首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 247 毫秒
1.
The high-sulfate-containing exopolysaccharide p-KG03 is produced by the red-tide microalga Gyrodinium impudicum strain KG03. The immunostimulatory effects of this sulfated exopolysaccharide were investigated by isolating peritoneal macrophages from mice 10 or 20 days after they had received a single dose of p-KG03 (100 or 200 mg/kg body weight). The cytotoxicity of the isolated macrophages for B16 tumor cells was tested, as B16 tumor cells are sensitive to tumor necrosis factor α (TNF-α) and nitric oxide. The activities of natural killer cells from the p-KG03-treated mice against YAC-1 mouse lymphoma cells were also tested. The nonspecific immune functions mediated by natural killer cells and macrophages were increased by treatment with p-KG03 in vivo. These results suggest that p-KG03 has immunostimulatory effects and enhances the tumoricidal activities of macrophages and NK cells in vivo. In addition, p-KG03 treatment increased the plaque-forming cell response to sheep red blood cells, as well as the levels of IgM and IgG Exposure to p-KG03 also increased the production by macrophages of cytokines, such as interleukins -1β and -6, and TNF-α. This is the first report of a marine microalgal sulfated polysaccharide having immunostimulatory activities. The p-KG03 polysaccharide may be useful for the development of biotechnological and pharmaceutical products that incorporate bioactive marine exopolysaccharides.  相似文献   

2.
The flocculating activity of an exopolysaccharide, p-KG03, produced by a marine dinoflagellate Gyrodinium impudicum KG03 was investigated. The p-KG03 was a highly sulfated exopolysaccharide that showed strong antiviral activity against encephalomyocarditis virus (EMCV) and immunostimulating activity by NK cell activation. For the industrial applications of p-KG03, as the bioflocculant agent, p-KG03 showed that more than 90% of the flocculating activity in kaolin suspension occurred at concentrations of 0.5 mg/l with the maximum at 1.0 mg/l. However, flocculation decreased from 2.5 mg/l. The flocculation rate increased linearly with concentration and was higher than that observed in commercial products such as polyacrylamide (approximately 1.0 mg/l) or zooglan (approximately 3.0 mg/l). The p-KG03 was an effective flocculant under acidic conditions (pH 3-6) and over a wide temperature range (4-90 degrees C). The presence of cations did not enhance flocculating activity. The average molecular mass, as determined by gel filtration chromatography, was about 1.87 x 10(3) KDa. Galactose was the main sugar in p-KG03, which also contained uronic acid (2.9%, w/w) and sulfate groups (10.3%, w/w). The infrared spectrum of p-KG03 showed absorption bands of carboxylate groups. Thermogravimetric analysis indicated a degradation temperature (T(d)) of 250 degrees C. Several other properties of p-KG03 such as intrinsic viscosity, the rheological behavior, consistency index (k) and flow behavior index (eta) were also studied.  相似文献   

3.
A marine microalga Gyrodinium impudicum strain KG03 produced sulfated exopolysaccharide designated as p-KG03, which showed a strong antiviral activity against encephalomyocarditis virus (EMCV). To optimize culture conditions for the production of p-KG03, mineral salts, vitamins, plant growth hormones, temperature, pH and light conditions were examined. From this study, M-KG03 medium for the maximum production of p-KG03 was suggested as follows; NH(4)Cl 75 microM, NaH(3)PO(4) 200 microM, NaHCO(3) 50 microM, Na(2)SO(4) 10 microM, FeCl(2) x 6H(2)O 10 microM, MnCl(2) x 4H(2)O 0.1 microM, vitamin B(12) 0.75 microg, naphthalene acetic acid (NAA) 7.5 microg and myo-inositol 200 mg per liter of aged sea water. The optimal temperature and pH were 22.5 degrees C and 8.0, respectively. The optimal light conditions of intensity and period were 150 microE m(-2) s(-1) and 16:8 h light:dark cycle. Finally, the cell growth and p-KG03 production were measured in one liter of M-KG03 medium with 1% CO(2) and 50 ml min(-1) of airflow using two liters airlift balloon type photobioreactor (ABTPR). At these optimal conditions, p-KG03 production and cell growth were 134.6+/-5.9 mg l(-1) and 123,076+/-1,597 cells ml(-1), respectively, representing a 7.7 and 5.1 times compared with f/2 medium with Erlenmeyer flask culture (p-KG03 production 17.5+/-1.3 mg l(-1) and cell growth 24,311+/-1,291 cells ml(-1)).  相似文献   

4.
A marine Pseudomonas species WAK-1 strain simultaneously produces extracellular glycosaminoglycan and sulfated polysaccharide. Among the antiviral activities tested for these polysaccharides, the latter showed anti-HSV-1 activity in RPMI 8226 cells (50% effective concentration is 1.4 μg/ml). Oversulfated derivatives of these polysaccharides prepared by dicyclohexylcarbodiimide-mediated reaction for both polysaccharides showed antiviral activities against influenza virus type A (for glycosaminoglycan, 50% effective concentration is 11.0 μg/ml; for another, 2.9 μg/ml). Glycosaminoglycan, sulfated polysaccharide, and their chemically synthesized oversulfated derivatives did not show antiviral activities against influenza virus type B and human immunodeficiency virus type 1. No cytotoxicity of these products was noted against host cells at the 50% cytotoxic concentration of 100 μg/ml, except that naturally occurring sulfated polysaccharide had 50% cytotoxicity against MT-4 cells at 8–21 μg/ml. Received May 1, 1998; accepted July 24, 1998.  相似文献   

5.
In this paper, in vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were investigated. Cytotoxicities and antiviral activities of Gracilaria lemaneiformis polysaccharides (PGL), Gracilaria lemaneiformis polysaccharide fraction-1 (GL-1), Gracilaria lemaneiformis polysaccharide fraction-2 (GL-2) and Gracilaria lemaneiformis polysaccharide fraction-3 (GL-3) were studied by the Methyl thiazolyl tetrazolium (MTT) method, and the inhibitory effect against Human influenza virus H1-364 induced cytopathic effect (CPE) on MDCK cells were observed by the CPE method. In addition, the antiviral mechanism of PGL was explored by Plaque forming unit (PFU), MTT and CPE methods. The results showed: i) Cytotoxicities were not significantly revealed, and H1-364 induced CPE was also reduced treated with sulfated polysaccharide fractions from Gracilaria lemaneiformis; ii) Antiviral activities were associated with the mass percentage content of sulfate groups in polysaccharide fractions, which was about 13%, in polysaccharides (PGL and GL-2) both of which exhibited higher antiviral activity; iii) A potential antiviral mechanism to explain these observations is that viral adsorption and replication on host cells were inhibited by sulfated polysaccharides from Gracilaria lemaneiformis. In conclusion, Anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis were revealed, and the antiviral activities were associated with content of sulfate groups in polysaccharide fractions.  相似文献   

6.
Aphanocapsa halophytia MN-11 isolated from a hypersaline environment was found to produce large quantities of exopolysaccharide. We describe here production of exopolysaccharide and the characterization of its properties. The effects of medium composition, particularly NaCl concentration, were tested. Maximum exopolysaccharide production was obtained with nitrogen and phosphorus concentrations in the medium exceeding 100 and 40 mg · L-1 respectively. In addition, when 30 g · L-1 NaCl was added to the medium, exopolysaccharide could be recovered from the medium supernatant. Exopolysaccharide from this strain was made up of at least six mono-oses and did not contain uronic derivatives or osamines. Proteins represented about 10% of total weight and, interestingly, 12% (wt/wt) sulfated residues, which is unusual for photosynthetic prokaryotes.  相似文献   

7.
During the last decade brown seaweeds attracted much attention as a source of polysaccharides, namely laminarans, alginic acids, and sulfated polysaccharides—fucoidans, with various structures and biological activities.In this study, sulfated polysaccharides were isolated from brown seaweeds Saccharina japonica (formerly named Laminaria) and Undaria pinnatifida and their antitumor activity was tested against human breast cancer T-47D and melanoma SK-MEL-28 cell lines.The sulfated polysaccharide form S. japonica was highly branched partially acetylated sulfated galactofucan, built up of (1→3)-α-l-fucose residues. The sulfated polysaccharide from U. pinnatifida was partially acetylated highly sulfated galactofucan consisting of (1→3)- or (1→3);(1→4)-α-l-fucose residues.Fucoidans from S. japonica and U. pinnatifida distinctly inhibited proliferation and colony formation in both breast cancer and melanoma cell lines in a dose-dependent manner. These results indicated that the use of sulfated polysaccharides from brown seaweeds S. japonica and U. pinnatifida might be a potential approach for cancer treatment.  相似文献   

8.
The in vitro antimicrobial activity of the marine green algae Chaetomorpha aerea was investigated against gram-positive bacteria, gram-negative bacteria, and a fungus. The water-soluble extract of algae was composed of a sulfated (6.3%) galactan with a molecular weight of 1.160 × 106 Da and a global composition close to commercial polysaccharides, such as dextran sulfate or fucoidan. The polysaccharide was composed of 18% arabinose, 24% glucose, and 58% galactose. The re-suspended extracts (methanol, water) exhibited selective antibacterial activities against 3 gram-positive bacteria including Staphylococcus aureus (ATCC 25923). Minimum inhibitory concentration and minimum bactericidal concentration tests showed that the sulfated galactan could be a bactericidal agent for this strain (40 mg/mL). The results of this study confirmed the potential use of the green algae Chaetomorpha aerea as a source of antibacterial compounds.  相似文献   

9.
Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of employing them in clinical practice are promising in view of the wealth of these compounds from marine organisms. The compounds may also be used in agriculture and the food industry.  相似文献   

10.
Purpose of the present study was to evaluate antioxidant, antibacterial, antifungal, and antiviral activities of the petroleum ether, chloroform, ethyl acetate and methanol extracts as well as the alkaloid fraction of Lycopodium clavatum L. (LC) from Lycopodiaceae growing in Turkey. Antioxidant activity of the LC extracts was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging method at 0.2 mg/ml using microplate-reader assay. Antiviral assessment of LC extracts was evaluated towards the DNA virus Herpes simplex (HSV) and the RNA virus Parainfluenza (PI-3) using Madin-Darby Bovine Kidney (MDBK) and Vero cell lines. Antibacterial and antifungal activities of the extracts were tested against standard and isolated strains of the following bacteria; Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Acinobacter baumannii, Klebsiella pneumoniae, Staphylococcus aureus, Bacillus subtilis as well as the fungi; Candida albicans and C. parapsilosis. All of the extracts possessed noteworthy activity against ATCC strain of S. aureus (4 μg/ml), while the LC extracts showed reasonable antifungal effect. On the other hand, we found that only the chloroform extract was active against HSV (16–8 μg/ml), while petroleum ether and alkaloid extracts inhibited potently PI-3 (16–4 μg/ml and 32–4 μg/ml, respectively). However, all of the extracts had insignificant antiradical effect on DPPH. In addition, we also analyzed the content of the alkaloid fraction of the plant by capillary gas chromatography-mass spectrometry (GC-MS) and identified lycopodine as the major alkaloid.  相似文献   

11.
A halophilic, thermotolerant Bacillus strain (B3-15), isolated from water of a shallow, marine hot spring at Vulcano Island (Eolian Islands, Italy), produced an exocellular polysaccharide at 165 mg l–1. It grew on kerosene as sole carbon source and was resistant to Cd2+, Zn2+, As2+ and Hg2+. From 16S rDNA analysis, strain B3-15 was related to B. licheniformis. The exopolysaccharide was a tetrasaccharide repeating unit essentially constituted by sugars having a manno-pyranosidic configuration.  相似文献   

12.
Coury  D. A.  Naganuma  T.  Polne-Fuller  M.  Gibor  A. 《Hydrobiologia》1993,260(1):421-427
Viable protoplasts were isolated from apices of the agarophyte Gelidium robustum (Gardn.) Hollenb. & Abb. using a combination of commercial cell-wall degrading enzymes and extracellular wall-degrading enzymes isolated from a marine bacterium. The protoplasts were approximately 8–15 µm in diameter, liberated mainly from the surface cell layers and from cells at the distal ends of medullary filaments. The bacterial enzyme alone was not sufficient to liberate significant numbers of protoplasts. Maximum yield was 9 × 105 protoplasts/g tissue (wet wt.). Optimum osmolality occurred between 1750–1950 mOs kg–1; yield and viability were severely diminished at osmolalities less than 1350 mOs kg–1. Viability, as determined by flurorescein diacetate staining and Evans Blue exclusion 1 hr after removal from the enzyme solution, was approximately 80–95%. Roughly 80% of the cells did not show Calcofluor fluorescence, while 40% stained positively for the presence of sulfated polysaccharides. Cell wall regeneration was observed with inconsistent reproducibility, and no cell division was observed when the protoplasts were placed in culture medium.Dedicated to the memory of Professor Michael Neushul.  相似文献   

13.
A chemically sulfated galactomannan (BRS) from seeds of Mimosa scabrella had in vitro antiviral activity against Herpes simplex virus 1 (HSV-1), but not against Simian rotavirus A/SA11 (SiRV-A/SA11). It was examined by 13C NMR spectroscopy, which showed the sulfate groups to be mainly at C-6 of galactose residues. BRS had a selective inhibition against HSV-1 during its attachment step, having an IC50 lower than 2.5 μg/ml, determined by plaque reduction, and a selectivity index of greater than 181, suggesting that the antiviral effect is likely due to interactions between the virus and BRS, being influenced its overall surface charge.  相似文献   

14.
One-hundred and five fungal strains, belonging to 46 different species, were screened for exopolysaccharide production. Phytopathogenicity and, in particular, inability to produce conidia, were physiological characteristics positively associated and correlated with the fungal ability to produce polysaccharides. Among the 29 positive strains, Botryosphaeria rhodina DABAC-P82 was the most interesting reaching, when grown on optimal nitrogen source and concentration (NaNO3 and 2.0 g l−1, respectively) and culture medium pH (3.7), 17.7 g l−1 of exopolysaccharide production after only 24 h of fermentation; yield and productivity were 0.69 g g−1 and 0.73 g l−1 h−1, respectively. The purified polysaccharide was characterised as a homopolysaccharide of glucose with a molecular weight of 4.875·106 Da. Studies of structural analysis indicated the presence of β-1,3 and β-1,6 linkages; the EPS structure was very similar to that of scleroglucan. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Uptake and distribution of cadmium in maize inbred lines   总被引:39,自引:0,他引:39  
Genotypic variation in uptake and distribution of cadmium (Cd) was studied in 19 inbred lines of maize (Zea mays L.). The inbred lines were grown for 27 days on an in situ Cd-contaminated sandy soil or for 20 days on nutrient solution culture with 10 µg Cd L-1. The Cd concentrations in the shoots showed large genotypic variation, ranging from 0.9 to 9.9 µg g-1 dry wt. for the Cd-contaminated soil and from 2.5 to 56.9 µg g-1 dry wt. for the nutrient solution culture. The inbred lines showed a similar ranking for the Cd concentrations in the shoots for both growth media (r2=0.89). Two main groups of inbreds were distinguished: a group with low shoot, but high root Cd concentrations (shoot: 7.4±5.3 µg g-1 dry wt.; root: 206.0±71.2 µg g-1 dry wt.; shoot Cd excluder) and a group with similar shoot and root Cd concentrations (shoot: 54.2±3.4 µg g-1 dry wt.; root: 75.6±11.2 µg g-1 dry wt.; non-shoot Cd excluder). The classification of the maize inbred lines and the near equal whole-plant Cd uptake between the two groups demonstrates that internal distribution rather than uptake is causing the genotypic differences in shoot Cd concentration of maize inbred lines. Zinc (Zn), a micronutrient chemically related to Cd, showed an almost similar distribution pattern for all maize inbred lines. The discrepancy in the internal distribution between Cd and Zn emphasizes the specificity of the Cd distribution in maize inbred lines.  相似文献   

16.
The cell wall sulfated polysaccharide of the red microalga Porphyridium sp. exhibited impressive antiviral activity against herpes simplex virus types 1 and 2 (HSV-1 and -2) both in vitro (cell culture) and in vivo (rats and rabbits). Depending on the concentration, this polysaccharide completely inhibited or slowed down the development of the cytopathic effect in HSV-infected cells, but did not show any cytotoxic effects on vero cells even when a concentration as high as 250 μg/ml was used. There was indirect evidence for a strong interaction between the polysaccharide and HSV and a weak interaction with the cell surface. When tested in vivo, Porphyridium sp. polysaccharide conferred significant and efficient protection against HSV-1 infection: at a concentration as low as 100 μg/ml, it prevented the appearance and development of symptoms of HSV-1 infection in rats and rabbits. The polysaccharide did not exhibit any cytotoxic effects at a concentration of 2 mg/ml in vivo.  相似文献   

17.
The protein-bound polysaccharides of Coriolus versicolor (CPS) have been reported to stimulate overall immune functions against cancers and various infectious diseases by activating specific cell functions. A New Zealand isolate (Wr-74) and a patented strain (ATCC-20545) of C. versicolor were compared in this study. The fruit bodies of both strains were grown for visual verification. Both strains were grown in submerged-culture using an airlift fermentor with milk permeate as the base medium supplemented with glucose, yeast extract and salt. Metabolic profiles of both strains obtained over 7-day fermentation showed very similar trends in terms of biomass production (8.9–10.6 mg/ml), amounts of extracellular polysaccharide (EPS) from the culture medium (1150–1132 μg/ml), and intracellular polysaccharide (IPS) from the mycelium (80–100 μg/ml). Glucose was the dominant sugar in both EPS and IPS, and the polymers each consisted of three molecular weight fractions ranging from 2 × 106 to 3 × 103 Da. Both the EPS and IPS were able to significantly induce cytokine production (interleukin 12 and γ interferon) in murine splenocytes in vitro. Highest levels of interleukin 12 (291 pg/ml) and γ interferon (6,159 pg/ml) were obtained from samples containing Wr-74 IPS (0.06 μg/ml) and ATCC 20545 IPS (0.1 μg/ml), respectively. The results indicated that lower levels of EPS and IPS generally resulted in higher immune responses than did higher polymer concentrations.  相似文献   

18.
The cells of the red microalga Porphyridium UTEX 637 are encapsulated within a sulfated polysaccharide whose external part (i.e., the soluble fraction) dissolves into the medium. It is thought that the main function of the polysaccharide is to protect the algal cells from the extreme environmental conditions, such as drought and high light, prevailing in their native sea-sand habitat. In this study, we evaluated the antioxidant properties of the water-soluble polysaccharide of Porphyridium sp. by determining the ability of a polysaccharide solution to inhibit: (1) autooxidation of linoleic acid, as determined by the standard thiobarbituric acid (TBA) and ferrous oxidation (FOX) assays; and (2) oxidative damage to 3T3 cells as determined by the dichlorofluorescein (DCFH) assay. In all three assays, the polysaccharide inhibited oxidative damage in a dose-dependent manner. Antioxidant activity was also exhibited by fractions of the polysaccharide obtained by sonication followed by separation on a reverse-phase HPLC with a C8 semi-preparative column. It is suggested that the antioxidant activity of the sulfated polysaccharide protects the alga against reactive oxygen species produced under high solar irradiation, possibly by scavenging the free radicals produced in the cell under stress conditions and transporting them from the cell to the medium.  相似文献   

19.
Natural compounds offer interesting pharmacological perspectives for antiviral drug development with regard to broad-spectrum antiviral properties and novel modes of action. In this study, we have analyzed polysaccharide fractions isolated from Grateloupia indica. The crude water extract (GiWE) as well as one fraction (F3) obtained by anion exchange chromatography had potent anti-HSV activity. Their inhibitory concentration 50% (IC50) values (0.12-1.06 μg/ml) were much lower than cytotoxic concentration 50% values (>850 μg/ml). These fractions, which were effective antiviral inhibitors if added only during the adsorption period, had very low anticoagulant activity. Furthermore, they had no direct inactivating effect on virions in a virucidal assay. Chemical, chromatographic and spectroscopic methods showed that the active polysaccharide, which has an apparent molecular mass of 60 kDa and negative specific rotation −16° (c 0.2, H2O), contains α-(1 → 4)- and α-(1 → 3)-linked galactopyranose residues. Sulfate groups, if present, are located mostly at C-2/6 of (1 → 4)- and C-4/6 of (1 → 3)-linked galactopyranosyl units, and are essential for the anti herpetic activity of this polymer.  相似文献   

20.
Many microorganisms fail to degrade pollutants when introduced in different natural environments. This is a problem in selecting inocula for bioremediation of polluted sites. Thus, a study was conducted to determine the success of four inoculants to degradep-nitrophenol (PNP) in lake and industrial wastewater and the effects of organic compounds on the degradation of high and low concentrations of PNP in these environments.Corynebacterium strain Z4 when inoculated into the lake and wastewater samples containing 20 µg/ml of PNP degraded 90% of PNP in one day. Addition of 100 µg/ml of glucose as a second substrate did not enhance the degradation of PNP and the bacterium utilized the two substrates simultaneously. Glucose used at the same concentration (100 µg/ml), inhibited degradation of 20 µg of PNP in wastewater byPseudomonas strain MS. However, glucose increased the extent of degradation of PNP byPseudomonas strain GR. Phenol also enhanced the degradation of PNP in wastewater byPseudomonas strain GR, but had no effect on the degradation of PNP byCorynebacterium strain Z4.Addition of 100 µg/ml of glucose as a second substrate into the lake water samples containing low concentration of PNP (26 ng/ml) enhanced the degradation of PNP and the growth ofCorynebacterium strain Z4. In the presence of glucose, it grew from 2×104 to 4×104 cells/ml in 3 days and degraded 70% of PNP as compared to samples without glucose in which the bacterium declined in cell number from 2×104 to 8×103 cells/ml and degraded only 30% PNP. The results suggest that in inoculation to enhance biodegradation, depending on the inoculant, second organic substrate many play an important role in controlling the rate and extent of biodegradation of organic compounds.Abbreviations PNP p-nitrophenol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号