首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I. Siddiqi  M. M. Stahl    F. W. Stahl 《Genetics》1991,128(1):7-22
We have examined the chain polarity of heteroduplex DNA in unreplicated, bacteriophage lambda splice recombinants when recombination was by the RecBCD, RecBC(D-), or RecF pathway of Escherichia coli or the Red pathway of lambda. For each of these pathways, recombination is activated by the cutting of cos that accompanies chromosome packaging, and is effected by recombination enzymes acting at the right end created by that cutting. For exchanges occurring near cos, one parent makes a lesser physical and genetic contribution than does the other. For each pathway, when the phage carried standard cos, this minority contribution was predominantly on the r chain, ending 5' at the right end of lambda. When standard cos was replaced by a cloned inverted cos located centrally on the standard lambda genetic map, minority contribution was predominantly on the l chain. In each case, the polarity of the overlap was usually that formed by 3' overhangs of parental information and material. These results are discussed in the context of current models of recombination for the different pathways.  相似文献   

2.
In order to survey the distribution along the bacteriophage lambda chromosome of Rec-mediated recombination events, crosses are performed using conditions which block essentially all DNA synthesis. One parent is density-labeled and carries a genetic marker in the left terminal lambda gene (A), while the other parent is unlabeled and carries a genetic marker in the right terminal lambda gene (R). Both parents are deleted for the lambda recombination genes int and red, together with other recombination-associated genes, by virtue of either (1) a pure deletion or (2) a bio insertion-deletion. The distribution in a cesium density gradient of the resulting A+R+ recombinant phage reflects the chromosomal distribution of the recombination events which gave rise to those phage.Crosses employing either of two different pure deletion phage strains exhibit recombinational hot spot activity located near the right end of the lambda chromosome, between the cI and R genes. This hot spot activity persists when unlimited DNA synthesis is allowed. Crosses employing bio1-substituted phage strains exhibit recombinational hot spot activity located to the right of the middle of the chromosome and to the left of the cI gene. Crosses employing either bio1 or bio69-substituted phage strains indicate that the bio-associated hot spot activity occurs in the presence of DNA synthesis, but is dependent on a functional host recB gene.  相似文献   

3.
In phage lambda, progeny particles bearing unreplicated chromosomes are recombinant by action of lambda's Red system only near the right end of the chromosome. These recombinants are frequently heterozygous (heteroduplex) for markers located there. In replication-blocked crosses involving two heavy-labeled parents we find that particles in the solitary peak, containing progeny with fully conserved DNA, vary in density. Those on the heavy side of this peak are more apt to be heterozygous than are those on the light side. The data fit a model in which a double chain cut at cos, lambda's packaging origin, is followed by partial exonucleolytic degradation of lambda's r chain from the right end leftward. The exposed l chain, which thereby constitutes a 3' overhang, invades an intact, circular homologue after itself suffering some degradation. Completion of the recombinant chromosome sometimes involves DNA synthesis primed by the invading chain.  相似文献   

4.
In studying molecular mechanisms of specialised transduction, the lacI (E. coli)-Ea47 (lambda) DNA junction in transducing bacteriophage lambda plac 5 has been structurally elucidated, thus yielding the complete sequence of lambda plac 5 DNA including the lac5 substitution, a well-known segment of lambdoid vectors. The lambda plac5 DNA is shown to consist of 19368 bp (lambda left arm) + 3924 bp (lac5 substitution) + 25353 bp (lambda right arm), totally amounting to 48645 bp. The presence of the phage rho bL promoter near to the right end of the lac5 insert is shown. The lacI gene distal end in lambda plac5 proved to be much longer than it was postulated earlier, coding for 224 C-terminal amino acid residues of lac repressor. Both the recombination studied in this paper and the earlier studied abnormal prophage excision (2, 3) occur near to Chi-like structures (chi*lacI and chi*lom, respectively). On the basis of the data obtained, a key role of the E. coli RecBCD system and Chi-like sequences in the formation of deletions in bacterial cells is suggested.  相似文献   

5.
Recombination of bacteriophage lambda in recD mutants of Escherichia coli   总被引:25,自引:0,他引:25  
RecBCD enzyme is centrally important in homologous recombination in Escherichia coli and is the source of ExoV activity. Null alleles of either the recB or the recC genes, which encode the B and C subunits, respectively, manifest no recombination and none of the nuclease functions characteristic of the holoenzyme. Loss of the D subunit, by a recD mutation, likewise results in loss of ExoV activity. However, mutants lacking the D subunit are competent for homologous recombination. We report that the distribution of exchanges along the chromosome of Red-Gam-phage lambda is strikingly altered by recD null mutations in the host. When lambda DNA replication is blocked, recombination in recD mutant strains is high near lambda's right end. In contrast, recombination in isogenic recD+ strains is approximately uniform along lambda unless the lambda chromosome contains a chi sequence. Recombination in recD mutant strains is focused toward the site of action of a type II restriction enzyme acting in vivo on lambda. The distribution of exchanges in isogenic recD+ strains is scarcely altered by the restriction enzyme (unless the phage contains an otherwise silent chi). The distribution of exchanges in recD mutants is strongly affected by lambda DNA replication. The distribution of exchanges on lambda growing in rec+ cells is not influenced by DNA replication. The exchange distribution along lambda in recD mutant cells is independent of chi in a variety of conditions. Recombination in rec+ cells is chi influenced. Recombination in recD mutants depends on recC function, occurs in strains deleted for rac prophage, and is independent of recJ, which is known to be required for lambda recombination via the RecF pathway. We entertain two models for recombination in recD mutants: (i) recombination in recD mutants may proceed via double-chain break--repair, as it does in lambda's Red pathway and E. coli's RecE pathway; (ii) the RecBC enzyme, missing its D subunit, is equivalent to the wild-type, RecBCD, enzyme after that enzyme has been activated by a chi sequence.  相似文献   

6.
7.
Expansions of trinucleotide GAA•TTC tracts are associated with the human disease Friedreich''s ataxia, and long GAA•TTC tracts elevate genome instability in yeast. We show that tracts of (GAA)230•(TTC)230 stimulate mitotic crossovers in yeast about 10,000-fold relative to a “normal” DNA sequence; (GAA)n•(TTC)n tracts, however, do not significantly elevate meiotic recombination. Most of the mitotic crossovers are associated with a region of non-reciprocal transfer of information (gene conversion). The major class of recombination events stimulated by (GAA)n•(TTC)n tracts is a tract-associated double-strand break (DSB) that occurs in unreplicated chromosomes, likely in G1 of the cell cycle. These findings indicate that (GAA)n•(TTC)n tracts can be a potent source of loss of heterozygosity in yeast.  相似文献   

8.
Structure of cryptic lambda prophages   总被引:9,自引:0,他引:9  
When Escherichia coli cells lysogenic for bacteriophage lambda are induced with ultraviolet light, cells carrying cryptic lambda prophages are occasionally found among the apparently cured survivors. The lambda variant crypticogen (lambda crg) carries an insertion of the transposable element IS2, which increases the frequency of cryptic lysogens to about 50% of cured cells: 43 of these cryptic prophages have been characterized. They all contain substitutions that replace the early segment of the prophage genome (from the IS2 to near the cos site) with a duplicate copy of a large segment of the host chromosome. The right end of the substitution always results from recombination between the nin-QSR-cos region of the prophage and the homologous incomplete lambdoid prophage Qsr' at 12.5 minutes in the E. coli chromosome. The left end of the substitution is usually a crossover that recombines the IS2 element in the prophage with an E. coli IS2 at 8.5 minutes, near the lac gene, or with a second IS2 located counterclockwise from leu at 2 minutes, generating duplications of at least 200,000 bases. Five cryptic lysogens derived from cells lysogenic for a reference strain of lambda (which lacks the IS2 present in lambda crg) have been characterized. They contain substitutions whose right termini are generated by a crossover with the Qsr' prophage. The left termini of these substitutions are formed either by a crossover between the lambda exo gene and a short exo-homologous segment of Qsr' (2/5), or by a crossover between sequences to the left of attL and an unmapped distant region of the host chromosome (3/5). The large duplications carried by these cryptic lysogens are stable, unlike tandem duplications, and so may significantly influence the cell's evolutionary potential.  相似文献   

9.
Corre J  Patte J  Louarn JM 《Genetics》2000,154(1):39-48
A prophage lambda inserted by homologous recombination near dif, the chromosome dimer resolution site of Escherichia coli, is excised at a frequency that depends on its orientation with respect to dif. In wild-type cells, terminal hyper- (TH) recombination is prophage specific and undetectable by a test involving deletion of chromosomal segments between repeats identical to those used for prophage insertion. TH recombination is, however, detected in both excision and deletion assays when Deltadif, xerC, or ftsK mutations inhibit dimer resolution: lack of specialized resolution apparently results in recombinogenic lesions near dif. We also observed that the presence near dif of the prophage, in the orientation causing TH recombination, inhibits dif resolution activity. By its recombinogenic effect, this inhibition explains the enhanced prophage excision in wild-type cells. The primary effect of the prophage is probably an alteration of the dimer resolution regional control, which requires that dif is flanked by suitably oriented (polarized) stretches of DNA. Our model postulates that the prophage inserted near dif in the deleterious orientation disturbs chromosome polarization on the side of the site where it is integrated, because lambda DNA, like the chromosome, is polarized by sequence elements. Candidate sequences are oligomers that display skewed distributions on each oriC-dif chromosome arm and on lambda DNA.  相似文献   

10.
In phage lambda, cos is a recombinator in the red pathway   总被引:21,自引:0,他引:21  
Among lambda particles carrying chromosomes that have failed to replicate during a lytic cycle cross there is a high frequency of Red-mediated recombination near the right-hand end. Earlier work has shown that this recombination is dependent on cos (cohesive end site), the packaging origin of lambda. In contrast to the prediction of the break-copy model proposed earlier, we find a high recombination rate near cos even when only one of the two participating parents has a functional cos at that locus. The exchange is accompanied by loss of the stimulating cos in the recombination product, irrespective of the marker configurations: a+b+cos- rather than a+b+cos+ is produced in the cross a+b-cos- x a-b+cos+ as well as in the cross a+b-cos+ x a-b+cos-. Further analyses of these and earlier data allow the formulation of a detailed model for cos-stimulated, Red-mediated genetic exchange. In this model, cos stimulates exchange by virtue of being a double-strand cut site. The model has several features like that proposed for yeast. This role of cos in the Red pathway contrasts with the role of cos in the RecBC pathway, in which cos serves as an entry site for a recombinase that stimulates exchanges far from cos.  相似文献   

11.
Wide hybrids have been used in generating genetic maps of many plant species. In this study, genetic and physical mapping was performed on ph1b-induced recombinants of rye chromosome 2R in wheat (Triticum aestivum L.). All recombinants were single breakpoint translocations. Recombination 2RS-2BS was absent from the terminal and the pericentric regions and was distributed randomly along an intercalary segment covering approximately 65% of the arm's length. Such a distribution probably resulted from structural differences at the telomeres of 2RS and wheat 2BS arm that disrupted telomeric initiation of pairing. Recombination 2RL-2BL was confined to the terminal 25% of the arm's length. A genetic map of homoeologous recombination 2R-2B was generated using relative recombination frequencies and aligned with maps of chromosomes 2B and 2R based on homologous recombination. The alignment of the short arms showed a shift of homoeologous recombination toward the centromere. On the long arms, the distribution of homoeologous recombination was the same as that of homologous recombination in the distal halves of the maps, but the absence of multiple crossovers in homoeologous recombination eliminated the proximal half of the map. The results confirm that homoeologous recombination in wheat is based on single exchanges per arm, indicate that the distribution of these single homoeologous exchanges is similar to the distribution of the first (distal) crossovers in homologues, and suggest that successive crossovers in an arm generate specific portions of genetic maps. A difference in the distribution of recombination between the short and long arms indicates that the distal crossover localization in wheat is not dictated by a restricted distribution of DNA sequences capable of recombination but by the pattern of pairing initiation, and that can be affected by structural differences. Restriction of homoeologous recombination to single crossovers in the distal part of the genetic map complicates chromosome engineering efforts targeting genes in the proximal map regions.  相似文献   

12.
J. F. Leslie 《Genetica》1985,67(2):109-119
T(IIL; VL;IIR; VR) BLNC-1 is a compound chromosome rearrangement inNeurospora crassa that combines two reciprocal translocations:T(IIL; VL) AR30 which interchanges the left end of linkage group II with the left end of linkage group V, andT(IIR;VR) ALS154 which interchanges the right end of linkage group II with the right end of linkage group V.BLNC-1 acts as a crossover suppressor for most of both linkage groups II and V since single crossovers between the rearrangement breakpoints result in progeny with lethal unbalanced duplications and deficiencies. The integrity ofBLNC-1 following meiosis was tested in crosses of markedBLNC-1 by marked Normal sequence, with markers located at critical points on linkage groups II and V. Although recombination between distal markers in the four arms was reduced markedly, double crossovers in the long intervening regions occurred with a frequency of 21%. Of these double crossovers, most were coincidental crossovers, one in each of the long intervening regions, resulting in the resolution of the complex into its component rearrangements (16%), while a minority of the double crossovers (5%) were crossovers involving only one of the two component linkage groups, and resulted in the insertion of a segment between the breakpoints. - TheBLNC-1 balancer can be used for: (1) mapping new loci to linkage groups II and V, especially for identifying markers mapping near the tips of the linkage groups; (2) for isolating genetically intact chromosomes from natural populations or for quantitative genetic studies; and (3) for studying recombinational hot-spots which can be detected as escapes from crossover suppression. -Based on experience withBLNC-1, future two-chromosome balancers should be designed with two breakpoints near, but not at, the opposite ends of the chromosome to be balanced, and the other two breakpoints close to, but spanning, the centromere of a second chromosome. Such a construction when combined with appropriately placed selective markers should prevent breakdown of the complex, and should resemble an inversion in eliminating crossover products. Contribution no. 85-218-J from the Department of Plant Pathology, Kansas Agricultural Experiment Station, Kansas State University, Manhattan.  相似文献   

13.
Summary We have previously shown that DNA gyrase of Escherichia coli can promote recombination between heterologous DNAs in a cell-free system (Ikeda et al. 1982). In the present paper, we have studied the nucleotide sequences of several recombination junctions of -pBR322 recombinants and found that there were not more than three-basepair homologies between the parental DNAs in six combinations of the and pBR322 recombination sites. Based on this and previous results, we concluded that homology was not required for the DNA gyrase-mediated recombination. Furthermore, the structures of the recombinant DNAs we have analyzed suggest the occurrence of multiple crossovers in our in vitro system.  相似文献   

14.
S M Rosenberg 《Cell》1987,48(5):855-865
Generalized recombination in Escherichia coli is elevated near Chi sites. In vitro, RecBCD enzyme can nick Chi a few nucleotides 3' of the terminal GG of the Chi sequence (5'-GCTGGTGG). The simplest model in which this nick at Chi participates in Chi function predicts that in phage lambda, Chi-stimulated recombinants not crossed-over for flanking markers (patches) should be heteroduplex, with recombinant information on the lambda I chain. I report here that patches are heteroduplex, but that recombinant information occurs primarily on the lambda r chain. This result rules out the simplest model in which the nick at Chi promotes initiation of recombination, forces reconsideration of Chi's role in recombination, and bears on molecular models for Rec-mediated recombination.  相似文献   

15.
When one of two infecting lambda phage types in a replication-blocked cross is chi + and DNA packaging is divorced from the RecBCD-chi interaction, complementary chi-stimulated recombinants are recovered equally in mass lysates only if the chi + parent is in excess in the infecting parental mixture. Otherwise, the chi 0 recombinant is recovered in excess. This observation implies that, along with the chi 0 chromosome, two chi + parent chromosomes are involved in the formation of each chi + recombinant. The trimolecular nature of chi +-stimulated recombination is manifest in recombination between lambda and a plasmid. When lambda recombines with a plasmid via the RecBCD pathway, the resulting chromosome has an enhanced probability of undergoing lambda x lambda recombination in the interval into which the plasmid was incorporated. These two observations support a model in which DNA is degraded by Exo V from cos, the sequence that determines the end of packaged lambda DNA and acts as point of entry for RecBCD enzyme, to chi, the DNA sequence that stimulates the RecBCD enzyme to effect recombination. The model supposes that chi acts by ejecting the RecD subunit from the RecBCD enzyme with two consequences. (1) ExoV activity is blocked leaving a highly recombinagenic, frayed duplex end near chi, and (2) as the enzyme stripped of the RecD subunit travels beyond chi it is competent to catalyze reciprocal recombination.  相似文献   

16.
During analysis of 148 unselected Neurospora crassa octads, an above average rate of crossing over was detected within a 360-base region near the 3′ end of his-3, suggesting a hotspot for crossing over about 1.8 kb away from the recombination initiation site within cog. Homozygous deletion of the 360-base region increases exchanges in his-3 and on the far side of his-3 from cog, with the heterozygote showing an intermediate increase. We conclude that recombination events initiated at cog terminate within the 360-base sequence more often than in other sections of the coghis-3 interval and, since some of these terminations will be resolved as crossovers, a cluster of crossovers at this location is the outcome. Removal of this termination site increases the chance that an event will reach his-3, resulting in recombination within the gene, or extend past it to yield a crossover on the other side of his-3. The deleted sequence has substantial predicted secondary structure, including a complex predicted stem-loop, suggesting that DNA secondary structure may be responsible for the termination.  相似文献   

17.
Genetic recombination of Xenopus laevis 5 S DNA in bacteria   总被引:2,自引:0,他引:2  
The behavior in genetic recombination of Xenopus laevis 5 S DNA has been examined, with particular emphasis on the role of 15-base-pair tandem repeats in the A + T-rich spacer. Fragments of 5 S DNA were introduced into Escherichia coli cells as inserts in the recombination vectors, lambda rva and lambda rvb. Intermolecular recombinants were selected in which, because of properties of the phage vectors, the crossover event must have occurred within the 5 S DNA inserts. Inserts from individual recombinants have been characterized in detail. The effects of varying the number (n) of 15-base-pair repeats and the recombination capabilities of the phage and host have been investigated. In these crosses, unequal crossovers can occur, yielding inserts different in size from the parental inserts. When the number of 15-mers is large (n = 12 or 20), most of the unequal crossovers have occurred within the 15-mers, resulting in an altered n value, although other homologies within the 5 S DNA sequence can also support unequal events. Increasing n in the parental inserts modestly increases the overall frequency of recombination and the percentage of altered inserts. We conclude that, in a bacterial setting, the 15-base-pair repeats stimulate recombination only slightly by allowing alternative registers for heteroduplex formation. The degree of stimulation observed is less than predicted by one simple model.  相似文献   

18.
Meiotic Recombination on Artificial Chromosomes in Yeast   总被引:5,自引:0,他引:5       下载免费PDF全文
We have examined the meiotic recombination characteristics of artificial chromosomes in Saccharomyces cerevisiae. Our experiments were carried out using minichromosome derivatives of yeast chromosome III and yeast artificial chromosomes composed primarily of bacteriophage lambda DNA. Tetrad analysis revealed that the artificial chromosomes exhibit very low levels of meiotic recombination. However, when a 12.5-kbp fragment from yeast chromosome VIII was inserted into the right arm of the artificial chromosome, recombination within that arm mimicked the recombination characteristics of the fragment in its natural context including the ability of crossovers to ensure meiotic disjunction. Both crossing over and gene conversion (within the ARG4 gene contained within the fragment) were measured in the experiments. Similarly, a 55-kbp region from chromosome III carried on a minichromosome showed crossover behavior indistinguishable from that seen when it is carried on chromosome III. We discuss the notion that, in yeast, meiotic recombination behavior is determined locally by small chromosomal regions that function free of the influence of the chromosome as a whole.  相似文献   

19.
Summary The lambda Red recombination system works poorly among unreplicated gam + lambda chromosomes in recA - cells compared to recA + cells. Recombination is not enhanced in recA - recB-cells. Thus, the inability of Red to promote recombination in recA - replication-blocked cross is not due to the hypothetical destruction of recombination intermediates by the recB nuclease. This conclusion strengthens previous proposals that the products of the red genes can operate upon recombinational intermediates which require recA activity for their formation.  相似文献   

20.
Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号