首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.

Background

Soybean (Glycine max) is a photoperiod-sensitive and self-pollinated species. Days to flowering (DTF) and maturity (DTM), duration of flowering-to-maturity (DFTM) and plant height (PH) are crucial for soybean adaptability and yield. To dissect the genetic architecture of these agronomically important traits, a population consisting of 309 early maturity soybean germplasm accessions was genotyped with the Illumina Infinium SoySNP50K BeadChip and phenotyped in multiple environments. A genome-wide association study (GWAS) was conducted using a mixed linear model that involves both relative kinship and population structure.

Results

The linkage disequilibrium (LD) decayed slowly in soybean, and a substantial difference in LD pattern was observed between euchromatic and heterochromatic regions. A total of 27, 6, 18 and 27 loci for DTF, DTM, DFTM and PH were detected via GWAS, respectively. The Dt1 gene was identified in the locus strongly associated with both DTM and PH. Ten candidate genes homologous to Arabidopsis flowering genes were identified near the peak single nucleotide polymorphisms (SNPs) associated with DTF. Four of them encode MADS-domain containing proteins. Additionally, a pectin lyase-like gene was also identified in a major-effect locus for PH where LD decayed rapidly.

Conclusions

This study identified multiple new loci and refined chromosomal regions of known loci associated with DTF, DTM, DFTM and/or PH in soybean. It demonstrates that GWAS is powerful in dissecting complex traits and identifying candidate genes although LD decayed slowly in soybean. The loci and trait-associated SNPs identified in this study can be used for soybean genetic improvement, especially the major-effect loci associated with PH could be used to improve soybean yield potential. The candidate genes may serve as promising targets for studies of molecular mechanisms underlying the related traits in soybean.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1441-4) contains supplementary material, which is available to authorized users.  相似文献   

2.
Soybean cyst nematode (SCN) (Heterodera glycines Ichinohe) is an important soybean [Glycine max (L.) Merr.] pest in the U.S. and throughout the world. Genetic resistance is the primary method for controlling SCN and there is a need to identify new resistance genes. Glycine soja Sieb. and Zucc. is the wild ancestor of domesticated soybean and is a potential source of new SCN resistance genes. The goal of this research was to map quantitative trait loci (QTLs) that provide resistance to SCN Race 3 from the G. soja plant introduction (PI) 468916. Fifty seven F2-derived lines from a cross between the G. soja PI 468916 and the G. max experimental line A81-356022 were tested for resistance to an SCN population with a Race-3 phenotype. These lines were also genotyped with 1,004 genetic markers and resistance genes were mapped by composite interval mapping with the computer program QTL-Cartographer. In the F2 population, three significant (LOD > 3.0) QTLs were detected that explained from 5% to 27% of the variation for Race-3 resistance. The two most significant QTLs identified in the F2 population were tested in a population of 100 BC1F2 plants developed by crossing A81-356022 to a line from the F2 population that carried the two resistance QTLs from G. soja. In the backcross population, both Race-3 resistance QTLs were significant, which confirms the existence of these QTLs. The QTLs identified in this experiment map to positions where SCN resistance genes have not been previously identified, suggesting that these are novel genes that could be useful for diversifying the resistance genes currently used in cultivar development. Received: 7 August 2000 / Accepted: 4 December 2000  相似文献   

3.
Albinism represents a group of genetic disorders with a broad spectrum of hypopigmentary phenotypes dependent on the genetic background of the patients. Oculocutaneous albinism (OCA) patients have little or no pigment in their eyes, skin and hair, whereas ocular albinism (OA) primarily presents the ocular symptoms, and the skin and hair color may vary from near normal to very fair. Mutations in genes directly or indirectly regulating melanin production are responsible for different forms of albinism with overlapping clinical features. In this study, 27 albinistic individuals from 24 families were screened for causal variants by a PCR-sequencing based approach. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, TYRP2 and SILV were selected as candidate genes. We identified 5 TYR and 3 OCA2 mutations, majority in homozygous state, in 8 unrelated patients including a case of autosomal recessive ocular albinism (AROA). A homozygous 4-nucleotide novel insertion in SLC24A5 was detected in a person showing with extreme cutaneous hypopigmentation. A potential causal variant was identified in the TYRP2 gene in a single patient. Haplotype analyses in the patients carrying homozygous mutations in the classical OCA genes suggested founder effect. This is the first report of an Indian AROA patient harboring a mutation in OCA2. Our results also reveal for the first time that mutations in SLC24A5 could contribute to extreme hypopigmentation in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号