首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.

Background & Aims

Pro-inflammatory cytokines are important for liver regeneration after partial hepatectomy (PH). Expression of Fibroblast growth factor-inducible 14 (Fn14), the receptor for TNF-like weak inducer of apoptosis (TWEAK), is induced rapidly after PH and remains elevated throughout the period of peak hepatocyte replication. The role of Fn14 in post-PH liver regeneration is uncertain because Fn14 is expressed by liver progenitors and TWEAK-Fn14 interactions stimulate progenitor growth, but replication of mature hepatocytes is thought to drive liver regeneration after PH.

Methods

To clarify the role of TWEAK-Fn14 after PH, we compared post-PH regenerative responses in wild type (WT) mice, Fn14 knockout (KO) mice, TWEAK KO mice, and WT mice treated with anti-TWEAK antibodies.

Results

In WT mice, rare Fn14(+) cells localized with other progenitor markers in peri-portal areas before PH. PH rapidly increased proliferation of Fn14(+) cells; hepatocytic cells that expressed Fn14 and other progenitor markers, such as Lgr5, progressively accumulated from 12–8 h post-PH and then declined to baseline by 96 h. When TWEAK/Fn14 signaling was disrupted, progenitor accumulation, induction of pro-regenerative cytokines, hepatocyte and cholangiocyte proliferation, and over-all survival were inhibited, while post-PH liver damage and bilirubin levels were increased. TWEAK stimulated proliferation and increased Lgr5 expression in cultured liver progenitors, but had no effect on either parameter in cultured primary hepatocytes.

Conclusions

TWEAK-FN14 signaling is necessary for the healthy adult liver to regenerate normally after acute partial hepatectomy.  相似文献   

2.
Chen H  Sun Y  Dong R  Yang S  Pan C  Xiang D  Miao M  Jiao B 《PloS one》2011,6(5):e20238

Background

MicroRNAs are a class of small regulatory RNAs that modulate a variety of biological processes, including cellular differentiation, apoptosis, metabolism and proliferation. This study aims to explore the effect of miR-34a in hepatocyte proliferation and its potential role in liver regeneration termination.

Methodology/Principal Finding

MiR-34a was highly induced after partial hepatectomy. Overexpression of miR-34a in BRL-3A cells could significantly inhibit cell proliferation and down-regulate the expression of inhibin βB (INHBB) and Met. In BRL-3A cells, INHBB was identified as a direct target of miR-34a by luciferase reporter assay. More importantly, INHBB siRNA significantly repressed cell proliferation. A decrease of INHBB and Met was detected in regenerating liver.

Conclusion/Significance

MiR-34a expression was upregulated during the late phase of liver regeneration. MiR-34a-mediated regulation of INHBB and Met may collectively contribute to the suppression of hepatocyte proliferation.  相似文献   

3.

Background

Liver resection and the use of small-for-size grafts are restricted by the necessity to provide a sufficient amount of functional liver mass. Only few promising strategies to maximize liver regeneration are available. Apart from its erythropoiesis-stimulating effect, erythropoietin (EPO) has meanwhile been recognized as mitogenic, tissue-protective, and anti-apoptotic pleiotropic cytokine. Thus, EPO may support regeneration of hepatic tissue.

Methodology

Rats undergoing 68% hepatectomy received daily either high dose (5000 IU/kg bw iv) or low dose (500 IU/kg bw iv) recombinant human EPO or equal amounts of physiologic saline. Parameters of liver regeneration and hepatocellular apoptosis were assessed at 24 h, 48 h and 5 d after resection. In addition, red blood cell count, hematocrit and serum EPO levels as well as plasma concentrations of TNF-α and IL-6 were evaluated. Further, hepatic Bcl-xL and Bax protein expression were analyzed by Western blot.

Principal Findings

Administration of EPO significantly reduced the expression of PCNA at 24 h followed by a significant decrease in restitution of liver mass at day 5 after partial hepatectomy. EPO increased TNF-α levels and shifted the Bcl-xL to Bax ratio towards the pro-apoptotic Bax resulting in significantly increased hepatocellular apoptosis.

Conclusions

Multiple doses of EPO after partial hepatectomy increase hepatocellular apoptosis and impair liver regeneration in rats. Thus, careful consideration should be made in pre- and post-operative recombinant human EPO administration in the setting of liver resection and transplantation.  相似文献   

4.

Background

Cytokine administration is a potential therapy for acute liver failure by reducing inflammatory responses and favour hepatocyte regeneration. The aim of this study was to evaluate the role of interleukin-1 receptor antagonist (IL-1ra) during liver regeneration and to study the effect of a recombinant human IL-1ra on liver regeneration.

Methods

We performed 70%-hepatectomy in wild type (WT) mice, IL-1ra knock-out (KO) mice and in WT mice treated by anakinra. We analyzed liver regeneration at regular intervals by measuring the blood levels of cytokines, the hepatocyte proliferation by bromodeoxyuridin (BrdU) incorporation, proliferating cell nuclear antigen (PCNA) and Cyclin D1 expression. The effect of anakinra on hepatocyte proliferation was also tested in vitro using human hepatocytes.

Results

At 24h and at 48h after hepatectomy, IL-1ra KO mice had significantly higher levels of pro-inflammatory cytokines (IL-6, IL-1β and MCP-1) and a reduced and delayed hepatocyte proliferation measured by BrdU incorporation, PCNA and Cyclin D1 protein levels, when compared to WT mice. IGFBP-1 and C/EBPβ expression was significantly decreased in IL-1ra KO compared to WT mice. WT mice treated with anakinra showed significantly decreased levels of IL-6 and significantly higher hepatocyte proliferation at 24h compared to untreated WT mice. In vitro, primary human hepatocytes treated with anakinra showed significantly higher proliferation at 24h compared to hepatocytes without treatment.

Conclusion

IL1ra modulates the early phase of liver regeneration by decreasing the inflammatory stress and accelerating the entry of hepatocytes in proliferation. IL1ra might be a therapeutic target to improve hepatocyte proliferation.  相似文献   

5.
6.
7.
8.

Background and Aim

The progression of non-alcoholic fatty liver disease (NAFLD) likely involves a ‘multiple hit’ mechanism. We hypothesized that partial hepatectomy, a procedure performed frequently in patients with NAFLD, would accelerate the progression of disease.

Methods

C57BL/6JolaHsd mice were fed a choline-deficient L-amino acid-defined diet (CD-AA) or a choline-sufficient L-amino acid-defined control diet (CS-AA). Part of the mice in the CD-AA group received a diet enriched in vitamin E (~20 mg /day). Two weeks after the start of the diet, mice underwent a partial hepatectomy or a sham operation.

Results

In the CD-AA group, NAFLD activity scores were significantly higher at 7 days after partial hepatectomy compared to the sham operated mice (3.7 ± 1.3 vs. 1.8 ± 0.7; P<0.05). In addition, TBARS, a measure for oxidative stress, in liver tissue of the CD-AA group were significantly higher at day 1, 3 and 7 after partial hepatectomy compared to the sham operated mice (P<0.05). Vitamin E therapy significantly reduced TBARS level at day 7 after partial hepatectomy compared to the CD-AA diet group (P< 0.05). Vitamin E suppletion reduced NAFLD activity score at day 7 after partial hepatectomy compared to the CD-AA group (2.3 ± 0.8 vs. 3.8 ± 1.0; P<0.05).

Conclusion

Partial hepatectomy accelerates the progression of NAFLD. Disease progression induced by partial hepatectomy is substantially attenuated by vitamin E.  相似文献   

9.
10.
11.
12.

Background and Aims

Lysophosphatidic acid (LPA) is a multi-function glycerophospholipid. LPA affects the proliferation of hepatocytes and stellate cells in vitro, and in a partial hepatectomy induced liver regeneration model, the circulating LPA levels and LPA receptor (LPAR) expression levels in liver tissue are significantly changed. Liver sinusoidal endothelial cells (Lsecs) play an important role during liver regeneration. However, the effects of LPA on Lsecs are not well known. Thus, we investigated the effects of LPA on the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs.

Methods

Mouse Lsecs were isolated using CD31-coated magnetic beads. The mRNA expression levels of LPAR’s and other target genes were determined by quantitative RT-PCR. The protein levels of angiogenesis factors, cytokines, and chemokines were determined using protein arrays and enzyme immunoassay (EIA). Critical LPAR related signal transduction was verified by using an appropriate chemical inhibitor.

Results

LPAR1 and LPAR3 mRNA’s were expressed in mouse LPA-treated Lsecs. Treating Lsecs with a physiological level of LPA significantly enhanced the protein levels of angiogenesis related proteins (cyr61 and TIMP-1), cytokines (C5/C5a, M-CSF, and SDF-1), and chemokines (MCP-5, gp130, CCL28, and CXCL16). The LPAR1 and LPAR3 antagonist ki16425 significantly inhibited the LPA-enhanced expression of cyr61, TIMP-1, SDF-1, MCP-5, gp130, CCL28, and CXCL16, but not that of C5/C5a or M-CSF. LPA-induced C5/C5a and M-CSF expression may have been through an indirect regulation mechanism.

Conclusion

LPA regulated the expression profiles of angiogenic factors, cytokines, and chemokines in Lsecs that was mediated via LPAR1 and LPAR3 signaling. Most of the factors that were enhanced by LPA have been found to play critical roles during liver regeneration. Thus, these results may prove useful for manipulating LPA effects on liver regeneration.  相似文献   

13.
Zhou J  Ju W  Wang D  Wu L  Zhu X  Guo Z  He X 《PloS one》2012,7(4):e33577

Background

Inadequate liver regeneration (LR) is still an unsolved problem in major liver resection and small-for-size syndrome post-living donor liver transplantation. A number of microRNAs have been shown to play important roles in cell proliferation. Herein, we investigated the role of miR-26a as a pivotal regulator of hepatocyte proliferation in LR.

Methodology/Principal Findings

Adult male C57BL/6J mice, undergoing 70% partial hepatectomy (PH), were treated with Ad5-anti-miR-26a-LUC or Ad5-miR-26a-LUC or Ad5-LUC vector via portal vein. The animals were subjected to in vivo bioluminescence imaging. Serum and liver samples were collected to test liver function, calculate liver-to-body weight ratio (LBWR), document hepatocyte proliferation (Ki-67 staining), and investigate potential targeted gene expression of miR-26a by quantitative real-time PCR and Western blot. The miR-26a level declined during LR after 70% PH. Down-regulation of miR-26a by anti-miR-26a expression led to enhanced proliferation of hepatocytes, and both LBWR and hepatocyte proliferation (Ki-67+ cells %) showed an increased tendency, while liver damage, indicated by aspartate aminotransferase (AST), alanine aminotransferase (ALT) and total bilirubin (T-Bil), was reduced. Furthermore, CCND2 and CCNE2, as possible targeted genes of miR-26a, were up-regulated. In addition, miR-26a over-expression showed converse results.

Conclusions/Significance

MiR-26a plays crucial role in regulating the proliferative phase of LR, probably by repressing expressions of cell cycle proteins CCND2 and CCNE2. The current study reveals a novel miRNA-mediated regulation pattern during the proliferative phase of LR.  相似文献   

14.

Objective

To prospectively evaluate the longitudinal subjective and objective outcomes of the microsurgical treatment of lingual nerve (LN) and inferior alveolar nerve (IAN) injury after third molar surgery.

Materials and Methods

A 1-year longitudinal observational study was conducted on patients who received LN or IAN repair after third molar surgery-induced nerve injury. Subjective assessments (“numbness”, “hyperaesthesia”, “pain”, “taste disturbance”, “speech” and “social life impact”) and objective assessments (light touch threshold, two-point discrimination, pain threshold, and taste discrimination) were recorded.

Results

12 patients (10 females) with 10 LN and 2 IAN repairs were recruited. The subjective outcomes at post-operative 12 months for LN and IAN repair were improved. “Pain” and “hyperaesthesia” were most drastically improved. Light touch threshold improved from 44.7g to 1.2g for LN repair and 2g to 0.5g for IAN repair.

Conclusion

Microsurgical treatment of moderate to severe LN injury after lower third molar surgery offered significant subjective and objective sensory improvements. 100% FSR was achieved at post-operative 6 months.  相似文献   

15.

Background

Ischemia-reperfusion (I/R) injury associated with living donor liver transplantation impairs liver graft regeneration. Mesenchymal stem cells (MSCs) are potential cell therapeutic targets for liver disease. In this study, we demonstrate the impact of MSCs against hepatic I/R injury and hepatectomy.

Methodology/Principal Findings

We used a new rat model in which major hepatectomy with I/R injury was performed. Male Lewis rats were separated into two groups: an MSC group given MSCs after reperfusion as treatment, and a Control group given phosphate-buffered saline after reperfusion as placebo. The results of liver function tests, pathologic changes in the liver, and the remnant liver regeneration rate were assessed. The fate of transplanted MSCs in the luciferase-expressing rats was examined by in vivo luminescent imaging. The MSC group showed peak luciferase activity of transplanted MSCs in the remnant liver 24 h after reperfusion, after which luciferase activity gradually declined. The elevation of serum alanine transaminase levels was significantly reduced by MSC injection. Histopathological findings showed that vacuolar change was lower in the MSC group compared to the Control group. In addition, a significantly lower percentage of TUNEL-positive cells was observed in the MSC group compared with the controls. Remnant liver regeneration rate was accelerated in the MSC group.

Conclusions/Significance

These data suggest that MSC transplantation provides trophic support to the I/R-injured liver by inhibiting hepatocellular apoptosis and by stimulating regeneration.  相似文献   

16.

Background

Ischemia/reperfusion injury (IRI) is commonly considered to play a crucial role in the pathogenesis of small-for-size syndrome (SFSS) after liver transplantation. Rapid regeneration is also considered essential for the survival of SFS grafts.

Methods

Mouse models of full-size orthotopic liver transplantation, 50% partial liver transplantation and 30% partial liver transplantation were established. Survival rate and serum alanine aminotransferase were observed. IRI was assessed by hepatic pathologic alterations, apoptosis and necrosis. Regeneration response was detected by mitotic index, BrdU incorporation and PCNA, Cyclin D1 and Cyclin E expression. The expression of mTOR, AKT, ERK, JNK2 and p70S6K, also involved in regeneration signaling pathways, were analyzed as well.

Results

30% partial liver graft resulted in a significantly low 7-day survival rate (P = 0.002) with no marked difference in tissue injury compared with the 50% partial graft group. Serum alanine aminotransferase levels were not significantly different between partial transplantation and full-size transplantation. Western blot analysis of caspase-3 and TUNEL staining also indicated no significant difference in apoptosis response between 30% partial transplantation and half-size or full-size transplantation (P = 0.436, P = 0.113, respectively). However, liver regeneration response indicators, mitotic index (P<0.0001) and BrdU (P = 0.0022), were markedly lower in 30% LTx compared with 50% LTx. Suppressed expression of PCNA, cyclin D1, cyclin E, mTOR, JNK2, AKT, ERK and p70S6K was also detected by western blot.

Conclusions

Liver regeneration is markedly suppressed in SFSS, and is more likely the primary cause of SFSS, rather than ischemia/reperfusion injury. Therapy for recovering graft regeneration could be a potentially important strategy to reduce the incidence of SFSS.  相似文献   

17.
Li CX  Shao Y  Ng KT  Liu XB  Ling CC  Ma YY  Geng W  Fan ST  Lo CM  Man K 《PloS one》2012,7(2):e32380

Background

Surgical procedures such as liver resection and liver transplantation are the first-line treatments for hepatocellular carcinoma (HCC) patients. However, the high incidence of tumor recurrence and metastasis after liver surgery remains a major problem. Recent studies have shown that hepatic ischemia-reperfusion (I/R) injury and endothelial progenitor cells (EPCs) contribute to tumor growth and metastasis. We aim to investigate the mechanism of FTY720, which was originally applied as an immunomodulator, on suppression of liver tumor metastasis after liver resection and partial hepatic I/R injury.

Methodology/Principal Findings

An orthotopic liver tumor model in Buffalo rat was established using the hepatocellular carcinoma cell line McA-RH7777. Two weeks after orthotopic liver tumor implantation, the rats underwent liver resection for tumor-bearing lobe and partial hepatic I/R injury. FTY720 (2 mg/kg) was administered through the inferior caval vein before and after I/R injury. Blood samples were taken at days 0, 1, 3, 7, 14, 21 and 28 for detection of circulating EPCs (CD133+CD34+). Our results showed that intrahepatic and lung metastases were significantly inhibited together with less tumor angiogenesis by FTY720 treatment. The number of circulating EPCs was also significantly decreased by FTY720 treatment from day 7 to day 28. Hepatic gene expressions of CXCL10, VEGF, CXCR3, CXCR4 induced by hepatic I/R injury were down-regulated in the treatment group.

Conclusions/Significance

FTY720 suppressed liver tumor metastasis after liver resection marred by hepatic I/R injury in a rat liver tumor model by attenuating hepatic I/R injury and reducing circulating EPCs.  相似文献   

18.
Hepatic expression of the protooncogenes c-fos and c-myc occurs within 2 h after partial hepatectomy, and these immediate early genes are thought to prime the hepatocytes for subsequent proliferation. To examine whether such gene activation occured in the setting of hepatocyte proliferation after toxic liver injury, protooncogene expression was examined during the regenerative response following liver injury from carbon tetrachloride (CCI4) or galactosamine (GaIN). The pattern of protooncogene expression after CCI4 mirrored that seen after partial hepatectomy, with rises in c-fos and c-myc mRNA content within 2 h, and then a rapid return to baseline levels. In contrast, early c-fos and c-myc expression did not occur after GaIN injury. Instead GaIN-induced regeneration led to a delayed and prolonged c-fos an c-myc activation which peaked 24–48 h after injury. Increase in c-jun, jun-B, and jun-D mRNA levels also occured in both models at times similar to the rises of c-fos and c-myc expression. Although the timing of DNA synthesis was identical after GaIN or CCI4 treatment the proliferative response after GaIN injury was significantly less than that of CCI4, and marked by the histologic appearance of oval cells. The coadministration of 2-acetylaminofluorene, an inhibitor of differentiated hepatocyte proliferation, together with CCI4 altered the usual pattern of post-CCI4 protooncogene expression to one resembling that seen after GaIN injury. Thus, the timing of protooncogene expression during liver regeneration may vary considerably. These variations may influence the nature of the proliferative response in terms of which cell types(s) proliferates, and the amount of regeneration that ensures. © 1993 Wiley-Liss, Inc.  相似文献   

19.

Background & Aims

Portal hyperperfusion after extended hepatectomy or small-for-size liver transplantation may induce organ dysfunction and failure. The underlying mechanisms, however, are still not completely understood. Herein, we analysed whether hepatectomy-associated portal hyperperfusion induces a hepatic arterial buffer response, i.e., an adaptive hepatic arterial constriction, which may cause hepatocellular hypoxia and organ dysfunction.

Methods

Sprague-Dawley rats underwent 30%, 70% and 90% hepatectomy. Baseline measurements before hepatectomy served as controls. Hepatic arterial and portal venous flows were analysed by ultrasonic flow measurement. Microvascular blood flow and mitochondrial redox state were determined by intravital fluorescence microscopy. Hepatic tissue pO2 was analysed by polarographic techniques. Hepatic function and integrity were studied by bromosulfophthalein bile excretion and liver histology.

Results

Portal blood flow was 2- to 4-fold increased after 70% and 90% hepatectomy. This, however, did not provoke a hepatic arterial buffer response. Nonetheless, portal hyperperfusion and constant hepatic arterial blood flow were associated with a reduced mitochondrial redox state and a decreased hepatic tissue pO2 after 70% and 90% hepatectomy. Microvascular blood flow increased significantly after hepatectomy and functional sinusoidal density was found only slightly reduced. Major hepatectomy further induced a 2- to 3-fold increase of bile flow. This was associated with a 2-fold increase of bromosulfophthalein excretion.

Conclusions

Portal hyperperfusion after extended hepatectomy does not induce a hepatic arterial buffer response but reduces mitochondrial redox state and hepatocellular oxygenation. This is not due to a deterioration of microvascular perfusion, but rather due to a relative hypermetabolism of the remnant liver after major resection.  相似文献   

20.

Background

Notch signaling plays a critical role in the maintenance of intestinal crypt epithelial cell proliferation. The aim of this study was to investigate the role of Notch signaling in the proliferation and regeneration of intestinal epithelium after intestinal ischemia reperfusion (I/R) injury.

Methods

Male Sprague-Dawley rats were subjected to sham operation or I/R by occlusion of the superior mesenteric artery (SMA) for 20 min. Intestinal tissue samples were collected at 0, 1, 2, 4, and 6 h after reperfusion. Proliferation of the intestinal epithelium was evaluated by immunohistochemical staining of proliferating nuclear antigen (PCNA). The mRNA and protein expression levels of Notch signaling components were examined using Real-time PCR and Western blot analyses. Immunofluorescence was also performed to detect the expression and location of Jagged-2, cleaved Notch-1, and Hes-1 in the intestine. Finally, the γ-secretase inhibitor DAPT and the siRNA for Jagged-2 and Hes-1 were applied to investigate the functional role of Notch signaling in the proliferation of intestinal epithelial cells in an in vitro IEC-6 culture system.

Results

I/R injury caused increased intestinal crypt epithelial cell proliferation and increased mRNA and protein expression of Jagged-2, Notch-1, and Hes-1. The immunofluorescence results further confirmed increased protein expression of Jagged-2, cleaved Notch-1, and Hes-1 in the intestinal crypts. The inhibition of Notch signaling with DAPT and the suppression of Jagged-2 and Hes-1 expression using siRNA both significantly inhibited the proliferation of IEC-6 cells.

Conclusion

The Jagged-2/Notch-1/Hes-1 signaling pathway is involved in intestinal epithelium regeneration early after I/R injury by increasing crypt epithelial cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号