首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-affinity binding of biotin to avidin, streptavidin, and related proteins has been exploited for decades. However, a disadvantage of the biotin/biotin-binding protein interaction is that it is essentially irreversible under physiological conditions. Desthiobiotin is a biotin analogue that binds less tightly to biotin-binding proteins and is easily displaced by biotin. We synthesized an amine-reactive desthiobiotin derivative for labeling proteins and a desthiobiotin-agarose affinity matrix. Conjugates labeled with desthiobiotin are equivalent to their biotinylated counterparts in cell-staining and antigen-labeling applications. They also bind to streptavidin and other biotin-binding protein-based affinity columns and are recognized by anti-biotin antibodies. Fluorescent streptavidin conjugates saturated with desthiobiotin, but not biotin, bind to a cell-bound biotinylated target without further processing. Streptavidin-based ligands can be gently stripped from desthiobiotin-labeled targets with buffered biotin solutions. Thus, repeated probing with fluorescent streptavidin conjugates followed by enzyme-based detection is possible. In all applications, the desthiobiotin/biotin-binding protein complex is easily dissociated under physiological conditions by either biotin or desthiobiotin. Thus, our desthiobiotin-based reagents and techniques provide some distinct advantages over traditional 2-iminobiotin, monomeric avidin, or other affinity-based techniques.  相似文献   

2.
Thiolated T-antigen [Galbeta-(1-3)-GalNAcalpha, T-Ag] (6), derived in situ from thioacetate 5 was coupled to N-chloroacetylated glycylglycyl L-lysine dendritic cores (7-9) using high yielding substitution reactions to afford di- (10), tetra- (11), and octa-valent (12) glycodendrimers in good yields (76-86%). Heterobifunctional conjugate 14 was prepared as a biosensor from tetravalent conjugate 11 and biotin hydrazide 13 using TBTU strategy. In a solid-phase double sandwich enzyme linked immunosorbent assays (ELISA), biotinylated conjugate 14 was shown to bind to streptavidin used as a coating material. Mouse monoclonal anti T-Ag antibody (IgG3) and horseradish peroxydase-labeled goat anti mouse IgG, used for quantification, were found to bind T-Ag tetramer 14 immobilized on the surface of the streptavin layer. A typical saturation curve was observed for 14 while non-biotinylated tetramer 11 showed no binding in the entire concentration range. These results demonstrate the availability of both haptens toward the T-Ag antibody and streptavidin receptors.  相似文献   

3.
The structure of a full-length streptavidin has been determined at 1.7 A resolution and shows that the 20 residue extension at the C terminus forms a well-ordered polypeptide loop on the surface of the tetramer. Residues 150-153 of the extension are bound to the ligand-binding site, possibly competing with exogenous ligands. The binding mode of these residues is compared with that of biotin and peptidic ligands. The observed structure helps to rationalize the observations that full-length mature streptavidin binds biotinylated macromolecules with reduced affinity.  相似文献   

4.
The strength of the streptavidin/biotin interaction poses challenges for the recovery of biotinylated molecules from streptavidin resins. As an alternative to high-temperature elution in urea-containing buffers, we show that mono-biotinylated proteins can be released with relatively gentle heating in the presence of biotin and 2% SDS/Rapigest, avoiding protein carbamylation and minimizing streptavidin dissociation. We demonstrate the utility of this mild elution strategy in two studies of the human androgen receptor (AR). In the first, in which formaldehyde cross-linked complexes are analyzed in yeast, a mass spectrometry-based comparison of the AR complex using SILAC reveals an association between the androgen-activated AR and the Hsp90 chaperonin, while Hsp70 chaperonins associate specifically with the unliganded complex. In the second study, the endogenous AR is quantified in the LNCaP cell line by absolute SILAC and MRM-MS showing approximately 127,000 AR copies per cell, substantially more than previously measured using radioligand binding.  相似文献   

5.
V J Chen  F Wold 《Biochemistry》1986,25(4):939-944
Neoglycoproteins in which the oligosaccharide moieties are attached noncovalently to the protein through a high-affinity ligand have been prepared from biotinylated oligosaccharides and avidin or the nonglycosylated microbial analogue streptavidin. One of the asparagine-oligosaccharides purified from Pronase-digested ovalbumin (Man6-GlcNAc2-Asn) was reacted with an excess of the hydroxysuccinimide ester of biotin or, for the purpose of quantitation, [3H]biotin. Derivatives were also prepared with an extension "arm", a 6-aminohexanoyl group, between biotin and asparagine. When the purified biotinyl-Asn-oligosaccharide was added to avidin or streptavidin, a complex was formed containing 3 mol of oligosaccharide/mol of protein. The complexes were stable at neutral pH in the absence of biotin and could be dialyzed for 2 weeks without any significant loss of ligand. In the presence of biotin, or under denaturing conditions, the oligosaccharide derivative was released and could be quantitatively recovered. To assess the influence of the protein matrix on the reactivity of the oligosaccharide units, free biotinyl-Asn-oligosaccharide and the corresponding avidin and streptavidin complexes were exposed to alpha-mannosidase in parallel experiments. The rate of hydrolysis of the free derivative was severalfold faster than that of the two protein complexes, and at the time when about 90% of the free derivative had all five alpha-mannosyl residues removed, the majority of the protein-bound derivatives contained two to four undigested alpha-mannosyl residues and also had a significant amount of undigested starting material. The ease of preparation and the properties of these neoglycoproteins suggest that they should be excellent models for the study of glycoprotein-receptor binding and glycoprotein processing.  相似文献   

6.
The pathway of ligand dissociation and how binding sites respond to force are not well understood for any macromolecule. Force effects on biological receptors have been studied through simulation or force spectroscopy, but not by high resolution structural experiments. To investigate this challenge, we took advantage of the extreme stability of the streptavidin–biotin interaction, a paradigm for understanding non-covalent binding as well as a ubiquitous research tool. We synthesized a series of biotin-conjugates having an unchanged strong-binding biotin moiety, along with pincer-like arms designed to clash with the protein surface: ‘Love–Hate ligands’. The Love–Hate ligands contained various 2,6-di-ortho aryl groups, installed using Suzuki coupling as the last synthetic step, making the steric repulsion highly modular. We determined binding affinity, as well as solving 1.1–1.6 Å resolution crystal structures of streptavidin bound to Love–Hate ligands. Striking distortion of streptavidin’s binding contacts was found for these complexes. Hydrogen bonds to biotin’s ureido and thiophene rings were preserved for all the ligands, but biotin’s valeryl tail was distorted from the classic conformation. Streptavidin’s L3/4 loop, normally forming multiple energetically-important hydrogen bonds to biotin, was forced away by clashes with Love–Hate ligands, but Ser45 from L3/4 could adapt to hydrogen-bond to a different part of the ligand. This approach of preparing conflicted ligands represents a direct way to visualize strained biological interactions and test protein plasticity.  相似文献   

7.
Escherichia coli was engineered to intracellularly manufacture streptavidin beads. Variants of streptavidin (monomeric, core and mature full length streptavidin) were C-terminally fused to PhaC, the polyester granule forming enzyme of Cupriavidus necator. All streptavidin fusion proteins mediated formation of the respective granules in E. coli and were overproduced at the granule surface. The monomeric streptavidin showed biotin binding (0.7 ng biotin/microg bead protein) only when fused as single-chain dimer. Core streptavidin and the corresponding single-chain dimer mediated a biotin binding of about 3.9 and 1.5 ng biotin/mug bead protein, respectively. However, biotin binding of about 61 ng biotin/mug bead protein with an equilibrium dissociation constant (KD) of about 4 x 10(-8)M was obtained when mature full length streptavidin was used. Beads displaying mature full length streptavidin were characterized in detail using ELISA, competitive ELISA and FACS. Immobilisation of biotinylated enzymes or antibodies to the beads as well as the purification of biotinylated DNA was used to demonstrate the applicability of these novel streptavidin beads. This study proposes a novel method for the cheap and efficient one-step production of versatile streptavidin beads by using engineered E. coli as cell factory.  相似文献   

8.
Replacement of B25-phenylalanine by leucine in the insulin sequence causes marked inactivation. The effect of this sequence variation was studied here in des-(B26-30)-insulin. [LeuB25]des-(B26-30)-insulin and its B25-amide were prepared by trypsin-mediated semisynthesis from N-terminally protected des-(B23-30)-insulin and synthetic tripeptides. The relative lipogenic potency in isolated rat adipocytes was 8.0% for the truncated analogue with a free B25-carboxyl function, and 18.1% for the amidated analogue. Binding to cultured human IM-9 lymphocytes was 4% and 9%, respectively. Thus, both shortened insulins are markedly more active than [LeuB25]insulin. The PheB25----LeuB25 substitution in both the shortened and the full sequence has a moderate effect on the CD spectrum, indicating that the gross main chain conformation is largely retained in both molecules. Independent of the substitution an absolute increase of the circular dichroism is observed upon amidation of the B25-carboxyl group.  相似文献   

9.
Biotinylation is a recent addition to the list of reported posttranslational modifications made to histones. Holocarboxylase synthetase (HCS) and biotinidase have been implicated as biotinylating enzymes. However, the details of the mechanism and the regulation of biotin transfer on and off histones remains unclear. Here we report that in a cell culture system low biotin availability reduces biotinylation of carboxylases, yet apparent biotinylation of histones is unaffected. This is despite biotin depletion having detrimental effects on cell viability and proliferation. Further analysis of the widely used method for detecting biotin on histones, streptavidin blotting, revealed that streptavidin interacts with histones independently of biotin binding. Preincubation of streptavidin with free biotin reduced binding to biotinylated carboxylases but did not block binding to histones. To investigate biotinylation of histones using an alternative detection method independent of streptavidin, incorporation of 14C biotin into biotinylated proteins was analyzed. Radiolabeled biotin was readily detectable on carboxylases but not on histones, implying very low levels of biotin in the nucleus attached to histone proteins (< 0.03% biotinylation). In conclusion, we would caution against the use of streptavidin for investigating histone biotinylation.  相似文献   

10.
Biotinylated granulocyte/macrophage colony-stimulating factor (GM-CSF) analogues with different linkage chemistries and levels of conjugated biotin were synthesized by reacting recombinant human GM-CSF with sulfosuccinimidyl 6-biotinamidohexanoate or biotin hydrazide/1-[3-(dimethylamino)-propyl]-3-ethylcarbodiimide. These chemically reactive forms of biotin produced derivatives biotinylated at amine or carboxyl groups, respectively. Amine-derivatized analogues of 1.2 and 3.8 mol of biotin/mol of protein (N1-bGM-CSF and N4-bGM-CSF) and a carboxyl-modified analogue of 4.6 mol of biotin/mol of protein (C5-bGM-CSF) were synthesized. These analogues were compared to determine the effect of biotinylation on biological activity and GM-CSF receptor binding characteristics. The biotinylated proteins migrated with the same molecular weight as the native, unmodified protein as determined by SDS-PAGE and could be detected by Western blotting with alkaline phosphatase conjugated streptavidin, thus demonstrating the biotin linkage. All three analogues retained full agonist activity relative to the native protein (EC50 = 10-15 pM) when assayed for the stimulation of human bone marrow progenitor cell growth. Cell surface GM-CSF receptor binding was characterized by the binding of the analogues to human neutrophils, with detection by fluorescein-conjugated avidin and fluorescence-activated cell sorting. The N-bGM-CSFs demonstrated GM-CSF receptor specific binding that was displaceable by excess underivatized protein, with the detected fluorescence signal decreasing with increasing biotin to protein molar ratio. In contrast, C5-bGM-CSF binding above background fluorescence could not be detected using this system, suggesting that this derivative could bind to and activate the receptor, but not simultaneously bind fluorescein-conjugated avidin. The amine-derivatized biotinylated GM-CSF analogues retained biological activity, could specifically label cell surface receptors, and may be useful nonradioactive probes with which to study GM-CSF receptor cytochemistry and receptor modulation by flow cytometry.  相似文献   

11.
The many laboratory and diagnostic applications utilizing streptavidin as a molecular adaptor rely on its high affinity and essentially irreversible interaction with biotin. However, there are many situations where recovery of the biotinylated molecules is desirable. We have previously shown that poly(N-isopropylacrylamide) (PNIPAAm), a temperature-sensitive polymer, can reversibly block biotin association as the polymer's conformation changes at its lower critical solution temperature (LCST). Here, we have constructed a streptavidin-PNIPAAm conjugate which is able to bind biotin at room temperature or lower and release bound biotin at 37 degrees C. The conjugate can repeatedly bind and release biotin as temperature is cycled through the LCST. A genetically engineered streptavidin mutant, E116C, which has only one cysteine residue, was conjugated site specifically via the sulfhydryl groups with a PNIPAAm that has pendent sulfhydryl-reactive vinyl sulfone groups. The conjugation site is near the tryptophan 120 residue, which forms a van der Waals contact with biotin that is important in generating the large binding free energy. The temperature-induced conformational change of the polymer at position 116 may lead to structural changes in the region of tryptophan 120 that are responsible for the reversible binding between biotin and the conjugated streptavidin.  相似文献   

12.
To expand the application of the streptavidin-biotin technology for reversible affinity purification of biotinylated proteins, a novel form of monomeric streptavidin was engineered and produced using Bacillus subtilis as the expression host. By changing as little as two amino acid residues (T90 and D128) to alanine, the resulting mutant streptavidin designated DM3 was produced 100% in the monomeric form as a soluble functional protein via secretion. It remained in the monomeric state in the presence or absence of biotin. Interaction of purified monomeric streptavidin with biotin was studied by surface plasmon resonance-based BIAcore biosensor. Its on-rate is comparable to that of monomeric avidin while its off-rate is seven times lower. The dissociation constant was determined to be 1.3 x 10(-8)M. These properties make it an attractive agent for affinity purification of biotinylated proteins. An affinity matrix with immobilized DM3 mutein was prepared and applied to purify biotinylated cytochrome c from a crude extract. Biotinylated cytochrome c could be purified to homogeneity in one step and was shown to retain full biological activity. Advantages of using DM3 mutein over other traditional methods in the purification of biotinylated proteins are discussed.  相似文献   

13.
Morris PD  Raney KD 《Biochemistry》1999,38(16):5164-5171
Helicases are enzymes that use energy derived from nucleoside triphosphate hydrolysis to unwind double-stranded (ds) DNA, a process vital to virtually every phase of DNA metabolism. The helicases used in this study, gp41 and Dda, are from the bacteriophage T4, an excellent system for studying enzymes that process DNA. gp41 is the replicative helicase and has been shown to form a hexamer in the presence of ATP. In this study, protein cross-linking was performed in the presence of either linear or circular single-stranded (ss) DNA substrates to determine the topology of gp41 binding to ssDNA. Results indicate that the hexamer binds ssDNA by encircling it, in a manner similar to that of other hexameric helicases. A new assay was developed for studying enzymatic activity of gp41 and Dda on single-stranded DNA. The rate of dissociation of streptavidin from various biotinylated oligonucleotides was determined in the presence of helicase by an electrophoretic mobility shift assay. gp41 and Dda were found to significantly enhance the dissociation rate of streptavidin from biotin-labeled oligonucleotides in an ATP-dependent reaction. Helicase-catalyzed dissociation of streptavidin from the 3'-end of a biotin-labeled 62-mer oligonucleotide occurred with a first-order rate of 0.17 min-1, which is over 500-fold faster than the spontaneous dissociation rate of biotin from streptavidin. Dda activity leads to even faster displacement of streptavidin from the 3' end of the 62-mer, with a first-order rate of 7.9 s-1. This is more than a million-fold greater than the spontaneous dissociation rate. There was no enhancement of streptavidin dissociation from the 5'-biotin-labeled oligonucleotide by either helicase. The fact that each helicase was capable of dislodging streptavidin from the 3'-biotin label suggests that these enzymes are capable of imparting a force on a molecule blocking their path. The difference in displacement between the 5' and 3' ends of the oligonucleotide is also consistent with the possibility of a 5'-to-3' directional bias in translocation on ssDNA for each helicase.  相似文献   

14.
A chemokine binding assay on whole cells was developed using biotinylated synthetic CCL22 as a model ligand. CCL22 analogues were produced by a chemical route, resulting in > 97% homogeneous and defined polypeptides. First, the 5 biotinylated CCL22 analogues synthesized were captured by agarose-immobilized streptavidin, indicating that the biotin molecules introduced in positions G1, K27, K49, K61, and K66 of CCL22 were accessible for binding. Then, it was established using a migration assay that the biotinylated chemokines were at least as biologically active as the unmodified CCL22 form. Subsequently, the biotinylated chemokines were evaluated in an FACS-based whole-cell binding assay. Surprisingly, only the CCL22 analogue with the biotin in position K66 constituted a suitable staining reagent for CCR4-positive cells. Finally, binding characteristics and reproducibility of the binding assay were outlined for the CCL22 analogue with the biotin in position K66. These results exemplified that biotinylated synthetic chemokines constitute promising ligands for the development of chemokine receptor-binding assays on whole cells, provided the position of the biotin moiety introduced along the sequence is adequately chosen.  相似文献   

15.
A streptavidin mutant has been designed and produced that allows the specific, covalent immobilization of streptavidin on solid surfaces. This streptavidin mutant was constructed by fusing a six-residue sequence, containing a single cysteine, to the carboxyl terminus of streptavidin. Because this mutant has no other cysteine residues, the reactive sulfhydryl group of the cysteine residue serves as a unique immobilization site for conjugation using sulfhydryl chemistry. This streptavidin mutant was efficiently immobilized on maleimide-coated solid surfaces via its unique immobilization site. Characterization of the immobilized streptavidin mutant for the ability to bind to biotinylated macromolecules and the dissociation rates of bound biotin showed that the biotin-binding properties of this mutant were minimally affected by immobilization on solid surfaces. This streptavidin could be readily incorporated into a wide variety of solid-phase diagnostic tests and biomedical assays. This could enhance the performance of streptavidin-based solid-phase assay systems.  相似文献   

16.
The coupling between the quaternary structure, stability and function of streptavidin makes it difficult to engineer a stable, high affinity monomer for biotechnology applications. For example, the binding pocket of streptavidin tetramer is comprised of residues from multiple subunits, which cannot be replicated in a single domain protein. However, rhizavidin from Rhizobium etli was recently shown to bind biotin with high affinity as a dimer without the hydrophobic tryptophan lid donated by an adjacent subunit. In particular, the binding site of rhizavidin uses residues from a single subunit to interact with bound biotin. We therefore postulated that replacing the binding site residues of streptavidin monomer with corresponding rhizavidin residues would lead to the design of a high affinity monomer useful for biotechnology applications. Here, we report the construction and characterization of a structural monomer, mSA, which combines the streptavidin and rhizavidin sequences to achieve optimized biophysical properties. First, the biotin affinity of mSA (Kd = 2.8 nM) is the highest among nontetrameric streptavidin, allowing sensitive monovalent detection of biotinylated ligands. The monomer also has significantly higher stability (Tm = 59.8°C) and solubility than all other previously engineered monomers to ensure the molecule remains folded and functional during its application. Using fluorescence correlation spectroscopy, we show that mSA binds biotinylated targets as a monomer. We also show that the molecule can be used as a genetic tag to introduce biotin binding capability to a heterologous protein. For example, recombinantly fusing the monomer to a cell surface receptor allows direct labeling and imaging of transfected cells using biotinylated fluorophores. A stable and functional streptavidin monomer, such as mSA, should be a useful reagent for designing novel detection systems based on monovalent biotin interaction. Biotechnol. Bioeng. 2013; 110: 57–67. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
18.
Helicases are enzymes that use energy from nucleoside triphosphate hydrolysis to unwind double-stranded (ds) DNA, a process vital to virtually every phase of DNA metabolism. Helicases have been classified as either 5'-to-3' or 3'-to-5' on the basis of their ability to unwind duplex DNA adjacent to either a 5' or 3' single-stranded (ss) DNA overhang. However, there has been debate as to whether this substrate preference is indicative of unidirectional translocation on ssDNA. We developed an assay that monitors the ability of a helicase to displace streptavidin from biotinylated oligonucleotides [Morris, P. D., and Raney, K. D. (1999) Biochemistry 38, 5164-5171]. Two helicases identified as having 5'-to-3' polarity displaced streptavidin from the 3'-end of biotinylated oligonucleotides but not from the 5'-end. We performed similar experiments using the 3'-to-5' helicases from the hepatitis C virus (NS3) and SV40 virus (SV40 T antigen). NS3 and SV40 T antigen were able to displace streptavidin from a 5'-biotinylated oligonucleotide but not from a 3'-biotinylated oligonucleotide. NS3 and SV40 T antigen enhanced the spontaneous rate of dissociation of streptavidin from biotin 340-fold and 1700-fold, respectively. The ssDNA binding protein, gp32, did not enhance dissociation of streptavidin from either end of an oligonucleotide. For NS3, the rate of displacement was faster from a 5'-biotinylated 60mer than from a 5'-biotinylated 30mer. The strong directional bias in streptavidin displacement activity exhibited by each helicase is consistent with a directional bias in translocation on ssDNA. The dependence of the reaction with NS3 on the oligonucleotide length suggests that multiple NS3 monomers are necessary for optimal activity.  相似文献   

19.
[SerB24]-insulin, the second structurally abnormal mutant insulin, and [SerB25]-insulin were semisynthesized and were studied for receptor binding and biological activity. Receptor binding and biological activity determined by its ability to increase 2-deoxy-glucose uptake in rat adipocytes were 0.7-3% of native insulin for [SerB24]-insulin and 3-8% for [SerB25]-insulin. Negative cooperative effect of these analogues was also markedly decreased. Immunoreactivity of [SerB24]-insulin was decreased whereas that of [SerB25]-insulin was normal. Markedly decreased receptor binding of [SerB24]-insulin appeared to be due to substitution of hydrophobic amino acid, Phe, with a polar amino acid, Ser, at B24.  相似文献   

20.
Rybak JN  Scheurer SB  Neri D  Elia G 《Proteomics》2004,4(8):2296-2299
The interaction between streptavidin and biotin is one of the most widely used tools in chemistry and biology. However, the release of biotinylated proteins from streptavidin resins remains a major problem, due to the extraordinary stability of this complex. We present a new protocol for the quantitative elution of biotinylated proteins from streptavidin Sepharose, featuring harsh elution conditions and competition with free biotin. The usefulness of the method was demonstrated by the quantitative recovery of biotinylated proteins from organ homogenates, obtained from mice perfused with a reactive ester derivative of biotin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号