首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
It has been demonstrated that the human tumor suppressor p53 has an important role in modulating histone modifications after UV light irradiation. In this work we explored if the p53 Drosophila homologue has a similar role. Taking advantage of the existence of polytene chromosomes in the salivary glands of third instar larvae, we analyzed K9 and K14 H3 acetylation patterns in situ after UV irradiation of wild-type and Dmp53 null flies. As in human cells, after UV damage there is an increase in H3 acetylation in wild-type organisms. In Dmp53 mutant flies, this response is significantly affected at the K9 position. These results are similar to those found in human p53 mutant tumor cells with one interesting difference, only the basal H3 acetylation of K14 is reduced in Dmp53 mutant flies, while the basal H3-K9 acetylation is not affected. This work shows, that the presence of Dmp53 is necessary to maintain normal H3-K14 acetylation levels in Drosophila chromatin and that the function of p53 to maintaining histone modifications, is conserved in Drosophila and humans.  相似文献   

2.
3.
DNA damage evokes a complex and highly coordinated DNA damage response (DDR) that is integral to the suppression of genomic instability. Double-strand breaks (DSBs) are considered the most deleterious form damage. Evidence suggests that trimethylation of histone H3 lysine 9 (H3K9me3) presents a barrier to DSB repair. Also, global levels of histone methylation are clinically predictive for several tumor types. Therefore, demethylation of H3K9 may be an important step in the repair of DSBs. The KDM4 subfamily of demethylases removes H3K9 tri- and dimethylation and contributes to the regulation of cellular differentiation and proliferation; mutation or aberrant expression of KDM4 proteins has been identified in several human tumors. We hypothesize that members of the KDM4 subfamily may be components of the DDR. We found that Kdm4b-enhanced GFP (EGFP) and KDM4D-EGFP were recruited rapidly to DNA damage induced by laser micro-irradiation. Focusing on the clinically relevant Kdm4b, we found that recruitment was dependent on poly(ADP-ribose) polymerase 1 activity as well as Kdm4b demethylase activity. The Kdm4 proteins did not measurably accumulate at γ-irradiation-induced γH2AX foci. Nevertheless, increased levels of Kdm4b were associated with decreased numbers of γH2AX foci 6 h after irradiation as well as increased cell survival. Finally, we found that levels of H3K9me2 and H3K9me3 were decreased at early time points after 2 gray of γ-irradiation. Taken together, these data demonstrate that Kdm4b is a DDR protein and that overexpression of Kdm4b may contribute to the failure of anti-cancer therapy that relies on the induction of DNA damage.  相似文献   

4.
The KDM4 subfamily of JmjC domain-containing demethylases mediates demethylation of histone H3K36me3/me2 and H3K9me3/me2. Several studies have shown that human and yeast KDM4 proteins bind to specific gene promoters and regulate gene expression. However, the genome-wide distribution of KDM4 proteins and the mechanism of genomic-targeting remain elusive. We have previously identified Drosophila KDM4A (dKDM4A) as a histone H3K36me3 demethylase that directly interacts with HP1a. Here, we performed H3K36me3 ChIP-chip analysis in wild type and dkdm4a mutant embryos to identify genes regulated by dKDM4A demethylase activity in vivo. A subset of heterochromatic genes that show increased H3K36me3 levels in dkdm4a mutant embryos overlap with HP1a target genes. More importantly, binding to HP1a is required for dKDM4A-mediated H3K36me3 demethylation at a subset of heterochromatic genes. Collectively, these results show that HP1a functions to target the H3K36 demethylase dKDM4A to heterochromatic genes in Drosophila.  相似文献   

5.
Pericentric regions form epigenetically organized silent heterochromatin structures that accumulate histone H3 lysine 9 trimethylation (H3K9me3) and HP1. At pericentric regions, Suv39h is the major enzyme that generates H3K9me3. Suv39h also interacts directly with HP1, a methylated H3K9-binding protein. However, it is not well characterized how HP1 interaction is important for Suv39h accumulation and Suv39h-mediated H3K9me3 formation at the pericentromere. To address this, we introduced the HP1 binding-defective N-terminally truncated mouse Suv39h1 (ΔN) into Suv39h-deficient embryonic stem cells. Interestingly, pericentric accumulation of ΔN and ΔN-mediated H3K9me3 was observed to recover, but HP1 accumulation was only marginally restored. ΔN also rescued DNA methyltransferase Dnmt3a and -3b accumulation and DNA methylation of the pericentromere. In contrast, other pericentric heterochromatin features, such as ATRX protein association and H4K20me3, were not recovered. Finally, derepressed major satellite repeats were partially silenced by ΔN expression. These findings clearly showed that the Suv39h-HP1 binding is dispensable for pericentric H3K9me3 and DNA methylation, but this interaction and HP1 recruitment/accumulation seem to be crucial for complete formation of heterochromatin.  相似文献   

6.
7.
Hyperglycemia/hyperinsulinemia are leading cause for the induction type 2 diabetes and the role of post-translational histone modifications in dysregulating the expression of genes has emerged as potential important contributor in the progression of disease. The paradoxical nature of histone H3-Lysine 4 and Lysine 9 mono-methylation (H3K4me1 and H3K9me1) in both gene activation and repression motivated us to elucidate the functional relationship of these histone modifications in regulating expression of genes under hyperglycaemic/hyperinsulinemic condition. Chromatin immunoprecipitation–microarray analysis (ChIP-chip) was performed with H3 acetylation, H3K4me1 and H3K9me1 antibody. CLUSTER analysis of ChIP-chip (Chromatin immunoprecipitation–microarray analysis) data showed that mRNA expression and H3 acetylation/H3K4me1 levels on genes were inversely correlated with H3K9me1 levels on the transcribed regions, after 30 min of insulin stimulation under hyperglycaemic condition. Interestingly, we provide first evidence regarding regulation of histone de/acetylases and de/methylases; Myst4, Jmjd2b, Aof1 and Set by H3Ac, H3K4me1 and H3K9me1 under hyperinsulinemic/hyperglycaemic condition. ChIP–qPCR analysis shows association of increased H3Ac/H3K4me1 and decreased levels of H3K9me1 in up regulation of Myst4, Jmjd2, Set and Aof1 genes. We further analyse promoter occupancy of histone modifications by ChIP walking and observed increased occupancy of H3Ac/H3K4me1 on promoter region (−1000 to −1) of active genes and H3K9me1 on inactive genes under hyperglycemic/hyperinsulinemic condition. To best of our knowledge this is the first report that shows regulation of chromatin remodelling genes by alteration in the occupancy of histone H3Ac/H3K4/K9me on both promoter and transcribed regions.  相似文献   

8.
The Dnmt3a DNA methyltransferase contains in its N-terminal part a PWWP domain that is involved in chromatin targeting. Here, we have investigated the interaction of the PWWP domain with modified histone tails using peptide arrays and show that it specifically recognizes the histone 3 lysine 36 trimethylation mark. H3K36me3 is known to be a repressive modification correlated with DNA methylation in mammals and heterochromatin in Schizosaccharomyces pombe. These results were confirmed by equilibrium peptide binding studies and pulldown experiments with native histones and purified native nucleosomes. The PWWP-H3K36me3 interaction is important for the subnuclear localization of enhanced yellow fluorescent protein-fused Dnmt3a. Furthermore, the PWWP-H3K36me3 interaction increases the activity of Dnmt3a for methylation of nucleosomal DNA as observed using native nucleosomes isolated from human cells after demethylation of the DNA with 5-aza-2′-deoxycytidine as substrate for methylation with Dnmt3a. These data suggest that the interaction of the PWWP domain with H3K36me3 is involved in targeting of Dnmt3a to chromatin carrying that mark, a model that is in agreement with several studies on the genome-wide distribution of DNA methylation and H3K36me3.  相似文献   

9.
10.
The eight mammalian Cbx proteins are chromodomain-containing proteins involved in regulation of heterochromatin, gene expression, and developmental programs. They are evolutionarily related to the Drosophila HP1 (dHP1) and Pc (dPc) proteins that are key components of chromatin-associated complexes capable of recognizing repressive marks such as trimethylated Lys-9 and Lys-27, respectively, on histone H3. However, the binding specificity and function of the human homologs, Cbx1-8, remain unclear. To this end we employed structural, biophysical, and mutagenic approaches to characterize the molecular determinants of sequence contextual methyllysine binding to human Cbx1-8 proteins. Although all three human HP1 homologs (Cbx1, -3, -5) replicate the structural and binding features of their dHP counterparts, the five Pc homologs (Cbx2, -4, -6, -7, -8) bind with lower affinity to H3K9me3 or H3K27me3 peptides and are unable to distinguish between these two marks. Additionally, peptide permutation arrays revealed a greater sequence tolerance within the Pc family and suggest alternative nonhistone sequences as potential binding targets for this class of chromodomains. Our structures explain the divergence of peptide binding selectivity in the Pc subfamily and highlight previously unrecognized features of the chromodomain that influence binding and specificity.  相似文献   

11.
The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis.  相似文献   

12.
The MLL CXXC domain binds nonmethylated CpG-containing DNA and is essential for the oncogenic properties of MLL fusion proteins. To determine potential functional promiscuity of similar DNA binding domains, we replaced the MLL CXXC domain in the context of the leukemogenic MLL-AF9 fusion with CXXC domains from DNMT1, CGBP (CFP1), and MBD1, or with a methyl-CpG-binding domain (MBD) from MBD1. MLL(DNMT1 CXXC)-AF9 shows robust in vitro colony forming activity and in vivo leukemogenesis, similar to MLL-AF9. However, colony forming ability and leukemogenicity are abrogated in MLL-AF9 containing either the CGBP or MBD1 CXXC domains or the MBD1 MBD domain. Direct comparison of in vitro DNA binding affinity of the isolated CXXC or MBD domains demonstrated that MLL, DNMT1, and CGBP CXXC domains could each bind to unmethylated DNA but with differing affinity. In contrast, the isolated MBD1 CXXC and MBD1 MBD domains were unable to bind to the same DNA. However, all substituted domains still allowed targeting of the MLL fusions to the functionally important Hoxa9 locus in primary bone marrow progenitor cells. In addition to DNA binding activity, it was critical that specific CpG residues in the Hoxa9 locus were protected from methylation for leukemia development. This ultimately prevented histone 3 lysine 9 trimethylation (H3K9me3) of the locus and enabled Hoxa9 expression. These were properties shared by MLL and DNMT1 CXXC domains but not by CGBP CXXC or the other swapped fusions tested. We demonstrate that similar CXXC domains can be mechanistically distinguished by specificity of CpG nucleotides preferentially protected from DNA methylation.  相似文献   

13.
14.
Recent studies have boosted our understanding of long noncoding RNAs (lncRNAs) in numerous biological processes, but few have examined their roles in somatic cell reprogramming. Through expression profiling and functional screening, we have identified that the large intergenic noncoding RNA p21 (lincRNA-p21) impairs reprogramming. Notably, lincRNA-p21 is induced by p53 but does not promote apoptosis or cell senescence in reprogramming. Instead, lincRNA-p21 associates with the H3K9 methyltransferase SETDB1 and the maintenance DNA methyltransferase DNMT1, which is facilitated by the RNA-binding protein HNRNPK. Consequently, lincRNA-p21 prevents reprogramming by sustaining H3K9me3 and/or CpG methylation at pluripotency gene promoters. Our results provide insight into the role of lncRNAs in reprogramming and establish a novel link between p53 and heterochromatin regulation.  相似文献   

15.
H3K36 methylation antagonizes PRC2-mediated H3K27 methylation   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
Mitosis must faithfully divide the genome such that each progeny inherits the same genetic material. DNA condensation is crucial in ensuring that chromosomes are correctly attached to the mitotic spindle for segregation, preventing DNA breaks or constrictions from the contractile ring. Histones form an octameric complex of basic proteins important in regulating DNA organization and accessibility. Histone post-translational modifications are altered during mitosis, although the roles of these post-translational modifications remain poorly characterized. Here, we report that N-acetylglucosamine (O-GlcNAc) transferase (OGT), the enzyme catalyzing the addition of O-GlcNAc moieties to nuclear and cytoplasmic proteins at serine and threonine residues, regulates some aspects of mitotic chromatin dynamics. OGT protein amounts decrease during M phase. Modest overexpression of OGT alters mitotic histone post-translational modifications at Lys-9, Ser-10, Arg-17, and Lys-27 of histone H3. Overexpression of OGT also prevents mitotic phosphorylation of coactivator-associated arginine methyltransferase 1 (CARM1) and prevents its correct cellular localization during mitosis. Moreover, OGT overexpression results in an increase in abnormal chromosomal bridge formation. Together, these results show that regulating the amount of OGT during mitosis is important in ensuring correct chromosomal segregation during mitosis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号