首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
丙型肝炎病毒非结构蛋白NS4B诱导细胞非折叠蛋白反应   总被引:1,自引:0,他引:1  
用RT-PCR和免疫印迹的方法检测稳定表达NS4B的HeLa细胞中的XBP1;通过RT-PCR的方法在表达NS4B的HeLa和Huh-7细胞中检测ATF6,Grp78和caspase-12的转录,并且通过报告基因的方法分析XBP1和Grp78启动子活性。实验结果表明:在表达NS4B的HeLa细胞中检测到XBP1的两种形式(剪接和未剪接),此外,在细胞中ATF6、Grp78的转录水平和XBP1、Grp78启动子的荧光素酶活性较没有表达NS4B的HeLa和Huh-7细胞中的量有所增加;通过染色质免疫沉淀实验(ChIP)分析,这些增加可能是由于XBP1结合到了这些基因的启动子上引起的。总之,实验结果可提示HCVNS4B通过ATF6或XBP1途径引起内质网压力,导致UPR反应。NS4B可能在HCV的致病性中起着重要的作用,特别是在慢性肝炎,甚至肝细胞癌中。  相似文献   

7.
8.
ATF6, a member of the leucine zipper protein family, can constitutively induce the promoter of glucose-regulated protein (grp) genes through activation of the endoplasmic reticulum (ER) stress element (ERSE). To understand the mechanism of grp78 induction by ATF6 in cells subjected to ER calcium depletion stress mediated by thapsigargin (Tg) treatment, we discovered that ATF6 itself undergoes Tg stress-induced changes. In nonstressed cells, ATF6, which contains a putative short transmembrane domain, is primarily associated with the perinuclear region. Upon Tg stress, the ATF6 protein level dropped initially but quickly recovered with the additional appearance of a faster-migrating form. This new form of ATF6 was recovered as soluble nuclear protein by biochemical fractionation, correlating with enhanced nuclear localization of ATF6 as revealed by immunofluorescence. Optimal ATF6 stimulation requires at least two copies of the ERSE and the integrity of the tripartite structure of the ERSE. Of primary importance is a functional NF-Y complex and a high-affinity NF-Y binding site that confers selectivity among different ERSEs for ATF6 inducibility. In addition, we showed that YY1 interacts with ATF6 and in Tg-treated cells can enhance ATF6 activity. The ERSE stimulatory activity of ATF6 exhibits properties distinct from those of human Ire1p, an upstream regulator of the mammalian unfolded protein response. The requirement for a high-affinity NF-Y site for ATF6 but not human Ire1p activity suggests that they stimulate the ERSE through diverse pathways.  相似文献   

9.
10.
11.
Glucose-regulated protein 78 (GRP78), a key regulator of endoplasmic reticulum (ER) stress, facilitates cancer cell growth and viral replication. The mechanism leading to grp78 gene activation during viral infection is largely unknown. In this study, we show that the immediate-early 1 (IE1-72) protein of the human cytomegalovirus (HCMV) is essential for HCMV-mediated GRP78 activation. IE1-72 upregulated grp78 gene expression depending on the ATP-binding site, the zinc-finger domain and the putative leucine-zipper motif of IE1-72, as well as the ER stress response elements (ERSEs) on the grp78 promoter. The purified IE1-72 protein bound to the CCAAT box within ERSE in vitro, whereas deletion mutants of IE1-72 deficient in grp78 promoter stimulation failed to do so. Moreover, IE1-72 binding to the grp78 promoter in infected cells accompanied the recruitment of TATA box-binding protein-associated factor 1 (TAF1), a histone acetyltransferase, and the increased level of acetylated histone H4, an indicator of active-state chromatin. These results provide evidence that HCMV IE1-72 activates grp78 gene expression through direct promoter binding and modulation of the local chromatin structure, indicating an active viral mechanism of cellular chaperone induction for viral growth.  相似文献   

12.
13.
14.
15.
16.
17.
18.
Endoplasmic reticulum (ER) stress elicits protective responses of chaperone induction and translational suppression and, when unimpeded, leads to caspase-mediated apoptosis. Alzheimer's disease-linked mutations in presenilin-1 (PS-1) reportedly impair ER stress-mediated protective responses and enhance vulnerability to degeneration. We used cleavage site-specific antibodies to characterize the cysteine protease activation responses of primary mouse cortical neurons to ER stress and evaluate the influence of a PS-1 knock-in mutation on these and other stress responses. Two different ER stressors lead to processing of the ER-resident protease procaspase-12, activation of calpain, caspase-3, and caspase-6, and degradation of ER and non-ER protein substrates. Immunocytochemical localization of activated caspase-3 and a cleaved substrate of caspase-6 confirms that caspase activation extends into the cytosol and nucleus. ER stress-induced proteolysis is unchanged in cortical neurons derived from the PS-1 P264L knock-in mouse. Furthermore, the PS-1 genotype does not influence stress-induced increases in chaperones Grp78/BiP and Grp94 or apoptotic neurodegeneration. A similar lack of effect of the PS-1 P264L mutation on the activation of caspases and induction of chaperones is observed in fibroblasts. Finally, the PS-1 knock-in mutation does not alter activation of the protein kinase PKR-like ER kinase (PERK), a trigger for stress-induced translational suppression. These data demonstrate that ER stress in cortical neurons leads to activation of several cysteine proteases within diverse neuronal compartments and indicate that Alzheimer's disease-linked PS-1 mutations do not invariably alter the proteolytic, chaperone induction, translational suppression, and apoptotic responses to ER stress.  相似文献   

19.
ER stress signaling by regulated proteolysis of ATF6   总被引:3,自引:0,他引:3  
  相似文献   

20.
Cystic fibrosis (CF) is the most common Caucasian autosomal recessive disease. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, which is a chloride (Cl(-)) channel. The most common mutation leads to a missing phenylalanine at position 508 (DeltaF508). The DeltaF508-CFTR protein is misfolded and retained in the endoplasmic reticulum and may trigger the unfolded protein response (UPR). Furthermore, CF is accompanied by inflammation and infection, which are also involved in the UPR. To date, the UPR transducer ATF6 and ER stress sensor Grp78 have been used as UPR markers. Therefore, our aim was to study the activation of ATF6 and Grp78 in transfected human epithelial cells expressing the DeltaF508-CFTR protein, and we showed that they are activated in these cells. We investigated the effect of exogenous UPR inducers thapsigargin (Tg) and tunicamycin (Tu) on Grp78 and ATF6 expression. Whereas the cells reacted to the UPR induction, we show a difference in the electrophoretic pattern of ATF6. The Grp78/ATF6 complex was previously described, but its stability during UPR is controversial. Using co-immunoprecipitation we show that it is stable in DeltaF508-CFTR-expressing cells and is maintained under UPR conditions. Finally, using siRNA, we show that decreased ATF6 expression induces increased cAMP-dependent halide flux through DeltaF508-CFTR due to its increased membrane localization. Therefore, our results suggest that UPR may be triggered in CF and that ATF6 may be a therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号