首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pathogenic microorganisms may survive the composting process in low numbers and subsequently regrow to high levels under favorable conditions. The objective of this study was to investigate the regrowth potential of Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes in dairy-based composts under different environmental conditions. Water extract of commercially available dairy compost was used as a model system. Cocktails of five rifampin-resistant strains of each pathogen previously grown in reduced nutrient media (1/2 or 1/10 strength of tryptic soy broth, TSB) were inoculated into water extract of compost of different ratios (1:2,1:5, and 1:10, w/v), and then stored at 35°C or 22°C for 7 days. The strains exhibiting greatest survival or regrowth were identified by pulsed-field gel electrophoresis (PFGE). At 22°C, both E. coli O157:H7 and L. monocytogenes multiplied in all compost extracts, whereas Salmonella spp. regrew in both 1:2 and 1:5 compost extracts but not in 1:10. For all three pathogens, incubation at 22°C provides better conditions for regrowth than at 35°C. Both Salmonella and E. coli O157:H7 previously adapted to nutrient-limited broth (1/10 strength of TSB) regrew in compost extracts to higher populations than the control cultures grown previously in full strength of TSB. In the absence of indigenous microorganisms, all three pathogens regrew even in the most diluted sterile compost extract (1:10) with growth potentials ranging from 2.30 to 3.59 log CFU/ml. In nonsterile compost extract with ca. 5 log CFU/ml of background microorganisms, all three pathogens regrew only in the most concentrated compost extract (1:2) with much less population increases ranging from 0.70 to 1.43 log CFU/ml. Compost extract samples of all ages supported the regrowth of both Salmonella and E. coli O157:H7 with population increases ranging from 0.95 to 2.32 log CFU/ml. The PFGE patterns for E. coli O157:H7 isolates from sterile compost extracts matched with either the spinach outbreak strain or an avirulent B6914 strain. These results demonstrated that compost extract of dairy-based compost contained sufficient nutrients for pathogen regrowth. Cultures previously adapted to low nutrient media regrew to higher populations than control cultures; however, indigenous microflora suppressed the pathogen regrowth in compost extract, especially at 35°C.  相似文献   

2.
A multiplex fluorogenic PCR assay for simultaneous detection of pathogenic Salmonella strains and Escherichia coli O157:H7 was developed and evaluated for use in detecting very low levels of these pathogens in meat and feces. Two sets of primers were used to amplify a junctional segment of virulence genes sipB and sipC of Salmonella and an intragenic segment of gene eae of E. coli O157:H7. Fluorogenic reporter probes were included in the PCR assay for automated and specific detection of amplified products. The assay could detect <10 CFU of Salmonella enterica serovar Typhimurium or E. coli O157:H7 per g of meat or feces artificially inoculated with these pathogens and cultured for 6 to 18 h in a single enrichment broth. Detection of amplification products could be completed in ≤4 h after enrichment.  相似文献   

3.
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens.  相似文献   

4.
Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (1010 CFU/animal) made resistant to nalidixic acid (Nalr). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nalr E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nalr E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.  相似文献   

5.
Confocal scanning laser microscopy (CSLM) was used to demonstrate the attachment of Escherichia coli O157:H7 transformed with a plasmid encoding for green fluorescent protein (GFP) to the surface and within the internal structures of nonwaxed Red Delicious cv. apples. Apples at 2 or 25°C were inoculated with an E. coli O157:H7 cell suspension at 2 or 25°C. The effect of a negative temperature differential (cold inoculum, warm apple), a positive differential (warm inoculum, cold apple), and no differential (warm inoculum, warm apple), in combination with a pressure differential (atmospheric versus 10,130 Pa), on the attachment and infiltration of cells was determined. CSLM stereo images of external surfaces of apples subjected to all combinations of test parameters showed preferential cellular attachment to discontinuities in the waxy cuticle on the surface and to damaged tissue surrounding puncture wounds, where the pathogen was observed at depths up to 70 μm below the skin surface. Attachment to lenticels was sporadic but was occasionally observed at depths of up to 40 μm. Infiltration through the floral tube and attachment to seeds, cartilaginous pericarp, and internal trichomes were observed in all apples examined, regardless of temperature differential during inoculation. The pressure differential had no effect on infiltration or attachment of E. coli O157:H7. Image analysis to count cells at various depths within tissues was used to quantitatively compare the extent of infiltration into various apple structures as well as the effects of the temperature differential. Puncture wounds harbored greater numbers of the pathogen at greater depths than did other sites examined. Attachment or infiltration of cells was greater on the intact skin and in lenticels, russet areas, and the floral tube of apples inoculated under a negative temperature differential compared to those inoculated under no temperature differential. The results suggest that E. coli O157:H7 attached to internal core structures or within tissues of apples may evade decontamination treatments. Interventions designed to deliver disinfectants to these locations or to remove viable cells of E. coli O157:H7 and other pathogens from apples by other means need to be developed and validated.  相似文献   

6.
Aim: The pathogen growth in dairy compost was studied in a greenhouse setting under different seasons. Methods and Results: The five‐strain mixtures of each Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes were inoculated separately into dry compost to yield c. 1 log CFU g?1. After acclimation at room temperature, the inoculated compost was initially adjusted to moisture levels of 10–50% and then kept in a greenhouse under different seasons. The populations of all three pathogens increased by 2·1–3·9 log CFU g?1 within 3 days in autoclaved compost with initial moisture content of at least 40%. Listeria monocytogenes multiplied up to 2·4 log CFU g?1 in compost with initial moisture content of 30% and was detected up to 28 days for all seasons, whereas populations of both E. coli O157:H7 and Salmonella increased by c. 1 log in compost with initial moisture content of 30% during winter months only. No pathogen growth in nonautoclaved compost was detected. Conclusion: Bacterial species, temperature, light intensity and moisture content affected the growth potential and survival of pathogens in compost when the population of background microflora was low. Significance and Impact of the Study: Keeping compost as dry as possible and maintaining certain levels of background microflora may be critical to prevent the growth of pathogens.  相似文献   

7.
Salmonella strains and Escherichia coli O157:H7 were detected in 17 and 5 small ruminants in Virginia, respectively, of 287 tested. Background microflora interfered with the fecal analysis. The combination of Salmonella enzyme immunoassay (EIA) detection and xylose-lysine-deoxycholate agar isolation was satisfactory. Modifying enrichment to a 1:100 dilution enabled effective E. coli O157:H7 detection by EIA and isolation by sorbitol-MacConkey agar with cefixime-tellurite.  相似文献   

8.
Pathogenic Escherichia coli O157:H7, as well as nonpathogenic strains ATCC 11775 and ATCC 23716, grew exponentially in wounds on Golden Delicious apple fruit. The exponential growth occurred over a longer time period on fruit inoculated with a lower concentration of the bacterium than on fruit inoculated with a higher concentration. The bacterium reached the maximum population supported in the wounds regardless of the initial inoculum concentrations. Populations of E. coli O157:H7 in various concentrations of sterilized apple juice and unsterilized cider declined over time and declined more quickly in diluted juice and cider. The decline was greater in the unsterilized cider than in juice, which may have resulted from the interaction of E. coli O157:H7 with natural populations of yeasts that increased with time. Experiments on the transmission of E. coli by fruit flies, collected from a compost pile of decaying apples and peaches, were conducted with strain F-11775, a fluorescent transformant of nonpathogenic E. coli ATCC 11775. Fruit flies were easily contaminated externally and internally with E. coli F-11775 after contact with the bacterium source. The flies transmitted this bacterium to uncontaminated apple wounds, resulting in a high incidence of contaminated wounds. Populations of the bacterium in apple wounds increased significantly during the first 48 h after transmission. Further studies under commercial conditions are necessary to confirm these findings.  相似文献   

9.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 108 CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

10.
The transmission of Escherichia coli O157:H7 from manure-contaminated soil and irrigation water to lettuce plants was demonstrated using laser scanning confocal microscopy, epifluorescence microscopy, and recovery of viable cells from the inner tissues of plants. E. coli O157:H7 migrated to internal locations in plant tissue and was thus protected from the action of sanitizing agents by virtue of its inaccessibility. Experiments demonstrate that E. coli O157:H7 can enter the lettuce plant through the root system and migrate throughout the edible portion of the plant.  相似文献   

11.
Salmonella enterica and Escherichia coli O157:H7 are major food-borne pathogens causing serious illness. Phage SFP10, which revealed effective infection of both S. enterica and E. coli O157:H7, was isolated and characterized. SFP10 contains a 158-kb double-stranded DNA genome belonging to the Vi01 phage-like family Myoviridae. In vitro adsorption assays showed that the adsorption constant rates to both Salmonella enterica serovar Typhimurium and E. coli O157:H7 were 2.50 × 10−8 ml/min and 1.91 × 10−8 ml/min, respectively. One-step growth analysis revealed that SFP10 has a shorter latent period (25 min) and a larger burst size (>200 PFU) than ordinary Myoviridae phages, suggesting effective host infection and lytic activity. However, differential development of resistance to SFP10 in S. Typhimurium and E. coli O157:H7 was observed; bacteriophage-insensitive mutant (BIM) frequencies of 1.19 × 10−2 CFU/ml for S. Typhimurium and 4.58 × 10−5 CFU/ml for E. coli O157:H7 were found, indicating that SFP10 should be active and stable for control of E. coli O157:H7 with minimal emergence of SFP10-resistant pathogens but may not be for S. Typhimurium. Specific mutation of rfaL in S. Typhimurium and E. coli O157:H7 revealed the O antigen as an SFP10 receptor for both bacteria. Genome sequence analysis of SFP10 and its comparative analysis with homologous Salmonella Vi01 and Shigella phiSboM-AG3 phages revealed that their tail fiber and tail spike genes share low sequence identity, implying that the genes are major host specificity determinants. This is the first report identifying specific infection and inhibition of Salmonella Typhimurium and E. coli O157:H7 by a single bacteriophage.  相似文献   

12.
We studied injury of Escherichia coli O157:H7 cells in 11 food items during freeze storage and methods of isolating freeze-injured E. coli O157:H7 cells from foods. Food samples inoculated with E. coli O157:H7 were stored for 16 weeks at −20°C in a freezer. Noninjured and injured cells were counted by using tryptic soy agar and sorbitol MacConkey agar supplemented with cefixime and potassium tellurite. Large populations of E. coli O157:H7 cells were injured in salted cabbage, grated radish, seaweed, and tomato samples. In an experiment to detect E. coli O157:H7 in food samples artificially contaminated with freeze-injured E. coli O157:H7 cells, the organism was recovered most efficiently after the samples were incubated in modified E. coli broth without bile salts at 25°C for 2 h and then selectively enriched at 42°C for 18 h by adding bile salts and novobiocin. Our enrichment method was further evaluated by isolating E. coli O157:H7 from frozen foods inoculated with the organism prior to freezing. Two hours of resuscitation at 25°C in nonselective broth improved recovery of E. coli O157:H7 from frozen grated radishes and strawberries, demonstrating that the resuscitation step is very effective for isolating E. coli O157:H7 from frozen foods contaminated with injured E. coli O157:H7 cells.  相似文献   

13.
Aims: The purpose of this study was to determine whether the methods used in compost operations of small and medium‐sized poultry forms resulted in the production of an amendment free of foodborne pathogens. Methods and Results: Nine compost heaps on five South Carolina poultry farms were surveyed at different stages of the composting process. Compost samples were analysed for coliforms and enriched for Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes. The waste materials and composting practices differed among the surveyed farms. On two farms, new materials were added to heaps that had previously completed the active composting phase. Five compost heaps did not reach an internal temperature of 55°C, and c. 62% of all internal samples in the first composting phase contained moisture contents <40%. Escherichia coli was detected in 63% of the surface samples (n = 38) and 9·8% of the internal samples (n = 82) from the first composting phase, as compared with 16·7% of the surface samples (n = 12) and 0% internal samples (n = 24) from the second composting phase. Salmonella was detected in 26 and 6·1% of all surface and internal samples collected from heaps in the first composting phase, respectively, but was absent in all compost samples undergoing a second composting phase. The predominant Salmonella serotypes were Thompson, Montevideo and Anatum. Neither E. coli O157:H7 nor Lmonocytogenes was detected in any of the samples. Conclusions: Our results indicate that the conditions at the compost surface are suitable for pathogen survival, and the complete composting process can result in the elimination of pathogens in poultry wastes. Significance and Impact of the Study: This research provides information regarding the effectiveness of the composting practices and microbiological quality of poultry compost produced by small‐ and medium‐sized farms. Ensuring the safety of compost that may be applied to soils should be an integral part of preharvest food safety programme.  相似文献   

14.
Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.  相似文献   

15.
The influence of nutrients in wastewater from dairy lagoons on the survival of Escherichia coli O157:H7 was monitored. Initially, the survival of E. coli O157:H7 in wastewater from which the competing native organisms had been removed by filter sterilization or autoclaving was compared with that in wastewater from which competing organisms had not been removed. Numbers of E. coli O157:H7 or E. coli ONT (O-nontypeable):H32 cells declined rapidly in filter-sterilized water and exhibited a slower decline in nonsterile water, while the organisms proliferated in autoclaved water. Subsequently, the growth of E. coli O157:H7 strains was monitored in 300 μl of Luria-Bertani (LB) broth supplemented with incremental proportions of filter-sterilized wastewater. E. coli O157:H7 and E. coli ONT:H32 strains failed to grow in filter-sterilized wastewater, and their growth was reduced incrementally with wastewater supplementation of LB broth. Consequently, the influence of organic extracts of wastewater on the growth of E. coli O157:H7 and E. coli ONT:H32 in reduced-strength LB was monitored, followed by scale-up tests in wastewater. Acidic and basic extracts inhibited growth of both strains, while the neutral aqueous extract improved growth. However, a scale-up with a threefold increase in the acidic components supplementing the wastewater did not result in any additional decline in numbers of E. coli O157:H7 cells. When protected inside a 300-kDa dialysis tube and exposed to diffusible components, E. coli O157:H7 survived longer, with a decimal reduction time of 18.1 days, compared to 3.5 days when inoculated directly into wastewater. Although wastewater can potentially provide nutrients to naturally occurring human pathogens, the chemical components, protozoa, and coliphages in wastewater can inhibit the growth of freshly introduced pathogens from manure.  相似文献   

16.
Escherichia coli O157:H7 is an important food-borne pathogen. Often E. coli O157:H7 is difficult to detect, because it is present sporadically at very low levels together with very high levels of competitor organisms which can be difficult to distinguish phenotypically. Cultural methods are time-consuming and give variable results in the detection of E. coli O157:H7. This study examined the performance of BAX for Screening/E. coli O157:H7, a new rapid method for the detection of E. coli O157:H7, against traditional and improved cultural methods and an immunodiffusion assay. All cultural methods demonstrated inadequacy in detecting the presence of E. coli O157:H7 in inoculated samples. The limitations of these cultural methods further complicate evaluation of screening methodologies. The BAX for Screening/E. coli O157:H7 assay outperformed the other methods, with a detection rate of 96.5%, compared to 39% for the best cultural method and 71.5% for the immunodiffusion method. The BAX for Screening/E. coli O157:H7 assay proved to be a rapid, highly sensitive test for the detection of low levels of E. coli O157:H7 in ground beef.  相似文献   

17.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

18.
Weaned 3- to 4-month-old calves were fasted for 48 h, inoculated with 1010 CFU of Shiga toxin-positive Escherichia coli (STEC) O157:H7 strain 86-24 (STEC O157) or STEC O91:H21 strain B2F1 (STEC O91), Shiga toxin-negative E. coli O157:H7 strain 87-23 (Stx O157), or a nonpathogenic control E. coli strain, necropsied 4 days postinoculation, and examined bacteriologically and histologically. Some calves were treated with dexamethasone (DEX) for 5 days (3 days before, on the day of, and 1 day after inoculation). STEC O157 bacteria were recovered from feces, intestines, or gall bladders of 74% (40/55) of calves 4 days after they were inoculated with STEC O157. Colon and cecum were sites from which inoculum-type bacteria were most often recovered. Histologic lesions of attaching-and-effacing (A/E) O157+ bacteria were observed in 69% (38/55) of the STEC O157-inoculated calves. Rectum, ileocecal valve, and distal colon were sites most likely to contain A/E O157+ bacteria. Fecal and intestinal levels of STEC O157 bacteria were significantly higher and A/E O157+ bacteria were more common in DEX-treated calves than in nontreated calves inoculated with STEC O157. Fecal STEC O157 levels were significantly higher than Stx O157, STEC O91, or control E. coli; only STEC O157 cells were recovered from tissues. Identifying the rectum, ileocecal valve, and distal colon as early STEC O157 colonization sites and finding that DEX treatment enhances the susceptibility of weaned calves to STEC O157 colonization will facilitate the identification and evaluation of interventions aimed at reducing STEC O157 infection in cattle.  相似文献   

19.
Ruminant animals are carriers of Escherichia coli O157:H7, and the transmission of E. coli O157:H7 from cattle to the environment and to humans is a concern. It is unclear if diet can influence the survivability of E. coli O157:H7 in the gastrointestinal system or in feces in the environment. Feces from cattle fed bromegrass hay or corn silage diets were inoculated with E. coli O157:H7, and the survival of this pathogen was analyzed. When animals consumed bromegrass hay for <1 month, viable E. coli O157:H7 was not recovered after 28 days postinoculation, but when animals consumed the diet for >1 month, E. coli O157:H7 cells were recovered for >120 days. Viable E. coli O157:H7 cells in feces from animals fed corn silage were detected until day 45 and differed little with the time on the diet. To determine if forage phenolic acids affected the viability of E. coli O157:H7, feces from animals fed corn silage or cracked corn were amended with common forage phenolic acids. When 0.5% trans-cinnamic acid or 0.5% para-coumaric acid was added to feces from silage-fed animals, the E. coli O157:H7 death rate was increased significantly (17-fold and 23-fold, respectively) compared to that with no addition. In feces from animals fed cracked corn, E. coli O157:H7 death rates were increased significantly with the addition of 0.1% and 0.5% trans-cinnamic acid (7- and 13-fold), 0.1% and 0.5% p-coumaric acid (3- and 8-fold), and 0.5% ferulic acid (3-fold). These data suggest that phenolic acids common to forage plants can decrease viable counts of E. coli O157:H7 shed in feces.  相似文献   

20.
The fate of manure-borne pathogen surrogates (gfp-labeled Escherichia coli O157:H7 and Listeria innocua and avirulent Salmonella Typhimurium) in the field was monitored at both sub-surface (30 cm from surface) and surface sites of static composting piles (3.5-m base diameter) composed of chicken litter and peanut hulls. Despite exposure to elevated temperatures, Salmonella was detected by enrichment culture in sub-surface samples following 14 days of composting. In surface samples, pathogen surrogates were detected in the summer after 4 days of composting by enrichment culture only, whereas E. coli O157:H7 and L. innocua remained detectable by direct plating (>2log10 cfu/g) up to 28 days in piles composted during the fall and winter. All three types of bacteria remained detectable by enrichment culture in surface samples composted for 56 days during the winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号