (Gran) Balech, Protoperidinium crassipes (Kofoid) Balech and Protoperidinium denticulatum (Gran et Braarud) Balech, but not in other species. The small subunit rDNA phylogeny revealed that the genus is monophyletic, but its phylogenetic position within the Dinophyceae could not be determined because of ambiguous basal topologies. Within the genus Protoperidinium, species of the subgenus Archaeperidinium with two anterior intercalary plates (2a) were shown to be monophyletic, but species of the subgenus Protoperidinium with three anterior intercalary plates (3a) were resolved as paraphyletic. The sections Avellana, Divergentia and Protoperidinium were shown to be monophyletic, while the section Conica was paraphyletic. Based on the trees obtained in the present study, most of the traditionally defined sections are supported by molecular phylogeny. It was also indicated that the section Avellana evolved from one of the Conica‐type dinoflagellates.  相似文献   

19.
Summary The thecal ultrastructure ofScrippsiella faeroense (Paulsen) Balech and Oliveira Soares as seen in the electron microscope is described. Additional structural detail of the thecal plate surface, plate connections, and the apical pore, is revealed.  相似文献   

20.
The toxic marine dinoflagellates Alexandrium tamarense (Lebor) Balech and A. catenella (Whedon and Kofoid) Taylor have been mainly responsible for paralytic shellfish poisoning in Japan. Rapid and precise identification of these algae has been difficult because this genus contains many morphologically similar toxic and nontoxic species. Here, we report a rapid, precise, and quantitative identification method using three fluorescent, rRNA‐targeted, oligonucleotide probes for A. tamarense (Atm1), A. catenella (Act1), and the nontoxic A. affine (Inoue et Fukuyo; Aaf1). Each probe was species specific when applied using fluorescence in situ hybridization (FISH). None of the probes reacted with three other Alexandrium spp., A. lusitanicum Balech, A. ostenfeldii (Paulsen) Balech & Tangen, and A. insuetum Balech, or with eight other microalgae, including Gymnodinium mikimotoi Miyake et Kominami ex Oda and Heterosigma akashiwo (Hada) Hara et Chihara, suggesting that the species specificity of each probe was very high. Cells labeled with fluorescein 5‐isothiocyanate–conjugated probes showed strong green fluorescence throughout the whole cell except for the nucleus. FISH could be completed within 1 h and largely eliminated the need for identifying species based on key morphological criteria. More than 80% of targeted cells of both species could be identified by microscopy and quantified during growth up to the early stationary phase; more than 70% of cells could be detected in the late stationary phase. The established FISH protocol was found to be a specific, rapid, precise, and quantitative method that might prove to be a useful tool to distinguish and quantify Alexandrium cells collected from Japanese coastal waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号