首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Here, we show that Caveolin-2 (Cav-2) is an epigenetic regulator for adipogenesis. Upon adipogenic stimulation, inner nuclear membrane (INM)-targeted pY19-Cav-2 interacted with lamin A/C to disengage the repressed Cebpb promoter from lamin A/C, which facilitated the Cebpb promoter association with lamin B1. Consequently, pY19-Cav-2 recruited lysine demethylase 4b (KDM4b) for demethylation of histone H3 lysine 9 trimethylation (H3K9me3) and histone acetyltransferase GCN5 for acetylation of H3K27, and subsequently RNA polymerase II (Pol II) on Cebpb promoter for epigenetic activation of Cebpb, to initiate adipogenesis. Cav-2 knock-down abrogated the Cebpb activation and blocked the Pparg2 and Cebpa activation. Re-expression of Cav-2 restored Cebpb activation and adipogenesis in Cav-2-deficient preadipocytes. Our data identify a new mechanism by which the epigenetic activation of Cebpb is controlled at the nuclear periphery to promote adipogenesis.  相似文献   

5.
Differentiation of preadipocytes into mature adipocytes capable of efficiently storing lipids is an important regulatory mechanism in obesity. Here, we examined the involvement of histone deacetylases (HDACs) and histone acetyltransferases (HATs) in the regulation of adipogenesis. We find that among the various members of the HDAC and HAT families, only HDAC9 exhibited dramatic down-regulation preceding adipogenic differentiation. Preadipocytes from HDAC9 gene knock-out mice exhibited accelerated adipogenic differentiation, whereas HDAC9 overexpression in 3T3-L1 preadipocytes suppressed adipogenic differentiation, demonstrating its direct role as a negative regulator of adipogenesis. HDAC9 expression was higher in visceral as compared with subcutaneous preadipocytes, negatively correlating with their potential to undergo adipogenic differentiation in vitro. HDAC9 localized in the nucleus, and its negative regulation of adipogenesis segregates with the N-terminal nuclear targeting domain, whereas the C-terminal deacetylase domain is dispensable for this function. HDAC9 co-precipitates with USF1 and is recruited with USF1 at the E-box region of the C/EBPα gene promoter in preadipocytes. Upon induction of adipogenic differentiation, HDAC9 is down-regulated, leading to its dissociation from the USF1 complex, whereas p300 HAT is up-regulated to allow its association with USF1 and accumulation at the E-box site of the C/EBPα promoter in differentiated adipocytes. This reciprocal regulation of HDAC9 and p300 HAT in the USF1 complex is associated with increased C/EBPα expression, a master regulator of adipogenic differentiation. These findings provide new insights into mechanisms of adipogenic differentiation and document a critical regulatory role for HDAC9 in adipogenic differentiation through a deacetylase-independent mechanism.  相似文献   

6.
7.
8.
9.
Preadipocyte factor-1 (Pref-1) is a secretory soluble protein, which exerts pleiotropic effects on maintenance of cancer stem cell characteristics and commitment of mesenchymal stem cell lineages by inhibiting adipogenesis. Observations that obesity renders the microenvironment of adipose tissues hypoxic and that hypoxia inhibits adipogenesis lead us to investigate whether hypoxia increases the expression of anti-adipogenic Pref-1 in preadipocytes, mature adipocytes, and adipose tissues from obese mouse. In 3T3-L1 preadipocytes, hypoxia induces Pref-1 by a hypoxia-inducible factor 1 (HIF-1)-dependent mechanism accompanied by increase in the levels of the active histone mark, acetylated H3K9/14 (H3K9/14Ac). Adipogenesis increased the levels of the heterochromatin histone mark, trimethylated H3K27 (H3K27me3), whereas it decreased the levels of H3K4me3 and H3K9/14Ac euchromatin marks of the mouse Pref-1 promoter. However, differently from preadipocytes, in mature adipocytes hypoxia failed to reverse the repressive epigenetic changes of Pref-1 promoter and to increase its expression. Short term (8 weeks) high fat diet (HFD) increased HIF-1α protein in subcutaneous and epididymal adipose tissues, but did not increase Pref-1 expression. Unlike in 3T3-L1 preadipocytes, HIF-1α did not increase Pref-1 expression in adipose tissues in which mature adipocytes constitute the main population. Interestingly, long term (35 weeks) HFD increased Pref-1 in serum but not in obese adipose tissues. This study suggests that Pref-1 is an endocrine factor which is synergistically increased by obesity and age.  相似文献   

10.
11.
To study 3D nuclear distributions of epigenetic histone modifications such as H3(K9) acetylation, H3(K4) dimethylation, H3(K9) dimethylation, and H3(K27) trimethylation, and of histone methyltransferase Suv39H1, we used advanced image analysis methods, combined with Nipkow disk confocal microscopy. Total fluorescence intensity and distributions of fluorescently labelled proteins were analyzed in formaldehyde-fixed interphase nuclei. Our data showed reduced fluorescent signals of H3(K9) acetylation and H3(K4) dimethylation (di-me) at the nuclear periphery, while di-meH3(K9) was also abundant in chromatin regions closely associated with the nuclear envelope. Little overlapping (intermingling) was observed for di-meH3(K4) and H3(K27) trimethylation (tri-me), and for di-meH3(K9) and Suv39H1. The histone modifications studied were absent in the nucleolar compartment with the exception of H3(K9) dimethylation that was closely associated with perinucleolar regions which are formed by centromeres of acrocentric chromosomes. Using immunocytochemistry, no di-meH3(K4) but only dense di-meH3(K9) was found for the human acrocentric chromosomes 14 and 22. The active X chromosome was observed to be partially acetylated, while the inactive X was more condensed, located in a very peripheral part of the interphase nuclei, and lacked H3(K9) acetylation. Our results confirmed specific interphase patterns of histone modifications within the interphase nuclei as well as within their chromosome territories.  相似文献   

12.
13.
14.
15.
The clonal distribution and stable expression of killer cell Ig-like receptor (KIR) genes is epigenetically regulated. To assess the epigenetic changes that occur during hemopoietic development we examined DNA methylation and chromatin structure of the KIR locus in early hemopoietic progenitor cells and major lymphocyte lineages. In hemopoietic progenitor cells, KIR genes exhibited the major hallmarks of epigenetic repression, which are dense DNA methylation, inaccessibility of chromatin to Micrococcus nuclease digest, and a repressive histone signature, characterized by strong H3K9 dimethylation and reduced H4K8 acetylation. In contrast, KIR genes of NK cells showed active histone signatures characterized by absence of H3K9 dimethylation and presence of H4K8 acetylation. Histone modifications correlated well with the competence of different lymphocyte lineages to express KIR; whereas H4K8 acetylation was high in NK and CD8+ T cells, it was almost absent in CD4+ T cells and B cells and, in the latter case, replaced by H3K9 dimethylation. In KIR-competent lineages, active histone signatures were also observed in silent KIR genes and in this case found in combination with dense DNA methylation of the promoter and nearby regions. The study suggests a two-step model of epigenetic regulation in which lineage-specific acquisition of euchromatic histone marks is a prerequisite for subsequent gene-specific DNA demethylation and expression of KIR genes.  相似文献   

16.
17.
18.
目的通过比较不同细胞类型之间MafA基因转录起始区的组蛋白修饰差异,探讨组蛋白修饰对MafA基因转录表达的作用。方法采用染色质免疫共沉淀-实时定量PCR法检测小鼠胰岛素瘤β细胞(NIT-1)、NIH小鼠成纤维细胞(NIH3T3)及小鼠胚胎干细胞(mES)三者中的MafA和MLH1基因转录起始区组蛋白修饰(H3K4m3、H3K9m3和H3乙酰化)的状况。同时采用实时定量RT-PCR检测上述三种细胞各基因mRNA表达水平。分析基因的H3K4m3、H3K9m3和H3乙酰化修饰与基因表达之间的相互关系。结果 (1)以mES细胞为参照,NIT-1细胞MafA基因的转录起始区的H3K4m3修饰水平明显增高(P〈0.05),H3K9m3修饰水平明显降低(P〈0.05);NIH 3T3细胞MafA基因的转录起始区的H3K9m3修饰水平明显增高(P〈0.05),H3K4m3修饰水平明显降低(P〈0.05);(2)MafA基因的仅在NIT-1细胞表达,其表达与H3K4m3修饰存在直线相关(相关系数0.995);与H3K9m3修饰存在直线负相关(相关系数-0.751);(3)管家基因MLH1的表达与所检测组蛋白修饰无相关性。结论 H3K9m3与H3K4m3修饰能相互协调,共同调控MafA基因的表达,对胚胎干细胞向β细胞分化具有重要的意义。  相似文献   

19.
Methionine adenosyltransferase (MAT) is a critical biological enzyme and that can catalyze L-met and ATP to form S-adenosylmethionine (SAM), which is acted as a biological methyl donor in transmethylation reactions involving histone methylation. However, the regulatory effect of methionine adenosyltransferase2A (MAT2A) and its associated methyltransferase activity on adipogenesis is still unclear. In this study, we investigate the effect of MAT2A on adipogenesis and its potential mechanism on histone methylation during porcine preadipocyte differentiation. We demonstrated that overexpression of MAT2A promoted lipid accumulation and significantly up-regulated the levels of adipogenic marker genes including PPARγ, SREBP-1c, and aP2. Whereas, knockdown of MAT2A or inhibition MATII enzyme activity inhibited lipid accumulation and down-regulated the expression of the above-mentioned genes. Mechanistic studies revealed that MAT2A interacted with histone-lysine N-methyltransferase Ezh2 and was recruited to Wnt10b promoter to repress its expression by promoting H3K27 methylation. Additionally, MAT2A interacted with MafK protein and was recruited to MARE element at Wnt10b gene. The catalytic activity of MAT2A as well as its interacting factor-MAT2B, was required for Wnt10b repression and supplying SAM for methyltransferases. Moreover, MAT2A suppressed Wnt10b expression and further inhibited Wnt/β-catenin signaling to promote adipogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号