首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we provide the first report of protection against a vaginal challenge with a highly virulent simian immunodeficiency virus (SIV) by using a vaccine vector. New poliovirus vectors based on Sabin 1 and 2 vaccine strain viruses were constructed, and these vectors were used to generate a series of new viruses containing SIV gag, pol, env, nef, and tat in overlapping fragments. Two cocktails of 20 transgenic polioviruses (SabRV1-SIV and SabRV2-SIV) were inoculated into seven cynomolgus macaques. All monkeys produced substantial anti-SIV serum and mucosal antibody responses. SIV-specific cytotoxic T-lymphocyte responses were detected in three of seven monkeys after vaccination. All 7 vaccinated macaques, as well as 12 control macaques, were challenged vaginally with pathogenic SIVmac251. Strikingly, four of the seven vaccinated animals exhibited substantial protection against the vaginal SIV challenge. All 12 control monkeys became SIV positive. In two of the seven SabRV-SIV-vaccinated monkeys we found no virological evidence of infection following challenge, indicating that these two monkeys were completely protected. Two additional SabRV-SIV-vaccinated monkeys exhibited a pronounced reduction in postacute viremia to <10(3) copies/ml, suggesting that the vaccine elicited an effective cellular immune response. Three of six control animals developed clinical AIDS by 48 weeks postchallenge. In contrast, all seven vaccinated monkeys remained healthy as judged by all clinical parameters. These results demonstrate the efficacy of SabRV as a potential human vaccine vector, and they show that the use of a vaccine vector cocktail expressing an array of defined antigenic sequences can be an effective vaccination strategy in an outbred population.  相似文献   

2.
We examined the ability of a live, attenuated deletion mutant of simian immunodeficiency virus (SIV), SIVmac239Delta3, which is missing nef and vpr genes, to protect against challenge by heterologous strains SHIV89.6p and SIVsmE660. SHIV89.6p is a pathogenic, recombinant SIV in which the envelope gene has been replaced by a human immunodeficiency virus type 1 envelope gene; other structural genes of SHIV89.6p are derived from SIVmac239. SIVsmE660 is an uncloned, pathogenic, independent isolate from the same primate lentivirus subgrouping as SIVmac but with natural sequence variation in all structural genes. The challenge with SHIV89.6p was performed by the intravenous route 37 months after the time of vaccination. By the criteria of CD4(+) cell counts and disease, strong protection against the SHIV89.6p challenge was observed in four of four vaccinated monkeys despite the complete mismatch of env sequences. However, SHIV89.6p infection was established in all four previously vaccinated monkeys and three of the four developed fluctuating viral loads between 300 and 10,000 RNA copy equivalents per ml of plasma 30 to 72 weeks postchallenge. When other vaccinated monkeys were challenged with SIVsmE660 at 28 months after the time of vaccination, SIV loads were lower than those observed in unvaccinated controls but the level of protection was less than what was observed against SHIV89.6p in these experiments and considerably less than the level of protection against SIVmac251 observed in previous experiments. These results demonstrate a variable level of vaccine protection by live, attenuated SIVmac239Delta3 against heterologous virus challenge and suggest that even live, attenuated vaccine approaches for AIDS will face significant hurdles in providing protection against the natural variation present in field strains of virus. The results further suggest that factors other than anti-Env immune responses can be principally responsible for the vaccine protection by live, attenuated SIV.  相似文献   

3.
《Journal of virology》2009,83(13):6508-6521
All human immunodeficiency virus (HIV) vaccine efficacy trials to date have ended in failure. Structural features of the Env glycoprotein and its enormous variability have frustrated efforts to induce broadly reactive neutralizing antibodies. To explore the extent to which vaccine-induced cellular immune responses, in the absence of neutralizing antibodies, can control replication of a heterologous, mucosal viral challenge, we vaccinated eight macaques with a DNA/Ad5 regimen expressing all of the proteins of SIVmac239 except Env. Vaccinees mounted high-frequency T-cell responses against 11 to 34 epitopes. We challenged the vaccinees and eight naïve animals with the heterologous biological isolate SIVsmE660, using a regimen intended to mimic typical HIV exposures resulting in infection. Viral loads in the vaccinees were significantly less at both the peak (1.9-log reduction; P < 0.03) and at the set point (2.6-log reduction; P < 0.006) than those in control naïve animals. Five of eight vaccinated macaques controlled acute peak viral replication to less than 80,000 viral RNA (vRNA) copy eq/ml and to less than 100 vRNA copy eq/ml in the chronic phase. Our results demonstrate that broad vaccine-induced cellular immune responses can effectively control replication of a pathogenic, heterologous AIDS virus, suggesting that T-cell-based vaccines may have greater potential than previously appreciated.It has been impossible thus far for vaccines to engender broadly reactive neutralizing antibodies against human immunodeficiency virus (HIV) (12, 54). Investigators have therefore focused their attention on T-cell-based vaccines (9, 18, 26, 30, 34, 39, 48, 55). Previous preclinical studies in nonhuman primates have shown that vaccine-induced T-cell responses can partially control replication of homologous challenge viruses in the chronic phase (34, 56). Unfortunately, however, simian immunodeficiency virus (SIV) loads exceeded 1 million copies in almost every vaccinated animal during the acute phase. Given the high levels of viral replication observed in these vaccinated macaques, it is possible that such T-cell-based vaccines might not be able to reduce transmission during the acute phase of infection in humans. These high levels of replication during the acute phase likely resulted in the generation of diverse viral quasispecies, providing the substrate for immune selection and eventual escape. Furthermore, in these studies, vaccinated animals were challenged with viruses that were similar to the SIV sequences in the vaccine constructs. Given the diversity of HIV, human vaccinees will never be exposed to viruses with a comparable level of sequence similarity to the vaccine constructs.An HIV-1 vaccine that induced T-cell responses exclusively has recently failed to show efficacy against the incidence of HIV infection and viremia in clinical testing. The STEP trial of a recombinant adenovirus 5 (Ad5)-vectored vaccine designed to induce HIV-specific T-cell responses in humans was widely seen as an important test of the T-cell vaccine concept (http://www.hvtn.org/media/pr/step111307.html) (11, 42). The lack of vaccine efficacy in the STEP trial has led some to conclude that T-cell-based vaccines may not be a viable approach to solving the AIDS epidemic (6, 49, 59). However, STEP trial vaccinees that became infected recognized a median of only five epitopes, mostly in the conserved proteins Gag and Pol. Given the sequence diversity of HIV (19), several of these vaccine-elicited T-cell responses may not have recognized epitopes in the infecting virus and, therefore, not constituted an adequate test of the T-cell vaccine concept.We therefore sought to test whether high-frequency vaccine-induced T-cell responses against multiple T-cell epitopes in one of the simian AIDS viruses, SIVmac239, could effectively impact viral replication after a physiologically relevant heterologous mucosal challenge with SIVsmE660. The majority of virus challenges in macaques have been carried out with high doses of homologous viruses. We used a repeated low-dose mucosal challenge with a heterologous SIV strain. We also used a challenge dose intended to mimic HIV mucosal exposures that lead to infection. Here we show that vaccine-induced T-cell responses can reduce heterologous virus replication during both the acute and chronic phases after a relevant viral challenge.  相似文献   

4.
The prophylactic efficacies of several multivalent replication-incompetent adenovirus serotype 5 (Ad5) vaccines were examined in rhesus macaques using an intrarectal high-dose simian immunodeficiency virus SIVmac239 challenge model. Cohorts of Mamu-A*01+/B*17 Indian rhesus macaques were immunized with one of several combinations of Ad5 vectors expressing Gag, Pol, Nef, and Env gp140; for comparison, a Mamu-A*01+ cohort was immunized using the Ad5 vector alone. There was no sign of immunological interference between antigens in the immunized animals. In general, expansion of the antigen breadth resulted in more favorable virological outcomes. In particular, the order of efficacy trended as follows: Gag/Pol/Nef/Env ≈ Gag/Pol > Gag ≈ Gag/Pol/Nef > Nef. However, the precision in ranking the vaccines based on the study results may be limited by the cohort size, and as such, may warrant additional testing. The implications of these results in light of the recent discouraging results of the phase IIb study of the trivalent Ad5 HIV-1 vaccine are discussed.There is a significant body of evidence suggesting that anti-human immunodeficiency virus type 1 (HIV-1) cellular immunity plays a prominent role in controlling viral infection and progression to disease (15, 32, 33). This stimulated substantial research into vaccines capable of eliciting this type of immunity, and several vaccine candidates (5, 6, 8-13, 22, 29-31, 35) have reached various stages of clinical development. However, the viability of this general vaccine approach was recently undermined by the findings in a phase II trial (called the Step Study) that immunization with a replication-defective adenovirus serotype 5 (Ad5) vaccine expressing HIV-1 clade B Gag, Pol, and Nef was not effective in either reducing acquisition rates and/or lowering set point viral loads in infected subjects (2, 25). In fact, more infections were originally observed in the vaccine group than in the placebo arm (2).The outcomes of the Step Study led to several important questions. Do the results argue against the concept of a HIV-1 vaccine based on the induction of specific T lymphocytes? On the other hand, if cytotoxic T-lymphocyte (CTL) responses are intrinsically valuable for an effective vaccine, what are the shortcomings in the vaccine-induced immunity that contributed to the lack of efficacy in the Step trial? What is the predictive value of preclinical challenge studies for selection of future clinical vaccine candidates? The potential role of CTL responses in an effective vaccine is also challenged by the recently reported phase III study results for the ALVAC vCP1521 prime-AIDSVAX B/E boost vaccine. The efficacy of this vaccine in a low-risk population was recently shown to trend toward prevention of HIV acquisition and not reduction of viral loads (30). Unlike the Step study vaccine, the ALVAC/AIDSVAX vaccine approach utilized a heterologous prime-boost regimen and contained an Env component that may have contributed to the type of outcome observed here. A better understanding of the immune correlates for this vaccine may be possible following further experimental investigations of the samples collected from the phase III study and earlier-stage trials.Despite the proven efficacy of Ad5 vaccination against simian-human immunodeficiency virus 89.6P (SHIV89.6P) challenge, subsequent primate studies provided equivocal results. In a homologous prime-boost regimen, Ad5 vaccine expressing Gag was ineffective against a high-dose simian immunodeficiency virus SIVmac239 challenge (4, 24). The same study compared this regimen with the DNA prime/Ad5 boost regimen that was found to be efficacious in Mamu-A*01+ monkeys; the level of protection in the overall study was correlated with the breadth of epitopes recognized and the frequency of induced antigen-specific CTLs. In this study, we examine whether the expansion of antigens to include Pol, Nef, and Env gp140 using the Ad5/Ad5 regimen would improve the outcome against the same high-dose SIV challenge. Of particular interest is the combination of Gag, Pol, and Nef, for which the homologous human vaccine was utilized in the Step study (29).  相似文献   

5.
Neutralizing antibodies may have critical importance in immunity against human immunodeficiency virus type 1 (HIV-1) infection. However, the amount of protective antibody needed at mucosal surfaces has not been fully established. Here, we evaluated systemic and mucosal pharmacokinetics (PK) and pharmacodynamics (PD) of 2F5 IgG and 2F5 Fab fragments with respect to protection against vaginal challenge with simian-human immunodeficiency virus-BaL in macaques. Antibody assessment demonstrated that 2F5 IgG was more potent than polymeric forms (IgM and IgA) across a range of cellular and tissue models. Vaginal challenge studies demonstrated a dose-dependent protection for 2F5 IgG and no protection with 2F5 Fab despite higher vaginal Fab levels at the time of challenge. Animals receiving 50 or 25 mg/kg of body weight 2F5 IgG were completely protected, while 3/5 animals receiving 5 mg/kg were protected. In the control animals, infection was established by a minimum of 1 to 4 transmitted/founder (T/F) variants, similar to natural human infection by this mucosal route; in the two infected animals that had received 5 mg 2F5 IgG, infection was established by a single T/F variant. Serum levels of 2F5 IgG were more predictive of sterilizing protection than measured vaginal levels. Fc-mediated antiviral activity did not appear to influence infection of primary target cells in cervical explants. However, PK studies highlighted the importance of the Fc portion in tissue biodistribution. Data presented in this study may be important in modeling serum levels of neutralizing antibodies that need to be achieved by either vaccination or passive infusion to prevent mucosal acquisition of HIV-1 infection in humans.  相似文献   

6.
As an alternative to targeting human immunodeficiency virus (HIV), we have developed vaccines targeting CCR5, a self-protein critically involved in HIV replication and pathogenesis. By displaying peptides derived from CCR5 at high density on the surface of virus-like particles, we can efficiently induce high-titer IgG antibodies against this self-molecule. Here, we investigated whether prophylactic immunization of rhesus macaques with a particle-based vaccine targeting two regions of macaque CCR5 could prevent or suppress vaginal infection with highly virulent SIVmac251. Twelve macaques were vaccinated with a bacteriophage Qß-based vaccine targeting macaque CCR5 (Qß.CCR5). Six control animals were immunized with the Qß platform alone. All animals immunized with Qß.CCR5 developed high-titer anti-CCR5 antibody responses. Macaques were vaginally challenged with a high dose of SIVmac251. The mean peak viral RNA levels in the vaccinated groups were 30-fold lower than in the control group (106.8 versus 108.3 copies/ml plasma). Three of the 12 vaccinated macaques dramatically suppressed simian immunodeficiency virus (SIV) replication: peak viral loads were low (103 to 104 RNA copies/ml), and SIV RNA became undetectable from 6 weeks onward. No viral RNA or DNA could be detected in colon and lymph node biopsy specimens collected 13 months after challenge. In vivo depletion of CD8+ cells failed to induce a viral rebound. However, once anti-CCR5 antibody responses had waned, the 3 animals became infected after intravaginal and/or intravenous rechallenge. In conclusion, vaccination against CCR5 was associated with dramatic suppression of virus replication in a subset (25%) of macaques. These data support further research of vaccination against CCR5 to combat HIV infection.  相似文献   

7.
Characterization of virus-specific immune responses to human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) is important to understanding the early virus-host interactions that may determine the course of virus infection and disease. Using a comprehensive panel of serological assays, we have previously demonstrated a complex and lengthy maturation of virus-specific antibody responses elicited by attenuated strains of SIV that was closely associated with the development of protective immunity. In the present study, we expand these analyses to address several questions regarding the nature of the virus-specific antibody responses to pathogenic SIV, SIV/HIV-1 (SHIV), and HIV-1 infections. The results demonstrate for the first time a common theme of antibody maturation to SIV, SHIV, and HIV-1 infections that is characterized by ongoing changes in antibody titer, conformational dependence, and antibody avidity during the first 6 to 10 months following virus infection. We demonstrate that this gradual evolution of virus-specific antibody responses is independent of the levels of virus replication and the pathogenicity of the infection viral strain. While the serological assays used in these studies were useful in discriminating between protective and nonprotective antibody responses during evaluation of vaccine efficacy with attenuated SIV, these same assays do not distinguish the clinical outcome of infection in pathogenic SIV, SHIV, or HIV-1 infections. These results likely reflect differences in the immune mechanisms involved in mediating protection from virus challenge compared to those that control an established viral infection, and they suggest that additional characteristics of both humoral and cellular responses evolve during this early immune maturation.  相似文献   

8.
We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.  相似文献   

9.
Immunization with attenuated lentiviruses is the only reliable method of protecting rhesus macaques (RM) from vaginal challenge with pathogenic simian immunodeficiency virus (SIV). CD8(+) lymphocyte depletion prior to SIVmac239 vaginal challenge demonstrated that a modest, Gag-specific CD8(+) T cell response induced by immunization with simian-human immunodeficiency virus 89.6 (SHIV89.6) protects RM. Although CD8(+) T cells are required for protection, there is no anamnestic expansion of SIV-specific CD8(+) T cells in any tissues except the vagina after challenge. Further, SHIV immunization increased the number of viral target cells in the vagina and cervix, suggesting that the ratio of target cells to antiviral CD8(+) T cells was not a determinant of protection. We hypothesized that persistent replication of the attenuated vaccine virus modulates inflammatory responses and limits T cell activation and expansion by inducing immunoregulatory T cell populations. We found that attenuated SHIV infection decreased the number of circulating plasmacytoid dendritic cells, suppressed T cell activation, decreased mRNA levels of proinflammatory mediators, and increased mRNA levels of immunoregulatory molecules. Three days after SIV vaginal challenge, SHIV-immunized RM had significantly more T regulatory cells in the vagina than the unimmunized RM. By day 14 postchallenge, immune activation and inflammation were characteristic of unimmunized RM but were minimal in SHIV-immunized RM. Thus, a modest vaccine-induced CD8(+) T cell response in the context of immunoregulatory suppression of T cell activation may protect against vaginal HIV transmission.  相似文献   

10.
We have previously described a novel flavivirus vaccine technology based on a single-cycle, capsid (C) gene-deleted flavivirus called RepliVAX. RepliVAX can be propagated in cells that express high levels of C but undergoes only a single cycle of infection in vaccinated hosts. Here we report that we have adapted our RepliVAX technology to produce a dengue vaccine by replacing the prM/E genes of RepliVAX WN (a West Nile virus [WNV] RepliVAX) with the same genes of dengue virus type 2 (DENV2). Our first RepliVAX construct for dengue virus (RepliVAX D2) replicated poorly in WNV C-expressing cells. However, addition of mutations in prM and E that were selected during blind passage of a RepliVAX D2 derivative was used to produce a second-generation RepliVAX D2 (designated D2.2) that displayed acceptable growth in WNV C-expressing cells. RepliVAX D2.2 grew better in DENV2 C-expressing cells than WNV C-expressing cells, but after several passages in DENV2 C-expressing cells it acquired further mutations that permitted efficient growth in WNV C-expressing cells. We tested the potency and efficacy of RepliVAX D2.2 in a well-described immunodeficient mouse model for dengue (strain AG129; lacking the receptors for both type I and type II interferons). These mice produced dose-dependent DENV2-neutralizing antibody responses when vaccinated with RepliVAX D2.2. When challenged with 240 50% lethal doses of DENV2, mice given a single inoculation of RepliVAX D2.2 survived significantly longer than sham-vaccinated animals, although some of these severely immunocompromised mice eventually died from the challenge. Taken together these studies indicate that the RepliVAX technology shows promise for use in the development of vaccines that can be used to prevent dengue.  相似文献   

11.
12.
CD4-immunoglobulin G2 (IgG2) is a fusion protein comprising human IgG2 in which the Fv portions of both heavy and light chains have been replaced by the V1 and V2 domains of human CD4. Previous studies found that CD4-IgG2 potently neutralizes a broad range of primary human immunodeficiency virus type 1 (HIV-1) isolates in vitro and ex vivo. The current report demonstrates that CD4-IgG2 protects against infection by primary isolates of HIV-1 in vivo, using the hu-PBL-SCID mouse model. Passive administration of 10 mg of CD4-IgG2 per kg of body weight protected all animals against subsequent challenge with 10 mouse infectious doses of the laboratory-adapted T-cell-tropic isolate HIV-1LAI, while 50 mg of CD4-IgG2 per kg protected four of five mice against the primary isolates HIV-1JR-CSF and HIV-1AD6. In contrast, a polyclonal HIV-1 Ig fraction exhibited partial protection against HIV-1LAI at 150 mg/kg but no significant protection against the primary HIV-1 isolates. The results demonstrate that CD4-IgG2 effectively neutralizes primary HIV-1 isolates in vivo and can prevent the initiation of infection by these viruses.  相似文献   

13.
Vaccine protection from infection and/or disease induced by highly pathogenic simian immunodeficiency virus (SIV) strain SIVmac251 in the rhesus macaque model is a challenging task. Thus far, the only approach that has been reported to protect a fraction of macaques from infection following intravenous challenge with SIVmac251 was the use of a live attenuated SIV vaccine. In the present study, the gag, pol, and env genes of SIVK6W were expressed in the NYVAC vector, a genetically engineered derivative of the vaccinia virus Copenhagen strain that displays a highly attenuated phenotype in humans. In addition, the genes for the α and β chains of interleukin-12 (IL-12), as well as the IL-2 gene, were expressed in separate NYVAC vectors and inoculated intramuscularly, in conjunction with or separate from the NYVAC-SIV vaccine, in 40 macaques. The overall cytotoxic T-lymphocyte (CTL) response was greater, at the expense of proliferative and humoral responses, in animals immunized with NYVAC-SIV and NYVAC–IL-12 than in animals immunized with the NYVAC-SIV vaccine alone. At the end of the immunization regimen, half of the animals were challenged with SIVmac251 by the intravenous route and the other half were exposed to SIVmac251 intrarectally. Significantly, five of the eleven vaccinees exposed mucosally to SIVmac251 showed a transient peak of viremia 1 week after viral challenge and subsequently appeared to clear viral infection. In contrast, all 12 animals inoculated intravenously became infected, but 5 to 6 months after viral challenge, 4 animals were able to control viral expression and appeared to progress to disease more slowly than control animals. Protection did not appear to be associated with any of the measured immunological parameters. Further modulation of immune responses by coadministration of NYVAC-cytokine recombinants did not appear to influence the outcome of viral challenge. The fact that the NYVAC-SIV recombinant vaccine appears to be effective per se in the animal model that best mirrors human AIDS supports the idea that the development of a highly attenuated poxvirus-based vaccine candidate can be a valuable approach to significantly decrease the spread of human immunodeficiency virus (HIV) infection by the mucosal route.  相似文献   

14.
The fatal disease induced by SIVsmmPBj4 clinically resembles endotoxic shock, with the development of severe gastrointestinal disease. While the exact mechanism of disease induction has not been fully elucidated, aspects of virus biology suggest that immune activation contributes to pathogenesis. These biological characteristics include induction of peripheral blood mononuclear cell (PBMC) proliferation, upregulation of activation markers and Fas ligand expression, and increased levels of apoptosis. To investigate the role of immune activation and viral replication on disease induction, animals infected with SIVsmmPBj14 were treated with one of two drugs: FK-506, a potent immunosuppressive agent, or PMPA, a potent antiretroviral agent. While PBMC proliferation was blocked in vitro with FK-506, pig-tailed macaques treated preinoculation with FK-506 were not protected from acutely lethal disease. However, these animals did show some evidence of modulation of immune activation, including reduced levels of CD25 antigen and FasL expression, as well as lower tissue viral loads. In contrast, macaques treated postinoculation with PMPA were completely protected from the development of acutely lethal disease. Treatment with PMPA beginning as late as 5 days postinfection was able to prevent the PBj syndrome. Plasma and cellular viral loads in PMPA-treated animals were significantly lower than those in untreated controls. Although PMPA-treated animals showed acute lymphopenia due to SIVsmmPBj14 infection, cell subset levels subsequently recovered and returned to normal. Based upon subsequent CD4(+) cell counts, the results suggest that very early treatment following retroviral infection can have a significant effect on modifying the subsequent course of disease. These results also suggest that viral replication is an important factor involved in PBJ-induced disease. These studies reinforce the idea that the SIVsmmPBj model system is useful for therapy and vaccine testing.  相似文献   

15.
Here, we show that a CD40L-adjuvanted DNA/modified vaccinia virus Ankara (MVA) simian immunodeficiency virus (SIV) vaccine enhances protection against a pathogenic neutralization-resistant mucosal SIV infection, improves long-term viral control, and prevents AIDS. Analyses of serum IgG antibodies to linear peptides of SIV Env revealed a strong response to V2, with targeting of fewer epitopes in the immunodominant region of gp41 (gp41-ID) and the V1 region as a correlate for enhanced protection. Greater expansion of antiviral CD8 T cells in the gut correlated with long-term viral control.  相似文献   

16.
17.
Nonpathogenic simian immunodeficiency virus SIVagm infection of African green monkeys (AGMs) is characterized by the absence of a robust antibody response against Gag p27. To determine if this is accompanied by a selective loss of T-cell responses to Gag p27, we studied CD4+ and CD8+ T-cell responses against Gag p27 and other SIVagm antigens in the peripheral blood and lymph nodes of acutely and chronically infected AGMs. Our data show that AGMs can mount a T-cell response against Gag p27, indicating that the absence of anti-p27 antibodies is not due to the absence of Gag p27-specific T cells.Simian immunodeficiency virus (SIV) infection in African green monkeys (AGM) is nonpathogenic, even though it is characterized by plasma viral load (PVL) levels similar to those found during acute and chronic pathogenic infection of humans with human immunodeficiency virus type 1 and macaques with SIVmac (14). This feature is shared with other African nonhuman primates, such as sooty mangabeys (SM) and mandrills (19, 20). SIV-infected AGMs also display high viral loads in the gastrointestinal mucosa (11), a transient decline of circulating CD4+ T cells during acute infection (13), and longer-lasting CD4+ T-cell depletion in the intestinal lamina propia (10). Concomitant with the peak viral load during acute infection, SIVagm-infected AGMs display transient increases of CD4+ and CD8+ T cells expressing activation, and proliferation markers, such as MHC-II DR and Ki-67 (4, 13), and anti-SIVagm antibodies (Ab) are induced with kinetics similar to those found in SIVmac infection (5). Interestingly, however, the Ab response against Gag p27 is weak, if present at all (1, 2, 12, 15, 17, 18). This observation is surprising since, in the context of human immunodeficiency virus type 1 and SIVmac infections, Ab responses to Gag p27 are usually quite strong. Weak or low reactivity to Gag p27 has also been observed in some other natural SIV infections (7, 8, 20) but not in all of them (21). We wondered whether such a selective lack of Ab reactivity in the SIV-infected AGM might be related to a lack of Gag p27-specific T cells. With this hypothesis in mind, we first confirmed and extended the studies of humoral responses against Gag p27 by characterizing the antigen-specific immunoglobulin G (IgG) responses and mid-point titers against total SIVagm antigens (SIVagm virions) and recombinant Gag p27 (rP27; SIVagm) in naturally and experimentally SIVagm-infected AGMs. Second, we searched for the presence of Gag p27-specific T-cell responses in SIVagm infection by analyzing the CD4+ and CD8+ T-cell responses specific for Gag p27 and other SIVagm proteins in blood and lymph nodes (LNs) of acutely and chronically infected animals.Humoral responses against SIV were analyzed in 50 wild-born AGMs (Chlorocebus sabaeus) and 17 rhesus macaques (RMs). The animals were housed at the Institut Pasteur in Dakar, Senegal, and the California National Primate Research Center, Davis, CA, respectively, according to institutional and national guidelines. RMs were either noninfected (n = 5) or intravenously infected with SIVmac251 (n = 12). AGMs were noninfected (n = 23), naturally infected (n = 17), or intravenously infected with wild-type SIVagm.sab92018 (n = 10) (5, 9). IgG titers against SIVagm.sab92018 virions or rP27 were determined by an enzyme-linked immunosorbent assay (ELISA) using monkey anti-IgG as secondary Ab (Fig. 1A and B). The virions had been purified by ultracentrifugation on an iodixanol cushion from cell-free supernatants of SIVagm.sab92018-infected SupT1 cells. The His-tagged rP27 was constructed using DNA from gut cells of an SIVagm.sab92018-infected AGM 96011 (11). A Gag p27 PCR product was subcloned into pET-14b, and the recombinant protein was produced in Escherichia coli BL21(DE3)(pLysS) and purified on nitrilotriacetic acid columns. SIV-infected macaques showed high IgG titers cross-reacting with both SIVagm virions (Fig. 1A and B, left panels) and rP27 (Fig. 1A and B, right panels). In contrast, only 2 out of 27 SIV-infected AGMs showed detectable IgG responses against rP27 (Fig. 1A and B, right panels), while 21 out of 27 displayed significant responses against SIVagm virions (Fig. 1A and B, left panels). Two AGMs out of 23 from the negative control group showed weak responses at the limit of detection against SIVagm and two against rP27, suggesting a natural response against SIVagm proteins, cross-reactivity with unknown pathogens, maternal Ab, or recent SIV infection. Of note, the titers against whole SIV in the infected monkeys were higher in macaques than in AGMs, which may be due to a lack of anti-p27 Ab in most AGMs.Open in a separate windowFIG. 1.Cross-sectional analysis of IgG Ab responses against SIVagm or Gag p27 in SIV-infected AGMs and RMs. (A and B) Cross-sectional analysis by ELISA. IgG Ab against SIVagm.sab92018 virions or recombinant p27-Gag antigens were determined in SIV-negative (Rh SIV−) and chronically SIVmac251-infected (Rh SIV+) RMs and in SIV-negative and chronically SIVagm-infected AGMs that were either naturally (AGM Nat SIV+) or experimentally (AGM Exp SIV+) infected with SIVagm.sab92018. Ab titers were calculated for each animal by limited dilution of plasma on coated ELISA plates with 5 μg/ml of (p27 equivalent) virions (left) or 1 μg/ml of the monomeric recombinant protein (rP27) (right). IgG detection by ELISA displayed a high background for rP27, especially at the highest plasma concentration (e.g., 1/100 and 1/400 plasma dilution) in SIV-negative RMs and AGMs. To discriminate between positive responses and background, calculated dose-response curves were compared to theoretical sigmoid-dose response curves corresponding to the 95% confidence interval of SIV-negative animals. By convention, responses were considered background when sigmoid dose-response curves were graphically within the 95% confidence interval of SIV-negative animals and when the calculated negative log 50% effective concentration (EC50) was lower than the top theoretical sigmoid dose-response curve from SIV-negative animals (corresponding to a threshold of negative log EC50 of 2.8). (A) Results (optical density at 450 nm [OD450]) are represented for both virions (left) and rP27 (right) over plasma dilution (log10) on a per animal basis (data points) and for each group (lines). Lines represent the sigmoid dose-response curves for each group (Prism 4; Graphpad). (B) Mid-point IgG titers were determined for each animal from individual sigmoid dose-response curves, and presented as the log10 value from the reciprocal of the effective concentration that corresponds to 50% response between minimum and maximum OD450 (negative log EC50). Horizontal bars represent the median mid-point titer per each group. Mann-Whitney nonparametric tests were applied for statistical analysis (n.s., nonsignificant, with P values of >0.1) (C) Cross-sectional analysis of Ab against SIVagm proteins by Western blot analysis using denatured SIVagm.sab92018. For the positive controls on the left, we used sera from an SIVmac251-infected macaque and a SIVagm.sab92018-infected AGM. Development times and reagents were identical for all Western blots. Mo, months of infection; y, years of infection; C−, negative control; C+, positive control.The study of IgGs by Western blot analysis using denatured SIVagm.sab92018 virions showed no or weak anti-Gag responses in SIV-infected AGMs, yet the anti-Env responses were often strong (Fig. (Fig.1C).1C). In contrast, SIV-infected macaques showed a dominant IgG cross-reactive response against the SIVagm Gag p27 protein. Even if responses in AGMs were detected more frequently with the Western blot analyses than with the ELISAs, these responses were different in magnitude and considerably weaker than those in macaques.To compare B- and T-cell responses over time, five simian T-cell leukemia virus-seronegative AGMs were infected with SIVagm.sab92018, and the animals were followed longitudinally during the acute and postacute phases of infection until day 90 postinfection (p.i.). Sequential blood samples were collected and biopsies of auxiliary and inguinal LNs were performed on day −5 and at three times p.i. (days 14, 43, and 62). PVL was measured by real-time PCR (5). Since we searched for Gag p27-specific responses, we also quantified Gag p27 antigen in the plasma (SIV p27 antigen assay; Coulter, Miami, FL). Viral RNA and p27 antigenemia peaks were observed between days 7 and 14 p.i. (Fig. 2A and B, respectively). The Gag p27 levels were variable among the animals but in a range similar to those reported previously in AGMs and macaques (3, 5). As has also been observed in SIVmac infection (except for rapid progressors), plasma Gag p27 levels fell below the detection level in the postacute phase (i.e., after day 28 p.i.) (Fig. (Fig.2B2B and data not shown). There were significant increases in circulating CD8+ DR+ T cells at days 7 and 14 p.i. and in CD8+ Ki-67+ T cells at days 14 and 28 p.i. (Fig. 2C and D, left panels). After day 28 p.i., the percentages were no longer statistically different from baseline levels. In LN cells (LNCs), the percentage of CD8+ Ki-67+ T cells rose from 3.1% ± 1.1% before infection to 6.1% ± 0.3% at day 62 p.i., but the difference was not statistically significant (Fig. (Fig.2D,2D, right panel). The levels of blood CD4+ DR+ Ki-67+, CD8+ DR+ Ki-67+, CD8+ Ki-67+ T cells, and LNC CD8+ Ki-67+ T cells were positively correlated with viremia (P values of 0.002 for DR+ cells and P values of <0.02 for Ki-67+ cells). Altogether, these results confirm previous data showing early, transient T-cell activation in the peripheral blood of SIVagm-infected AGMs (13).Open in a separate windowFIG. 2.Plasma viremia and T-cell activation in blood and LNs of five longitudinally followed SIVagm.sab92018-infected African green monkeys. (A) SIVagm.sab RNA copy numbers in plasma. (B) Plasma Gag p27 concentrations. (C) Percentages of MHC-II DR-positive CD4+ (•) and CD8+ (○) T cells within, respectively, total CD4+ and CD8+ T cells from PBMCs and LNCs. (D) Percentages of Ki-67+ CD4+ (•) and CD8+ (○) T cells within, respectively, total CD4+ and CD8+ T cells from PBMCs and LNCs. Results are shown as the mean ± the standard error of the mean. Asterisks indicate statistically significant differences compared to levels before infection (P < 0.05).We next looked for the presence of Ab responses against rP27 in these animals. No Ab were detected before infection. After infection, all five AGMs developed anti-SIVagm IgGs within 4 to 9 weeks p.i., with AGM 02001 showing the fastest response (Fig. (Fig.3A).3A). While the humoral responses against whole virions were significant (Fig. (Fig.3B),3B), the anti-rP27 responses were below the threshold for positivity (Fig. (Fig.3B),3B), with the exception of one animal (AGM 02001). The anti-rP27 response in this animal was only transient since it was no longer detectable at week 75 p.i., in contrast to the anti-SIV Ab that were sustained (Fig. (Fig.3B3B and data not shown).Open in a separate windowFIG. 3.Longitudinal analysis of IgG titers and T-cell proliferative responses against SIVagm and Gag p27 in five AGMs experimentally infected with SIVagm.sab92018. (A and B) Ab responses were analyzed by ELISA. (A) IgG dose-response curves against SIVagm (top) and rP27 (bottom) are shown over time (week −1 to week 24 p.i.). O.D.450, optical density at 450 nm. (B) Mid-point titers were calculated as described in the legend to Fig. Fig.1A.1A. Continuous lines correspond to median titers from all five animals. Red, anti-SIVagm IgGs; green, anti-p27 IgGs. (C) Proliferative responses of CD4+ and CD8+ T cells were assessed by flow cytometry using carboxy fluorescein succinimidyl ester staining (CFSE). CD4+ and CD8+ T-cell responses in PBMCs (left) and LNCs (right) after stimulation with peptide pools (Gag without P27, P27, and Tat) and Gag rP27 are shown for each animal. All data are reported after background subtraction. Results are presented in columns as the mean ± the standard error of the mean. Asterisks indicate statistically significant differences compared to individual values before infection (P < 0.05).We next searched for T-cell responses against Gag p27 compared to other SIVagm antigens in these animals. Gag p27 epitopes were presented in the following two ways: in the context of rP27 and as synthetic peptides. The peptide pools (comprised of overlapping 15-mers) spanned the following SIVagm proteins: Gag p27, Gag without p27, Env, and Tat. The amino acid sequences of the Gag and Env peptides corresponded to the autologous wild-type SIVagm.sab92018 sequence, and those of the Tat peptides corresponded to an SIVagm.sab consensus sequence. The latter was determined using Tat sequences of other SIVagm viruses from Senegal that are available in the databases (SIVagm.sab1c, SIVagm.sabD42, and SIVagm.sabD30). We measured T-cell responses by investigating the antigen-induced proliferation. T cells from blood (peripheral blood mononuclear cells [PBMCs]) and LNs were analyzed. All assays were performed with fresh cells that were stimulated with 10 μg/ml of Gag rP27 and 5 μg/ml of peptides over a period of 4 days. Dead cells were gated out using 7-amino-actinomycin D, and dividing (CFSElow) cells were analyzed after stimulation with medium alone, SIV antigens, or concanavalin A as a positive control. We detected significant Gag p27-specific proliferative responses for CD8+ T cells in PBMCs and for CD4+ and CD8+ T cells in LNCs (Fig. (Fig.3C).3C). The animal with the detectable anti-p27 Ab (AGM 02001) did not show stronger p27-specific T-cell responses than the other animals. Thus, all SIV-infected AGMs were able to mount a proliferative T-cell response against p27, while anti-p27 IgGs were lacking in four of the animals. However, the SIVagm-specific T-cell responses were detected at only a few time points p.i.We then analyzed the T-cell responses in the chronic phase of AGMs naturally and experimentally infected with SIVagm.sab92018. PVL, peripheral blood cell counts (CD4+ and CD8+ T cells; CD20+ B cells), and immune activation (Ki-67+ CD4+ and CD8+ T cells) were similar in naturally infected and in experimentally infected AGMs (Fig. (Fig.4A).4A). As expected, cell counts and immune activation levels were also not different from SIV-negative AGMs (Fig. (Fig.4A).4A). Again, we measured SIV-specific responses first by a proliferation assay (Fig. (Fig.4B).4B). One out of five animals tested had a proliferative SIV-specific CD4+ T-cell response (against Gag without p27, P27, rP27, Env GP120, and Tat), and two animals had a CD8+ T-cell response (against P27 in both animals and against Env GP120 and Tat in one). Two animals (one naturally infected and one experimentally infected with SIVagm.sab92018) did not show any detectable antigen-specific proliferative CD4+ or CD8+ T-cell response.Open in a separate windowFIG. 4.Immune parameters and SIVagm-specific proliferative and cytokine T-cell responses in chronically infected AGMs. (A) Cell counts (CD4+ and CD8+ T cells; B cells) and immune activation levels (percent of Ki-67+ in CD4+ and CD8+ T cells) in AGMs (n = 4) naturally infected with SIVagm (Nat SIV+) and AGMs (n = 6) experimentally infected with SIVagm.sab92018 (Exp SIV+) compared to uninfected AGMs (n = 10) (SIV). PVL, if known, is indicated. Green, blue, and orange symbols correspond, respectively, to noninfected, naturally infected, and experimentally infected AGMs. (B) Proliferative response to SIVagm antigens in chronically infected AGMs (n = 5) compared to those in uninfected AGMs (n = 3). PBMCs were stimulated with the same antigens as those described in the legend to Fig. Fig.3.3. (C) Analysis of cytokine responses (gamma interferon [IFN-γ] and tumor necrosis factor alpha [TNF-α]) by SIVagm-specific T cells. ConA was used as a positive control. Representative results from a single animal are shown here. (D) Cumulative values of SIVagm-specific TNF-α and IFN-γ responses in chronically infected animals. The responses to SIVagm antigens were analyzed in peripheral blood specimens of 4 naturally and 5 experimentally infected AGMs as well as 10 uninfected AGMs. The data are reported after background subtraction corresponding to the subtraction of the frequency of positive events from the unstimulated samples to the frequency of positive events from the antigen-specific stimulation. Proliferative T-cell responses and cytokine T-cell responses in SIV-infected AGMs were defined as positive when higher than 3 standard deviations above the mean responses for uninfected animals. Freq, frequency; w/o, without.These results were extended to an analysis of SIV-specific T-cell cytokine responses, e.g., the production of IFN-γ and TNF-α in nine chronically infected compared to 10 noninfected AGMs (Fig. 4C and D). Fresh cells were stimulated for 8 h with the antigens described above. SIV-specific cytokine responses were detected in CD8+ but not in CD4+ T cells. Seven animals out of nine showed a response against at least one antigen. The two animals showing no response were among the four naturally infected animals tested. We therefore cannot exclude that the absence of response in these two animals is due to the presence of highly divergent viruses. However, a precise epitope mapping in SIVagm sequences would be necessary to confirm this. In those animals showing a SIVagm-specific cytokine T-cell response, the responses were directed against Gag p27 (four out of nine animals), other Gag proteins than p27 (two out of nine animals), and Env GP120 (four out of nine animals). In the experimentally infected animals, we might have underestimated the responses against Tat compared to Gag and Env antigens, since the Tat peptides corresponded to an SIVagm.sab consensus sequence and not to the autologous virus (SIVagm.sab92018). There was no correlation between the magnitude or breadth of SIV-specific T-cell responses and immune activation or PVL.Altogether, our study demonstrates that AGMs can mount T-cell proliferative and cytokine responses against Gag p27. The T-cell response was variable among the animals. In general, it appeared moderate, comparable to chronically SIV-infected RMs (9). Of note, T-cell responses were not consistently detected at all time points and not in all animals. We cannot exclude the possibility that we underestimated the magnitude of the cytokine responses. For instance, we did not costimulate the cells during the assays. However, cytokine responses were also variable in vervet AGMs, with a trend for reduced levels compared to those for RMs, even when more-sensitive assays were used (23). In SM, the responses were also reported to be not stronger than in RMs. This is in line with the lack of efficient control of viral replication in natural hosts (6, 22).In our study, we show that IgG responses against Gag p27 are either lacking, weak, or transient, while Ab against other SIVagm proteins are present. The mechanisms underlying this selective lack of Gag p27 Ab responses are unclear. It could be related to moderate and/or dysfunctional CD4+ T-cell responses and/or due to an unknown suppressive regulatory mechanism. SIV-specific T-cell cytokine responses were indeed principally found at the CD8+ T-cell level. This was also reported in SIVsm-infected SM (6, 22). Here, we also searched for SIVagm Gag p27-specific proliferative responses. Interestingly, they were detected for CD4+ T cells, indicating the presence of p27-specific CD4+ memory cells in AGMs. Moreover, AGMs can potentially mount a strong and sustained anti-Gag p27 humoral response, when appropriately immunized (D. Favre et al., unpublished data). This suggests that there is neither a central B-cell tolerance against p27 Gag protein in AGMs nor an inherent inability for CD4+ T cells to provide helper B-cell functions. The transient nature of anti-p27 Ab in one animal would be in favor of regulatory mechanisms, but that needs to be confirmed. Another explanation could be that AGMs are able to mount Ab responses against some p27 epitopes but not to those exposed by the native protein, which would explain why we and others detect more frequently humoral responses in Western blot analysis than in ELISAs (16).In conclusion, we characterized the IgG responses against SIVagm and confirmed a lower humoral response against p27 than in RMs. Moreover, our study reveals that cytokine and proliferative T-cell responses against SIVagm Gag p27 are detectable in AGMs. Thus, the reduced ability of the AGM to produce Ab against Gag p27 p.i. is not related to a lack of Gag p27-specific T cells.  相似文献   

18.
Despite evidence that live, attenuated simian immunodeficiency virus (SIV) vaccines can elicit potent protection against pathogenic SIV infection, detailed information on the replication kinetics of attenuated SIV in vivo is lacking. In this study, we measured SIV RNA in the plasma of 16 adult rhesus macaques immunized with a live, attenuated strain of SIV (SIVmac239Δnef). To evaluate the relationship between replication of the vaccine virus and the onset of protection, four animals per group were challenged with pathogenic SIVmac251 at either 5, 10, 15, or 25 weeks after immunization. SIVmac239Δnef replicated efficiently in the immunized macaques in the first few weeks after inoculation. SIV RNA was detected in the plasma of all animals by day 7 after inoculation, and peak levels of viremia (105 to 107 RNA copies/ml) occurred by 7 to 12 days. Following challenge, SIVmac251 was detected in all of the four animals challenged at 5 weeks, in two of four challenged at 10 weeks, in none of four challenged at 15 weeks, and one of four challenged at 25 weeks. One animal immunized with SIVmac239Δnef and challenged at 10 weeks had evidence of disease progression in the absence of detectable SIVmac251. Although complete protection was not achieved at 5 weeks, a transient reduction in viremia (approximately 100-fold) occurred in the immunized macaques early after challenge compared to the nonimmunized controls. Two weeks after challenge, SIV RNA was also reduced in the lymph nodes of all immunized macaques compared with control animals. Taken together, these results indicate that host responses capable of reducing the viral load in plasma and lymph nodes were induced as early as 5 weeks after immunization with SIVmac239Δnef, while more potent protection developed between 10 and 15 weeks. In further experiments, we found that resistance to SIVmac251 infection did not correlate with the presence of antibodies to SIV gp130 and p27 antigens and was achieved in the absence of significant neutralizing activity against the primary SIVmac251 challenge stock.  相似文献   

19.
Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) do not develop immunodeficiency despite the presence of viral loads of 105 to 107 RNA copies/ml. To investigate the basis of apathogenic SIV infection in sooty mangabeys, three sooty mangabeys and three rhesus macaques were inoculated intravenously with SIVmac239 and evaluated longitudinally for 1 year. SIVmac239 infection of sooty mangabeys resulted in 2- to 4-log-lower viral loads than in macaques and did not reproduce the high viral loads observed in natural SIVsmm infection. During acute SIV infection, polyclonal cytotoxic T-lymphocyte (CTL) activity coincident with decline in peak plasma viremia was observed in both macaques and mangabeys; 8 to 20 weeks later, CTL activity declined in the macaques but was sustained and broadly directed in the mangabeys. Neutralizing antibodies to SIVmac239 were detected in the macaques but not the mangabeys. Differences in expression of CD38 on CD8+ T lymphocytes or in the percentage of naive phenotype T cells expressing CD45RA and CD62L-selection did not correlate with development of AIDS in rhesus macaques. In macaques, the proportion of CD4+ T lymphocytes expressing CD25 declined during SIV infection, while in mangabeys, CD25-expressing CD4+ T lymphocytes increased. Longitudinal evaluation of cytokine secretion by flow cytometric analysis of unstimulated lymphocytes revealed elevation of interleukin-2 and gamma interferon in a macaque and only interleukin-10 in a concurrently infected mangabey during acute SIV infection. Differences in host responses following experimental SIVmac239 infection may be associated with the divergent outcome in sooty mangabeys and rhesus macaques.  相似文献   

20.
The effects of preinfecting cats with a partially attenuated feline immunodeficiency virus (FIV) on subsequent infection with a fully virulent FIV belonging to a different subtype were investigated. Eight specific-pathogen-free cats were preinfected with graded doses of a long-term in vitro-cultured cell-free preparation of FIV Petaluma (FIV-P, subtype A). FIV-P established a low-grade or a silent infection in the inoculated animals. Seven months later, the eight preinfected cats and two uninfected cats were challenged with in vivo-grown FIV-M2 (subtype B) and periodically monitored for immunological and virological status. FIV-P-preinfected cats were not protected from acute infection by FIV-M2, and the sustained replication of this virus was accompanied by a reduction of FIV-P viral loads in the peripheral blood mononuclear cells and plasma. However, from 2 years postchallenge (p.c.) until 3 years p.c., when the experiment was terminated, preinfected cats exhibited reduced total viral burdens, and some also exhibited a diminished decline of circulating CD4+ T lymphocytes relative to control cats infected with FIV-M2 alone. Interestingly, most of the virus detected in challenged cats at late times p.c. was of FIV-P origin, indicating that the preinfecting, attenuated virus had become largely predominant. By the end of follow-up, two challenged cats had no FIV-M2 detectable in the tissues examined. The possible mechanisms underlying the interplay between the two viral populations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号