首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selection for beef traits in Italian dual-purpose breeds is often carried out using growth and in vivo conformation recorded on young, performance tested bulls and muscularity traits scored during routinely linear type evaluation on primiparous cows. In this context, the knowledge of the genetic structure of traits obtained in different sexes and at different times is necessary for a proper selection plan. This study aimed to estimate, in the local dual-purpose Rendena breed, the genetic relationships between muscularity linear type traits from primiparous cows, the same traits scored on candidate young bulls, and the performance test traits recorded in candidate young bulls. Type traits included: front (chest and shoulder), back (loins and rump); thigh, buttocks side and rear views (two traits). Performance test traits were: average daily gain; EUROP fleshiness evaluation; and dressing percentage. Muscularity linear type traits were recorded on 11 992 first parity cows, and the muscularity type traits were scored on 957 candidate young bulls. Heritability estimates obtained for muscularity traits were moderate in young bulls (on average 0.326), about 16% higher than in primiparous cows. The average heritability for performance test traits in young bulls resulted 0.342. Moderate to strong genetic correlations were found between performance test and muscularity type traits collected in young bulls (from 0.500 between front (chest and shoulder) and average daily gain to 0.955 between thigh, buttocks side view and in vivo dressing percentage). The genetic relationships obtained between muscularity linear type traits of primiparous cows and performance traits of young bulls were variable (from a null correlation between front (chest and shoulder) and average daily gain to 0.822 between thigh, buttocks rear view and dressing percentage), with an average genetic correlation of 0.532. Generally, the traits measured during performance testing in young bulls were favourably correlated with muscularity traits evaluated on primiparous cows, indicating a common selection pathway.  相似文献   

2.
Tropical and sub-tropical climates are characterized by high temperature and humidity, during at least part of the year. Consequently, heat stress is common in Holstein cattle and productive and reproductive losses are frequent. Our objectives were as follows: (1) to quantify losses in production and quality of milk due to heat stress; (2) to estimate genetic correlations within and between milk yield (MY) and milk quality traits; and (3) to evaluate the trends of genetic components of tolerance to heat stress in multiple lactations of Brazilian Holstein cows. Thus, nine analyses using two-trait random regression animal models were carried out to estimate variance components and genetic parameters over temperature–humidity index (THI) values for MY and milk quality traits (three lactations: MY×fat percentage (F%), MY×protein percentage (P%) and MY×somatic cell score (SCS)) of Brazilian Holstein cattle. It was demonstrated that the effects of heat stress can be harmful for traits related to milk production and milk quality of Holstein cattle even though most herds were maintained in a modified environment, for example, with fans and sprinklers. For MY, the effect of heat stress was more detrimental in advanced lactations (−0.22 to −0.52 kg/day per increase of 1 THI unit). In general, the mean heritability estimates were higher for lower THI values and longer days in milk for all traits. In contrast, the heritability estimates for SCS increased with increasing THI values in the second and third lactation. For each trait studied, lower genetic correlations (different from unity) were observed between opposite extremes of THI (THI 47 v. THI 80) and in advanced lactations. The genetic correlations between MY and milk quality trait varied across the THI scale and lactations. The genotype×environment interaction due to heat stress was more important for MY and SCS, particularly in advanced lactations, and can affect the genetic relationship between MY and milk quality traits. Selection for higher MY, F% or P% may result in a poor response of the animals to heat stress, as a genetic antagonism was observed between the general production level and specific ability to respond to heat stress for these traits. Genetic trends confirm the adverse responses in the genetic components of heat stress over the years for milk production and quality. Consequently, the selection of Holstein cattle raised in modified environments in both tropical and sub-tropical regions should take into consideration the genetic variation in heat stress.  相似文献   

3.
The profitability of dual-purpose breeding farms can be increased through genetic improvement of carcass traits. To develop a genetic evaluation of carcass traits of young bulls, breed-specific genetic parameters were estimated in three French dual-purpose breeds. Genetic correlations between these traits and veal calf, type and milk production traits were also estimated. Slaughter performances of 156 226 Montbeliarde, 160 361 Normande and 8691 Simmental young bulls were analyzed with a multitrait animal model. In the three breeds, heritabilities were moderate for carcass weight (0.12 to 0.19±0.01 to 0.04) and carcass conformation (0.21 to 0.26±0.01 to 0.04) and slightly lower for age at slaughter (0.08 to 0.17±0.01 to 0.03). For all three breeds, genetic correlations between carcass weight and carcass conformation were moderate and favorable (0.30 to 0.52±0.03 to 0.13). They were strong and favorable (−0.49 to −0.71±0.05 to 0.15) between carcass weight and age at slaughter. Between age at slaughter and carcass conformation, they were low and unfavorable to moderate and favorable (−0.25 to 0.10±0.06 to 0.18). Heavier young bulls tend to be better conformed and slaughtered earlier. Genetic correlations between corresponding young bulls and veal production traits were moderate and favorable (0.32 to 0.70±0.03 to 0.09), implying that selecting sires for veal calf production leads to select sires producing better young bulls. Genetic correlations between young bull carcass weight and cow size were moderately favorable (0.22 to 0.45±0.04 to 0.10). Young bull carcass conformation had moderate and favorable genetic correlations (0.11 to 0.24±0.04 to 0.10) with cow width but moderate and unfavorable genetic correlations (−0.21 to −0.36±0.03 to 0.08) with cow height. Taller cows tended to produce heavier young bulls and thinner cows to produce less conformed ones. Genetic correlations between carcass traits of young bulls and cow muscularity traits were low to moderate and favorable. Finally, genetic correlations between carcass traits of young bulls and milk production traits were low and unfavorable to moderate and favorable. These results indicate the existence for all three breeds of genetic variability for the genetic improvement of carcass traits of young bulls as well as favorable genetic correlations for their simultaneous selection and no strong unfavorable correlation with milk production traits.  相似文献   

4.
Genetic selection for milking speed is feasible. The existence of a correlation structure between milking speed and milk yield, however, necessitates a selection strategy to increase milking speed with no repercussion on genetic merit for milk yield. Residual milking duration (RMD) and residual milking duration including somatic cell score (RMDS), defined as the residuals from a regression model of milking duration on milk yield or milk yield plus somatic cell score (SCS) have been advocated. The objective of this study was to undertake a first ever genetic analysis of these novel traits. Data on electronically recorded milking duration and other milking characteristics from 235 005 test-day records on 74 608 cows in 1075 Irish dairy herds were available. Variance components for the milking characteristic traits were estimated using animal linear mixed models and covariances with other performance traits, including udder-related type traits, were estimated using sire models. The heritability of milking duration, RMD and RMDS was 0.20, 0.22 and 0.18, respectively. There were little differences in the heritability of RMD or RMDS when defined using genetic regression. The genetic standard deviation of RMDS defined on the phenotypic or genetic level was 36.8 s and 37.6 s, respectively, clearly indicating considerable exploitable genetic variation in milking duration independent of both milk yield and SCS. The genetic correlation between phenotypically derived RMDS and milk yield was favourable (−0.43), but RMDS was unfavourably genetically correlated with SCS (−0.30); the genetic correlations with both traits when RMDS was defined at a genetic level were zero. RMDS defined at the phenotypic level was negatively (i.e. unfavourable) genetically correlated (−0.35; s.e. = 0.15) with mastitis; however, when defined using genetic regression, shorter RMDS was not associated with greater expected incidence of mastitis. RMDS, defined at the genetic level, is a useful heritable trait with ample genetic variation for inclusion in a national breeding strategy without influencing genetic gain in either milk yield or udder health.  相似文献   

5.
The automated milking system provides breeders with a large amount of automatically collected information about each cow in herd that cannot be easily obtained in non-robotised systems. This knowledge can be used in breeding programs improving somatic cell count (SCC) level. The objective of this study was to estimate heritabilities and genetic correlations among test-day (TD) somatic cell score (SCS) and selected milking traits, such as daily milk yield (MY), milking frequency (MF), milking time (MT) and milking speed (MS), attachment time (AT) to single teat cups, electrical conductivity (EC) and milk temperature (MTEMP). Data were collected for 1 899 Polish Holstein-Friesian primiparous cows milked in an automatic milking system. Genetic parameters of the studied traits were estimated using Bayesian method via Gibbs sampling and two-trait random regression animal model with fixed effect of herd x TD, fixed regressions on days in milk (DIM) nested within age at calving by season of calving and RR for additive genetic and permanent environmental effects. Both fixed and RR were fitted with fourth-order Legendre polynomials on DIM. The estimated daily heritabilities were in the following ranges: MY – 0.162–0.338, MF – 0.156–0.444, MT – 0.090–0.320, MS – 0.252–0.665, AT – 0.105–0.394, EC – 0.269–0.466, MTEMP – 0.135–0.304 and SCS – 0.155–0.321. The heritabilities for traits expressed on a 305-d basis were moderate to high: 0.460 for MY, 0.514 for MF, 0.315 for MT, 0.431 for MS, 0.256 for AT, 0.386 for EC, 0.407 for MTEMP and 0.359 for SCS. Genetic correlations between traits on a 305-d basis showed that SCS was most strongly genetically correlated with MTEMP (0.572) and MS (0.480), whereas genetic relationships of SCS with MT (0.221) and EC (− 0.216) were moderate. Phenotypic correlations between traits on a 305-d basis were moderate or low. Somatic cell score was negatively phenotypically correlated with MY, MF and MT, with the highest relationship with MT (− 0.302). The largest positive phenotypic correlations were observed between SCS and MS (0.311) and with MTEMP (0.286). In summary, it is concluded that there is a chance to carry out effective selection for lower SCS and for some other traits, in particular MS and MTEMP. The obtained results are promising enough to conduct further research to evaluate how these traits can be used both to increase the accuracy of genetic evaluations of SCC and to improve udder health.  相似文献   

6.
A multi-trait animal model was used to estimate genetic parameters among lactation somatic cell score (SCS) and udder-type traits in South African Jersey cattle, through restricted maximum likelihood (REML) procedures. Data comprised records on 18 321 Jersey cows in 470 herds, collected through the National Milk Recording Scheme from 1996 to 2002. Average SCS in the first three lactations (SCS1, SCS2 and SCS3) were considered as different traits and the udder-type traits were fore udder attachment (FUA), rear udder height (RUH), rear udder width (RUW), udder cleft (UC), udder depth (UD), fore teat placement (FTP), rear teat placement (RTP) and fore teat length (FTL). Heritability estimates for the respective lactation SCS were 0.07 ± 0.01, 0.11 ± 0.01 and 0.11 ± 0.02. Udder-type traits had heritability estimates ranging from 0.14 ± 0.01 for UD to 0.30 ± 0.02 for FTL. Genetic correlations between SCS and udder-type traits ranged from -0.003 ± 0.07 between FUA and SCS3 to -0.50 ± 0.07 between UD and SCS3. Slow genetic progress is expected when selection is applied independently on SCS and udder-type traits, due to the generally low heritabilities. Tightly attached shallow udders with narrowly placed rear teats are associated with low SCS in the Jersey population.  相似文献   

7.
Milk production, fertility, longevity and health records, were extracted from databases of two milk recording organisations in the United Kingdom for the first three lactations of the Holstein–Friesian breed. These included data related to health events (mastitis and lameness), voluntarily recorded on a proportion of farms. The data were analysed to calculate disease incidence levels and to estimate genetic parameters for health traits and their relationships with production and other functional traits. The resulting dataset consisted of 124 793 lactations from 75 137 animals of 1586 sires, recorded in 2434 herds. Incidence of health events increased with parity. The overall incidence of mastitis (MAS) and lameness (LAM), defined as binary traits, were 17% and 16%, respectively. Heritability estimates for MAS and LAM were 0.04 and 0.02, respectively, obtained from repeatability linear sire models. Heritability estimates of mastitis and lameness as count traits were slightly higher, 0.05 and 0.03, respectively. Genetic correlations were obtained by bivariate analyses of all pair-wise combinations between milk 305-day yield (MY), protein 305-day yield (PY), fat 305-day yield (FY), lactation average loge transformed lactation average somatic cell count (SCS), calving interval (CI), days to first service (DFS), non-return at 56 days (NR56), number of inseminations (NINS), mastitis (MAS), number of mastitis episodes (NMAS), lameness (LAM), number of lameness episodes (NLAM) and lifespan score (LS). As expected, MAS was correlated most strongly with SCS (0.69), which supports the use of SCS as an indicator trait for mastitis. Genetic correlations between MAS and yield and fertility traits were of similar magnitude ranging from 0.27 to 0.33. Genetic correlations between MAS with LAM and LS were 0.38 and −0.59, respectively. Not all genetic correlations between LAM and other traits were significant because of fewer numbers of lameness records. LAM had significant genetic correlations with MY (0.38), PY (0.28), CI (0.35), NINS (0.38) and LS (−0.53). The heritability estimates of mastitis and lameness were low; therefore, genetic gain through direct selection alone would be slow, yet still positive and cumulative. Direct selection against mastitis and lameness as additional traits should reduce incidence of both diseases, and simultaneously improve fertility and longevity. However, both health traits had antagonistic relationships with production traits, thus genetic gain in production would be slower.  相似文献   

8.
Lactose and somatic cell score (SCS) are major economic traits of milk. However, for many countries, they are typically not directly considered in the national genetic evaluation of Simmental cattle. This study aimed to estimate the genetic relationships between lactose, SCS, and growth traits of Simmental cattle to provide information for the national genetic evaluation of the selection of traits of this cattle population. The data of 1781 animals with 6519 records obtained over a period of 41 years (1975–2016) were collected from Xinjiang Hutubi Farm, China. The analyzed traits included 305 days of milk yield (305MY), milk fat percentage (MFP), milk protein percentage (MPP), milk lactose percentage (MLP), total solids (TS), SCS, body height (BH), body length (BL), chest girth (CG), abdominal circumference (AC), rump width (RW), rump length (RL), leg circumference (LC), and cannon circumference (CC). The multiple-trait repeatability model was adopted to estimate (co)variance components using the average information-restricted maximum likelihood method implemented using the DMU statistical package. The heritability estimates for milk components and growth traits ranged from 0.09 (SCS) to 0.51 (BH). Genetic correlations for milk components ranged from 0.03 ± 0.14 (MFP and MLP) to 0.81 ± 0.08 (MFP and MPP). Genetic correlation between MLP and SCS was moderate and negative (− 0.50 ± 0.15) compared with that among other traits. Genetic correlations between the milk components and growth traits ranged from 0.00 ± 0.07 (305MY and RW) to − 0.64 ± 0.15 (MLP and BL). Genetic correlations of BL, LC, RW, and RL with MLP were moderate to high and negative ranging from − 0.39 to − 0.64. Somatic cell score showed the highest correlation with BL (0.41) followed by LC (0.21). An increase in MLP would result in an increase in 305MY or TS and a decrease in BL, LC, RW, and RL. Additionally, a decrease in SCS would occur with the selection of increased MLP and reduced BL. We conclude that selection based on easily and inexpensively measured growth traits could improve the milk quality from Simmental cattle.  相似文献   

9.
The success in competitions may be stressful for animals and costly in terms of immune functions and longevity. Focusing on Aosta Chestnut and Aosta Black Pied cattle, selected for their fighting ability in traditional competitions, this study investigated the genetic relationships of fighting ability with udder health traits (somatic cell score and two threshold traits for somatic cells), longevity (length of productive life and number of calvings) and test-day milk, fat and protein yield. Herdbook information and phenotypic records that have been routinely collected for breeding programs in 16 years were used for the abovementioned traits. Data belonged to 9328 cows and 19 283 animals in pedigree. Single-trait animal model analyses were run using a Gibbs sampling algorithm to estimate the variance components of traits, and bivariate analyses were then performed to estimate the genetic correlations. Moderate positive genetic correlations (ra) were found for fighting ability with somatic cell score (ra=0.255), suggesting that greater fighting ability is genetically related to a detriment in udder health, in agreement with the theory. The high positive genetic correlation between fighting ability and longevity (average ra=0.669) suggests that the economic importance of fighting ability (the winning cows get an higher price at selling) had probably masked the true genetic covariances. The genetic correlation between milk yield traits and fighting ability showed large intervals, but the negative values (average ra=−0.121) agreed with previous research. This study is one of the few empirical studies on genetic correlations for the competitive success v. immune functions and longevity traits. The knowledge of the genetic correlations among productive and functional traits of interest, including fighting ability, is important in animal breeding for a sustainable genetic improvement.  相似文献   

10.
Serial measurements of three milkability traits from two commercial dairy farms in Germany were used to estimate heritabilities and breeding values (BVs). Overall, 6352 cows in first, second and third lactations supplied 2 188 810 records based on daily values recorded from 1998 to 2003. Only the records between day 8 and day 305 after calving were considered. The estimated genetic correlations between different parities within the three milkability traits ranged from rg = 0.88 to 0.98, i.e. they were sufficiently high to warrant a repeatability model. The resulting estimated heritability coefficients were h2 = 0.42 for average milk flow, h2 = 0.56 for maximum milk flow and h2 = 0.38 for milking time. We analysed the genetic correlation between milkability and somatic cell score (SCS) and between milkability and the liability to mastitis, respectively, as the optimum milk flow for udder health is not well defined. There were 66 146 records with information on somatic cell count. Furthermore, 23 488 days of medical treatment for udder diseases were available, resulting in 2 600 302 days of observation in total. Heritabilities for the liability to mastitis, estimated with a test-day threshold model, were h2 = 0.19 and h2 = 0.13, depending on the data-recording period (first 50 days of lactation and first 305 days of lactation, respectively). With respect to the relationship between milkability and udder health, the results indicated a slight and linear correlation insofar as one can assume: the higher the milk flow, the worse the udder health. For this reason, bulls and cows with high BVs for milk flow should be excluded from breeding to avoid a deterioration of udder health. The establishment of a special data-recording scheme for functional traits such as milkability and mastitis on commercial dairy farms may be possible according to these results.  相似文献   

11.
Type traits (TTs) can contribute to breeding animals with good economic traits such as production, longevity, fertility, and profitability. Dairy buffaloes are the second largest source of milk supply in the world, and their TTs should be taken into consideration in future dairy buffalo breeding programmes. However, the relationship between TTs and milk production traits in buffalo remains largely unknown. The study aimed to establish an early selection method for buffaloes with desirable milk performance by TTs. Using 1 908 records from 678 buffaloes, the relationship between TTs and milk production traits was analysed and the optimal growth curves of TTs related to milk production traits were constructed. We examined the correlations between 45 TTs (33 body structural, 12 udder and teat morphological traits) and three milk production traits (milk yield (MY), milk fat percentage (MF), and milk protein percentage (MP)). The results showed that the highest correlation was found between MY and udder circumference (r = 0.438), teat length (r = ?0.380) or heart girth (r = ?0.341). The teat distance and teat circumference exhibited a significant negative correlation with MF and MP. Rump length was the only trait that had a significant positive correlation with milk production traits, suggesting that milk performance could be comprehensively improved by including rump length in the selection procedure. Notably, we found that high milk production traits was obtained from the buffaloes with short teats (<6 cm), small heart girth (<200 cm), large udder circumference (>104 cm), long rump (>39 cm), and small distance between teats. Moreover, an early selection method for buffaloes with excellent milk performance was developed based on the non-linear models. Brody model exhibited the best fitting effect for heart girth and rump length, while the Logistic model displayed the best fitting effect for teat length. Our findings provide theoretical basis for the early selection of buffaloes with desirable milk performance.  相似文献   

12.
The aim of this study was to estimate genetic correlations between milk yield, somatic cell score (SCS), mastitis, and claw and leg disorders (CLDs) during first lactation in Holstein cows by using a threshold–linear random regression test-day model. We used daily records of milk, fat and protein yields; somatic cell count (SCC); and mastitis and CLD incidences from 46 771 first-lactation Holstein cows in Hokkaido, Japan, that calved between 2000 and 2009. A threshold animal model for binary records (mastitis and CLDs) and linear animal model for yield traits were applied in our multiple trait analysis. For both liabilities and yield traits, additive genetic effects were used as random regression on cubic Legendre polynomials of days on milk. The highest positive genetic correlations between yields and disease incidences (0.36 for milk and mastitis, 0.56 for fat and mastitis, 0.24 for protein and mastitis, 0.32 for milk and CLD, 0.44 for fat and CLD and 0.31 for protein and CLD) were estimated at about the time of peak milk yield (36 to 65 days in milk). Selection focused on early lactation yield may therefore increase the risk of mastitis and CLDs. The positive genetic correlations of SCS with mastitis or CLD incidence imply that selection to reduce SCS in the early stages of lactation would decrease the incidence of both mastitis and CLD.  相似文献   

13.
Bivariate analyses of functional longevity in dairy cattle measured as survival to next lactation (SURV) with milk yield and fertility traits were carried out. A sequential threshold-linear censored model was implemented for the analyses of SURV. Records on 96 642 lactations from 41 170 cows were used to estimate genetic parameters, using animal models, for longevity, 305 d-standardized milk production (MY305), days open (DO) and number of inseminations to conception (INS) in the Spanish Holstein population; 31% and 30% of lactations were censored for DO and INS, respectively. Heritability estimates for SURV and MY305 were 0.11 and 0.27 respectively; while heritability estimates for fertility traits were lower (0.07 for DO and 0.03 for INS). Antagonist genetic correlations were estimated between SURV and fertility (-0.78 and -0.54 for DO and INS, respectively) or production (-0.53 for MY305), suggesting reduced functional longevity with impaired fertility and increased milk production. Longer days open seems to affect survival more than increased INS. Also, high productive cows were more problematic, less functional and more liable to being culled. The results suggest that the sequential threshold model is a method that might be considered at evaluating genetic relationship between discrete-time survival and other traits, due to its flexibility.  相似文献   

14.
The aim of the study was to infer (co)variance components for daily milk yield, fat and protein contents, and somatic cell score (SCS) in Burlina cattle (a local breed in northeast Italy). Data consisted of 13576 monthly test-day records of 666 cows (parities 1 to 8) collected in 10 herds between 1999 and 2009. Repeatability animal models were implemented using Bayesian methods. Flat priors were assumed for systematic effects of herd test date, days in milk, and parity, as well as for permanent environmental, genetic, and residual effects. On average, Burlina cows produced 17.0 kg of milk per day, with 3.66 and 3.33% of fat and protein, respectively, and 358000 cells per mL of milk. Marginal posterior medians (highest posterior density of 95%) of heritability were 0.18 (0.09–0.28), 0.28 (0.21–0.36), 0.35 (0.25–0.49), and 0.05 (0.01–0.11) for milk yield, fat content, protein content, and SCS, respectively. Marginal posterior medians of genetic correlations between the traits were low and a 95% Bayesian confidence region included zero, with the exception of the genetic correlation between fat and protein contents. Despite the low number of animals in the population, results suggest that genetic variance for production and quality traits exists in Burlina cattle.  相似文献   

15.
16.
Feed costs account for the largest proportion of direct cost within suckler beef production systems. By identifying the cow type with enhanced capability of converting grazed herbage to beef output across lactations, suckler cow systems would become more efficient and sustainable. The objective of this study was to estimate grass DM intake (GDMI) and production efficiency among lactating suckler cows of diverse genetic merit for the national Irish maternal index (Replacement Index) which includes cow efficiency components such as milk yield and feed intake. Data from 131 cows of diverse genetic merit within the Replacement Index, across two different replacement strategies (suckler or dairy sourced), were available over two grazing seasons. Milk yield, GDMI, cow live weight (BW) and body condition score (BCS) were recorded during early, mid and late-lactation, with subsequent measures of production efficiency extrapolated. Genetic merit had no significant effect on any variables investigated, with the exception of low genetic merit (LOW) cows being 22 kg heavier in BW than high genetic merit (HIGH) cows (P < 0.05). Beef cows were 55 kg heavier in BW (P < 0.001), had a 0.31 greater BCS (P < 0.05) and 0.30 Unité Fourragère Lait (UFL) greater energy requirement for maintenance compared to dairy sourced beef × dairy crossbred (BDX) cows (P < 0.001). The BDX had 0.8 kg greater GDMI, produced 1.8 kg more milk (P < 0.001), had a 0.8 UFL greater energy requirement for lactation and produced weanlings that were 17 kg heavier in BW than beef cows (P < 0.05). Subsequent efficiency variables of milk per 100 kg BW (P < 0.001), milk per kg GDMI (P < 0.001) and GDMI per 100 kg BW (P < 0.001) were more favourable for BDX. The correlations examined showed GDMI had moderate positive correlations (P < 0.001) with intake per 100 kg BW, net energy intake per kg milk yield, RFI and intake per 100 kg calf weaning weight but was weakly negatively correlated to milk yield per kg GDMI (P < 0.001). No difference was observed across genetic merit for beef cows for any of the traits investigated. Results from the current study showed that, while contrasting replacement strategies had an effect on GDMI and production efficiency, no main effect was observed on cows diverse in genetic merit for Replacement Index. Nonetheless, utilising genetic indexes in the suckler herd is an important resource for selecting breeding females for the national herd and phenotypic performance generated from this study can be included in future genetic evaluations to improve reliability of genetic values.  相似文献   

17.
In 2010, a routine genetic evaluation on occurrence of clinical mastitis in three main dairy cattle breeds – Montbéliarde (MO), Normande (NO) and Holstein (HO) – was implemented in France. Records were clinical mastitis events reported by farmers to milk recording technicians and the analyzed trait was the binary variable describing the occurrence of a mastitis case within the first 150 days of the first three lactations. Genetic parameters of clinical mastitis were estimated for the three breeds. Low heritability estimates were found: between 2% and 4% depending on the breed. Despite its low heritability, the trait exhibits genetic variation so efficient genetic improvement is possible. Genetic correlations with other traits were estimated, showing large correlations (often>0.50, in absolute value) between clinical mastitis and somatic cell score (SCS), longevity and some udder traits. Correlation with milk yield was moderate and unfavorable (ρ=0.26 to 0.30). High milking speed was genetically associated with less mastitis in MO (ρ=−0.14) but with more mastitis in HO (ρ=0.18). A two-step approach was implemented for routine evaluation: first, a univariate evaluation based on a linear animal model with permanent environment effect led to pre-adjusted records (defined as records corrected for all non-genetic effects) and associated weights. These data were then combined with similar pre-adjusted records for others traits in a multiple trait BLUP animal model. The combined breeding values for clinical mastitis obtained are the official (published) ones. Mastitis estimated breeding values (EBV) were then combined with SCSs EBV into an udder health index, which receives a weight of 14.5% to 18.5% in the French total merit index (ISU) of the three breeds. Interbull genetic correlations for mastitis occurrence were very high (ρ=0.94) with Nordic countries, where much stricter recording systems exist reflecting a satisfactory quality of phenotypes as reported by the farmers. They were lower (around 0.80) with countries supplying SCS as a proxy for the international evaluation on clinical mastitis.  相似文献   

18.
Factor analysis was applied to individual type traits (TT) scored in primiparous cows belonging to two dual purpose Italian breeds, Rendena (REN; 20 individual type traits evaluated on 11 399 first parity cows), and Aosta Red Pied (ARP; 22 individual type traits evaluated on 36 168 primiparous cows). Six common latent factors (F1 to F6; eigenvalues ⩾1) which explained 63% (REN) and 58% (ARP) of the total variance were obtained. F1 included TT mainly related to muscularity, and F2 to body size. The F3 and F4 accounted for udder size and conformation, respectively. F5 included rear legs and feet. Biological significance for F6 was not readily obtained. Moderate to low heritability were estimated through REML single-trait analysis from factor scores (from 0.22 to 0.52 in REN, and from 0.08 to 0.37 in ARP). The greatest heritability values were estimated for body size and muscularity (0.52 and 0.37 for body size; and 0.40 and 0.32 for muscularity in REN and ARP, respectively). As expected, rank correlations, obtained considering estimated breeding values derived from best linear unbiased prediction analysis on the individual TT and factor score, showed similar coefficients to those observed in the factor analysis following loading of TT within each latent factor. These results suggest the possibility to implement the factor analysis in the morphological evaluation, simplifying the information given by the type traits into new variables useful for the genetic improvement of dual purpose cattle.  相似文献   

19.
Improving feed efficiency in dairy cattle could result in more profitable and environmentally sustainable dairy production through lowering feed costs and emissions from dairy farming. In addition, beef production based on dairy herds generates fewer greenhouse gas emissions per unit of meat output than beef production from suckler cow systems. Different scenarios were used to assess the profitability of adding traits, excluded from the current selection index for Finnish Ayrshire, to the breeding goal for combined dairy and beef production systems. The additional breeding goal traits were growth traits (average daily gain of animals in the fattening and rearing periods), carcass traits (fat covering, fleshiness and dressing percentage), mature live weight (LW) of cows and residual feed intake (RFI) traits. A breeding scheme was modeled for Finnish Ayrshire under the current market situation in Finland using the deterministic simulation software ZPLAN+. With the economic values derived for the current production system, the inclusion of growth and carcass traits, while preventing LW increase generated the highest improvement in the discounted profit of the breeding program (3.7%), followed by the scenario where all additional traits were included simultaneously (5.1%). The use of a selection index that included growth and carcass traits excluding LW, increased the profit (0.8%), but reduced the benefits resulted from breeding for beef traits together with LW. A moderate decrease in the profit of the breeding program was obtained when adding only LW to the breeding goal (−3.1%), whereas, adding only RFI traits to the breeding goal resulted in a minor increase in the profit (1.4%). Including beef traits with LW in the breeding goal showed to be the most potential option to improve the profitability of the combined dairy and beef production systems and would also enable a higher rate of self-sufficiency in beef. When considering feed efficiency related traits, the inclusion of LW traits in the breeding goal that includes growth and carcass traits could be more profitable than the inclusion of RFI, because the marginal costs of measuring LW can be expected to be lower than for RFI and it is readily available for selection. In addition, before RFI can be implemented as a breeding objective, the genetic correlations between RFI and other breeding goal traits estimated for the studied population as well as information on the most suitable indicator traits for RFI are needed to assess more carefully the consequences of selecting for RFI.  相似文献   

20.
《Small Ruminant Research》2010,89(2-3):77-83
The aim of this paper was studying the phenotypic and genetic relationships between udder morphology traits and udder health in dairy sheep. From 2000 to 2008 udder traits, somatic cell count (SCC) and clinical mastitis cases were recorded in an experimental flock consisting each year of around 900 ewes. A logistic regression was performed to evaluate the risk for a ewe of showing either a mastitis or at least 2 daily SCC records greater than 1 × 106 cells/ml in one of its lactations as function of udder traits scored in 1st lactation. 1587 individual udder scores and 39,950 SCC daily records were used for the analysis. Secondly, genetic correlation between lactation mean of somatic cell score and udder traits were estimated by a REML method applied to four bi-trait animal models, using data from 2251 primiparous ewes. Logistic regression results indicated that the risk of mastitis or high SCC values during the productive life increased as the cistern height increased and the degree of udder suspension and udder depth decreased. This suggests that the appraisal of the udder is a useful tool for culling decision aimed at increasing the sanitary status of the flock. The genetic correlation between lactation SCS and udder traits were favourable for udder depth (−0.50 ± 0.12), teat placement (0.39 ± 0.011) and degree of udder suspension (−0.42 ± 0.011) and closed to zero for the degree of separation of the two halves. Thus selection for udder morphology, already implemented in some dairy sheep breeds with the aim of improving machine milkability, will lead to a favourable correlated genetic response on SCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号