首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 538 毫秒
1.
Linoleic acid was used as a model system to study lipid peroxidation initiated by the reaction of ferrous iron with hydrogen peroxide. Low-level chemiluminescence of the peroxidation was measured with a high-sensitivity single-photon counter. It was found that the luminescence primarily comes from the dimol reaction of singlet oxygen and that the peak intensity of emission is a quadratic function of the concentration of either Fe2+ or H2O2, provided that the other Fenton reagent is in great excess. Under the same conditions, analysis on reaction kinetics shows a linear relationship between the maximal level of the initiator formed by the Fenton reaction and the initial concentration of Fe2+ or H2O2. This implies that the peak intensity of the chemiluminescence may be a good index of the maximal level of the initiator.  相似文献   

2.
An effect of β-carotene and its polar derivative, zeaxanthin, on a concentration of singlet oxygen in lipid membranes was studied in a model system. The carotenoids were incorporated into the membranes of small unilamellar liposomes at a concentration of 0.15 mol% with respect to lipid. Singlet oxygen was generated in a liposome suspension via photosensitization of toluidine blue, and its concentration in a membrane was detected with application of a specific fluorescence probe (singlet oxygen sensor green reagent) located in the lipid bilayer. The results show the carotenoid-dependent decrease in the concentration of singlet oxygen in the membranes formed with unsaturated lipids (egg yolk phosphatidylcholine and digalactosyldiacylglycerol) but not in the case of the membranes formed with a saturated lipid (dimyristoylphosphatidylcholine). The effect of carotenoids was about twice as high as in the case of cholesterol present in liposomes at the same concentration. The results suggest that carotenoids protect membranes formed with unsaturated lipids against singlet oxygen through combined activity of different mechanisms: modification of structural properties of the lipid bilayers, physical quenching of singlet oxygen and chemical reactions leading to the pigment oxidation. The latter conclusion is based on the analysis of the absorption spectra of liposomes before and after light exposure. An importance of the different modes of protection by carotenoids against single oxygen toxicity towards biomembranes is discussed.  相似文献   

3.
Sun S  Bao Z  Ma H  Zhang D  Zheng X 《Biochemistry》2007,46(22):6668-6673
Generation of singlet oxygen is first investigated in the decomposition of polyunsaturated lipid peroxide, alpha-linolenic acid hydroperoxide (LAOOH), by heme-proteins such as cytochrome c and lactoperoxidase. Chemiluminescence and electron spin resonance methods are used to confirm the singlet oxygen generation and quantify its yield. Decomposition products of LAOOH are characterized by HPLC-ESI-MS, which suggests that singlet oxygen is produced via the decomposition of a linear tetraoxide intermediate (Russell's mechanism). Free radicals formed in the decomposition are also identified by the electron spin resonance technique, and the results show that peroxyl, alkyl, and epoxyalkyl radicals are involved. The changes of cytochrome c and lactoperoxidase in the reaction are monitored by UV-visible spectroscopy, revealing the action of a monoelectronic and two-electronic oxidation for cytochrome c and lactoperoxidase, respectively. These results suggest that cytochrome c causes a homolytic reaction of LAOOH, generating alkoxyl radical and then peroxyl radical, which in turn releases singlet oxygen following the Russell mechanism, whereas lactoperoxidase leads to a heterolytic reaction of LAOOH, and the resulting ferryl porphyryl radical of lactoperoxidase abstracts the hydrogen atom from LAOOH to give peroxyl radical and then singlet oxygen. This observation would be important for a better understanding of the damage mechanism of cell membrane or lipoprotein by singlet oxygen and various radicals generated in the peroxidation and decomposition of lipids induced by heme-proteins.  相似文献   

4.
Rat kidney microsomes reduced cephaloridine when incubated anaerobically with NADPH. Superoxide anion was generated in a concentration- and time-dependent manner when cephaloridine was incubated with rat kidney microsomes. Cephaloridine increased the in vitro peroxidation of rat kidney microsomal lipids in a concentration- and time-dependent manner. Cephaloridine-induced lipid peroxidation was inhibited by a combination of superoxide dismutase and catalase, by the hydroxyl radical scavengers, mannitol, (+)-cyanidanol-3 and by the singlet oxygen scavenger histidine in a concentration-dependent manner. It is proposed that cephaloridine nephrotoxicity may occur through the transfer of an electron from reduced cephaloridine to oxygen and subsequent formation of the superoxide anion, hydrogen peroxide, the hydroxyl radical and singlet oxygen. These activated oxygen species then are very likely to react with membrane lipids to induce lipid peroxidation and nephrotoxicity.  相似文献   

5.
The photodynamic properties of a second-generation photodynamic sensitizer, meta-tetra(hydroxyphenyl)chlorin (mTHPC) were studied by dye-sensitized photoinactivation (650 nm) of HT29 human adenocarcinoma cells in culture. The photocytotoxicity of mTHPC in vitro depended on the presence of molecular oxygen. A strong inhibition of the photocytotoxicity of mTHPC was observed upon addition of sodium azide, a known singlet oxygen quencher. Photocytotoxicity was not inhibited by scavengers of superoxide anion radical, hydrogen peroxide and hydroxyl radicals. We suggest that mTHPC photosensitizes cell killing predominantly by type II, singlet oxygen-mediated photodynamic reactions. Illumination of cells preloaded with mTHPC induced peroxidation of membrane lipids. Inhibition of photoperoxidation by alpha-tocopherol (0.1 mM) present during illumination did not result in any decrease in toxicity, suggesting that reactions of lipid peroxidation play only a minor role in the overall photocytotoxic effect of mTHPC.  相似文献   

6.
Two natural flavonoids, quercetin and isorhamnetin 3-O-acylglucosides, were examined for their inhibitory influence on the in vitro production and release of reactive oxygen species in polymorphonuclear neutrophils (PMNs). The generation of superoxide radical, hydrogen peroxide and hypochlorous acid were measured by, respectively, cytochrome c reduction, dichlorofluorescin oxidation and taurine chlorination. Membrane lipid oxidation was studied by the thiobarbituric acid method in mouse spleen microsomes. The addition of flavonoids at the concentration range 1-100 microM inhibited PMNs oxidative metabolism and lipid peroxidation in a dose-dependent manner. The results suggest that these flavonoids suppress the oxidative burst of PMNs and protect membranes against lipid peroxidation.  相似文献   

7.
Prasad A  Pospíšil P 《PloS one》2011,6(7):e22345
Reactive oxygen species formed as a response to various abiotic and biotic stresses cause an oxidative damage of cellular component such are lipids, proteins and nucleic acids. Lipid peroxidation is considered as one of the major processes responsible for the oxidative damage of the polyunsaturated fatty acid in the cell membranes. Various methods such as a loss of polyunsaturated fatty acids, amount of the primary and the secondary products are used to monitor the level of lipid peroxidation. To investigate the use of ultra-weak photon emission as a non-invasive tool for monitoring of lipid peroxidation, the involvement of lipid peroxidation in ultra-weak photon emission was studied in the unicellular green alga Chlamydomonas reinhardtii. Lipid peroxidation initiated by addition of exogenous linoleic acid to the cells was monitored by ultra-weak photon emission measured with the employment of highly sensitive charged couple device camera and photomultiplier tube. It was found that the addition of linoleic acid to the cells significantly increased the ultra-weak photon emission that correlates with the accumulation of lipid peroxidation product as measured using thiobarbituric acid assay. Scavenging of hydroxyl radical by mannitol, inhibition of intrinsic lipoxygenase by catechol and removal of molecular oxygen considerably suppressed ultra-weak photon emission measured after the addition of linoleic acid. The photon emission dominated at the red region of the spectrum with emission maximum at 680 nm. These observations reveal that the oxidation of linoleic acid by hydroxyl radical and intrinsic lipoxygenase results in the ultra-weak photon emission. Electronically excited species such as excited triplet carbonyls are the likely candidates for the primary excited species formed during the lipid peroxidation, whereas chlorophylls are the final emitters of photons. We propose here that the ultra-weak photon emission can be used as a non-invasive tool for the detection of lipid peroxidation in the cell membranes.  相似文献   

8.
The oxidation of cholesterol by plant and mammalian dioxygenases yielding cholesterol 7α- and 7β-hydroperoxides has been demonstrated. Cholesterol oxidation is coupled to the oxygenation of polyunsaturated fatty acid esters by soybean lipoxygenase, to the reduction of hydrogen peroxide catalyzed by horseradish peroxidase, and to the oxidation of NADPH by the NADPH-dependent microsomal lipid peroxidation system of rat liver. The initially formed epimeric cholesterol 7-hydroperoxides are transformed in each case to the commonly encountered corresponding 7-alcohol and 7-ketone derivatives. These dioxygenase transformations thus mimic in detail the radiation-induced free radical oxidation of cholesterol by molecular oxygen. Electronically excited (singlet) molecular oxygen is not implicated in these transformations.  相似文献   

9.
Incubation of human term placental mitochondria with Fe2+ and a NADPH-generating system initiated high levels of lipid peroxidation, as measured by the production of malondialdehyde. Malondialdehyde formation was accompanied by a corresponding decrease of the unsaturated fatty acid content. This NADPH-dependent lipid peroxidation was strongly inhibited by superoxide dismutase and singlet oxygen scavengers, markedly stimulated by paraquat, but was not affected by hydroxyl radical scavengers. Catalase enhanced the production of malondialdehyde by placental mitochondria. The effects of catalase and hydroxyl radical scavengers suggest that the initiation of NADPH-dependent lipid peroxidation is not dependent upon the hydroxyl radical produced via an iron-catalyzed Fenton reaction. These studies provide evidence that hydrogen peroxide strongly inhibits NADPH-dependent mitochondrial lipid peroxidation. The inhibitory effect of superoxide dismutase and stimulatory effect of paraquat, which was abolished by the addition of superoxide dismutase, suggests that superoxide may promote NADPH-dependent lipid peroxidation in human placental mitochondria.  相似文献   

10.
Protein modification is one of the important processes during oxidative stress. This modification of proteins is either due to direct oxidation of proteins by various oxidants or due to secondary modification by lipid peroxidation products, e.g. 4-hydroxynonenal. In the here presented work we compare the intracellular distribution of protein modification products after treatment of human U87 astrocytoma cells with hydrogen peroxide or HNE. The treatment with hydrogen peroxide leads mainly to a cytosolic formation of oxidized proteins whereas HNE treatment is forming HNE-adducts throughout the cell. Therefore, we concluded that HNE diffusion distance in cells enables this lipid peroxidation product to act as a second messenger within the cell and on the other hand is the reason for the genotoxic properties of this compound.  相似文献   

11.
12.
In our study, EPR spin-trapping technique was employed to study dark production of two reactive oxygen species, hydroxyl radicals (OH.) and singlet oxygen ((1)O2), in spinach photosystem II (PSII) membrane particles exposed to elevated temperature (47 degrees C). Production of OH., evaluated as EMPO-OH adduct EPR signal, was suppressed by the enzymatic removal of hydrogen peroxide and by the addition of iron chelator desferal, whereas externally added hydrogen peroxide enhanced OH. production. These observations reveal that OH. is presumably produced by metal-mediated reduction of hydrogen peroxide in a Fenton-type reaction. Increase in pH above physiological values significantly stimulated the formation of OH., whereas the presence of chloride and calcium ions had the opposite effect. Based on our results it is proposed that the formation of OH. is linked to the thermal disassembly of water-splitting manganese complex on PSII donor side. Singlet oxygen production, followed as the formation of nitroxyl radical TEMPO, was not affected by OH. scavengers. This finding indicates that the production of these two species was independent and that the production of (1)O2 is not closely linked to PSII donor side.  相似文献   

13.
Nitric oxide as an antioxidant.   总被引:21,自引:0,他引:21  
Benzoate monohydroxy compounds, and in particular salicylate, were produced during interaction of ferrous complexes with hydrogen peroxide (Fenton reaction) in a N2 environment. These reactions were inhibited when Fe complexes were flushed, prior to the addition in the model system, by nitric oxide. Methionine oxidation to ethylene by Fenton reagents was also inhibited by nitric oxide. Myoglobin in several forms such as metmyoglobin, oxymyoglobin, and nitric oxide-myoglobin were interacted with an equimolar concentration of hydrogen peroxide. Spectra changes in the visible region and the changes in membrane (microsomes) lipid peroxidation by the accumulation of thiobarbituric acid-reactive substances (TBA-RS) were determined. The results showed that metmyoglobin and oxymyoglobin were activated by H2O2 to ferryl myoglobin, which initiates membrane lipid peroxidation; but not nitric oxide-myoglobin, which, during interaction with H2O2, did not form ferryl but metmyoglobin which only poorly affected lipid peroxidation. It is assumed that nitric oxide, liganded to ferrous complexes, acts to prevent the prooxidative reaction of these complexes with H2O2.  相似文献   

14.
Trofimova VA  P'ianzina TA 《Genetika》2005,41(9):1229-1235
In the apical meristem of Allium fistulosum, the relationship between peroxide lipid oxidation, antioxidant activity, proliferative processes, the yield of chromosomal aberrations and duration the exposure to ionized air was studied. Under the influence of air oxygen ions, superoxide dismutase and catalase activities increased, proliferative processes were stimulated, and shifts occurred in the process of lipid peroxidation in cells of A. fistulosum. When these cells were treated with air oxygen for 40 min, hydrogen peroxide and iron sulfate (II) enhanced oxygen biostimulating effect via stimulation of antioxidant enzyme activity and inhibition of lipid peroxidation. Under these conditions, cell proliferation was intensified and the yield of chromosomal aberrations was reduced in A. fistulosum rootlets. When the time of seed treatment with ionized air was increased to 80 min, lipid peroxidation was activated, antioxidant enzyme activity was inhibited, and the yield of chromosomal aberration increased in seedlings. It was concluded that the biostimulating activity of ionized air was mediated by active oxygen species generated in the cell. The accumulation of TBA(thiobarbituric acid)-reactive products was shown to be related to a decrease in antioxidant enzyme activity and an increase in the yield of chromosomal aberrations. It is emphasized that the mutagenic effect of ionized air is associated with generating conditions that support Fenton reaction and OH-radical formation in the cell.  相似文献   

15.
16.
Hydroxyl radical production during oxidative deposition of iron in ferritin   总被引:5,自引:0,他引:5  
The chemistry of oxidative deposition of iron(III) in ferritin and apoferritin is poorly understood. This study was undertaken to look for radicals formed as the hydrous ferric oxide core is developed from Fe(II) and O2. Radicals were observed indirectly by using the spin-trapping reagent N-tert-butyl-alpha-phenylnitrone (PBN) at room temperature and directly by measuring ESR spectra of frozen solutions at 77 K. In both instances, radical production was inhibited by the hydroxyl radical scavenging agents dimethyl sulfoxide, thiourea, and mannitol and enhanced by the addition of hydrogen peroxide. These findings strongly suggest that hydroxyl radical, produced from the iron-catalyzed Haber-Weiss reaction, is a by-product of core formation in ferritin and is a precursor to the observed radicals. The yield of ESR-observable and spin-trapped radicals is quite low, being at the micromolar level when millimolar concentrations of ferrous ion are employed. Furthermore, radical production appears to be confined to the interior of the ferritin molecule, where cellular components would be protected from the oxygen-derived toxic effects of iron. It is postulated that hydroxyl radical-medicated oxidative damage to the protein, a process that may contribute to the formation of hemosiderin from ferritin, leads to the observed radicals. By serving as a sink for hydroxyl radical, the protein shell may therefore efficiently minimize damage to other biomolecules in the cell.  相似文献   

17.
The efficiency of hydroperoxides (tert-butyl hydroperoxide, hydrogen peroxide) and sulfhydryl reagents (iodoacetamide, p-chloromercuribenzene sulfonic acid) as glyceollin elicitors was examined in relation to sulfhydryl oxidation, or alteration, and to lipid peroxidation, in 3-d-old soybean hypocotyl/radicle, Glycine max. These oxidative events were investigated as possible early steps in the transduction mechanisms leading to phytoalexin synthesis. Free protein sulfhydryl groups were not modified after any of the eliciting treatments, thus indicating that immediate massive protein oxidation or modification cannot be considered a signal transduction step. Unlike sulfhydryl reagents, which led to a decrease of the free nonprotein sulfhydryl group (free np-SH) pool under all of the eliciting conditions, the results obtained with hydroperoxides indicated that immediate oxidation of the np-SH is not required for the signal transduction. Moreover, elicitation with 10 mM tertbutyl hydroperoxide did not lead to further oxidation or to changes in np-SH level during the critical phase of phenylalanine ammonialyase activation (the first 20 h), suggesting that np-SH modifications are probably not involved in hydroperoxide-induced elicitation. On the other hand, all treatments leading to significant glyceollin accumulation were able to trigger a rapid (within 2 h) lipid peroxidation process, whereas noneliciting treatments did not. In addition, transition metals, such as Fe2+ and Cu+, were shown to stimulate both hydrogen peroxide-induced lipid peroxidation and glyceollin accumulation, again emphasizing that the two processes are at least closely linked in soybean. Among the oxidative processes triggered by activated oxygen species, oxidation of sulfhydryl compounds, or lipid peroxidation, our results suggest that lipid peroxidation is sufficient to initiate glyceollin accumulation in soybean. This further supports the hypothesis that lipid peroxidation could be involved as a step in the signal cascade that leads to induction of plant defenses.  相似文献   

18.
Lee SM  Huh TL  Park JW 《Biochimie》2001,83(11-12):1057-1065
Recently, we demonstrated that the control of cytosolic and mitochondrial redox balance and the cellular defense against oxidative damage is one of the primary functions of NADP(+)-dependent isocitrate dehydrogenase (ICDH) through supply of NADPH for antioxidant systems. When exposed to various reactive oxygen species such as hydrogen peroxide, singlet oxygen generated by photoactivated dye, superoxide anion, and hydroxyl radical produced by metal-catalyzed Fenton reactions, ICDH was susceptible to oxidative modification and damage, which was indicated by the loss of activity, fragmentation of the peptide as well as by the formation of carbonyl groups. Oxidative damage to ICDH was inhibited by antioxidant enzymes, free radical scavengers, and spin-trapping agents. The structural alterations of modified enzymes were indicated by the increase in thermal instability and binding of the hydrophobic probe 8-anilino-1-naphthalene sulfonic acid (ANSA). The reactive oxygen species-mediated damage to ICDH may result in the perturbation of cellular antioxidant defense mechanisms and subsequently lead to a pro-oxidant condition.  相似文献   

19.
Hydroxyl radical (HO?) production in photosystem II (PSII) was studied by electron paramagnetic resonance (EPR) spin-trapping technique. It is demonstrated here that the exposure of PSII membranes to heat stress (40 °C) results in HO? formation, as monitored by the formation of EMPO-OH adduct EPR signal. The presence of different exogenous halides significantly suppressed the EMPO-OH adduct EPR signal in PSII membranes under heat stress. The addition of exogenous acetate and blocker of chloride channel suppressed the EMPO-OH adduct EPR signal, whereas the blocker of calcium channel did not affect the EMPO-OH adduct EPR signal. Heat-induced hydrogen peroxide (H?O?) production was studied by amplex red fluorescent assay. The presence of exogenous halides, acetate and chloride blocker showed the suppression of H?O? production in PSII membranes under heat stress. Based on our results, it is proposed that the formation of HO? under heat stress is linked to uncontrolled accessibility of water to the water-splitting manganese complex caused by the release of chloride ion on the electron donor side of PSII. Uncontrolled water accessibility to the water-splitting manganese complex causes the formation of H?O? due to improper water oxidation, which leads to the formation of HO? via the Fenton reaction under heat stress.  相似文献   

20.
The effect of visible light on Escherichia coli H10407 in seawater microcosms was investigated. Light damage was estimated by loss of colony-forming ability. Illumination of E. coli suspended in oligotrophic seawater with visible light at an intensity of about 40 klux caused a drastic decrease of culturable bacteria which turned to a viable but non-culturable state. In seawater E. coli exhibited weak metabolic activity as estimated by 3H methyl-thymidine incorporation in the cell. Visible light did not significantly alter this metabolic activity and did not involve detectable oxidation of lipid membranes as evaluated by gas chromatography analysis of fatty acids. The involvement of oxygen and reactive oxygen species in phototoxicity was studied. A decrease of the toxic effect was observed when E. coli was exposed to visible light under anaerobic conditions. Scavengers of reactive oxygen species exhibited variable protective effects. β-Carotene, a singlet oxygen scavenger, and superoxide dismutase were equally ineffective. On the other hand, catalase, which eliminates hydrogen peroxide and thiourea, a hydroxyl radical scavenger, showed a net protection. In addition desferrioxamine B, an iron chelator, was also effective in reducing phototoxicity, probably by preventing hydroxyl radical generation by decomposition of hydrogen peroxide in the presence of iron (Fenton reaction). Therefore, hydrogen peroxide and hydroxyl radical seem to be reactive intermediates of oxygen-dependent (type II) photosensitized reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号