首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein ‘structure prediction’ problem.  相似文献   

2.
Abstract

Arriving at the native conformation of a polypeptide chain characterized by minimum most free energy is a problem of long standing interest in protein structure prediction endeavors. Owing to the computational requirements in developing free energy estimates, scoring functions—energy based or statistical—have received considerable renewed attention in recent years for distinguishing native structures of proteins from non-native like structures. Several cleverly designed decoy sets, CASP (Critical Assessment of Techniques for Protein Structure Prediction) structures and homology based internet accessible three dimensional model builders are now available for validating the scoring functions. We describe here an all-atom energy based empirical scoring function and examine its performance on a wide series of publicly available decoys. Barring two protein sequences where native structure is ranked second and seventh, native is identified as the lowest energy structure in 67 protein sequences from among 61,659 decoys belonging to 12 different decoy sets. We further illustrate a potential application of the scoring function in bracketing native-like structures of two small mixed alpha/beta globular proteins starting from sequence and secondary structural information. The scoring function has been web enabled at www.scfbio-iitd.res.in/utility/proteomics/energy.jsp  相似文献   

3.
A low-resolution scoring function for the selection of native and near-native structures from a set of predicted structures for a given protein sequence has been developed. The scoring function, ProVal (Protein Validate), used several variables that describe an aspect of protein structure for which the proximity to the native structure can be assessed quantitatively. Among the parameters included are a packing estimate, surface areas, and the contact order. A partial least squares for latent variables (PLS) model was built for each candidate set of the 28 decoy sets of structures generated for 22 different proteins using the described parameters as independent variables. The C(alpha) RMS of the candidate structures versus the experimental structure was used as the dependent variable. The final generalized scoring function was an average of all models derived, ensuring that the function was not optimized for specific fold classes or method of structure generation of the candidate folds. The results show that the crystal structure was scored best in 64% of the 28 test sets and was clearly separated from the decoys in many examples. In all the other cases in which the crystal structure did not rank first, it ranked within the top 10%. Thus, although ProVal could not distinguish between predicted structures that were similar overall in fold quality due to its inherently low resolution, it can clearly be used as a primary filter to eliminate approximately 90% of fold candidates generated by current prediction methods from all-atom modeling and further evaluation. The correlation between the predicted and actual C(alpha) RMS values varies considerably between the candidate fold sets.  相似文献   

4.
Protein structure prediction encompasses two major challenges: 1), the generation of a large ensemble of high resolution structures for a given amino-acid sequence; and 2), the identification of the structure closest to the native structure for a blind prediction. In this article, we address the second challenge, by proposing what is, to our knowledge, a novel iterative traveling-salesman problem-based clustering method to identify the structures of a protein, in a given ensemble, which are closest to the native structure. The method consists of an iterative procedure, which aims at eliminating clusters of structures at each iteration, which are unlikely to be of similar fold to the native, based on a statistical analysis of cluster density and average spherical radius. The method, denoted as ICON, has been tested on four data sets: 1), 1400 proteins with high resolution decoys; 2), medium-to-low resolution decoys from Decoys ‘R’ Us; 3), medium-to-low resolution decoys from the first-principles approach, ASTRO-FOLD; and 4), selected targets from CASP8. The extensive tests demonstrate that ICON can identify high-quality structures in each ensemble, regardless of the resolution of conformers. In a total of 1454 proteins, with an average of 1051 conformers per protein, the conformers selected by ICON are, on an average, in the top 3.5% of the conformers in the ensemble.  相似文献   

5.
Most structure prediction algorithms consist of initial sampling of the conformational space, followed by rescoring and possibly refinement of a number of selected structures. Here we focus on protein docking, and show that while decoupling sampling and scoring facilitates method development, integration of the two steps can lead to substantial improvements in docking results. Since decoupling is usually achieved by generating a decoy set containing both non‐native and near‐native docked structures, which can be then used for scoring function construction, we first review the roles and potential pitfalls of decoys in protein–protein docking, and show that some type of decoys are better than others for method development. We then describe three case studies showing that complete decoupling of scoring from sampling is not the best choice for solving realistic docking problems. Although some of the examples are based on our own experience, the results of the CAPRI docking and scoring experiments also show that performing both sampling and scoring generally yields better results than scoring the structures generated by all predictors. Next we investigate how the selection of training and decoy sets affects the performance of the scoring functions obtained. Finally, we discuss pathways to better alignment of the two steps, and show some algorithms that achieve a certain level of integration. Although we focus on protein–protein docking, our observations most likely also apply to other conformational search problems, including protein structure prediction and the docking of small molecules to proteins.Proteins 2013; 81:1874–1884. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
Convergence of the vast sequence space of proteins into a highly restricted fold/conformational space suggests a simple yet unique underlying mechanism of protein folding that has been the subject of much debate in the last several decades. One of the major challenges related to the understanding of protein folding or in silico protein structure prediction is the discrimination of non-native structures/decoys from the native structure. Applications of knowledge-based potentials to attain this goal have been extensively reported in the literature. Also, scoring functions based on accessible surface area and amino acid neighbourhood considerations were used in discriminating the decoys from native structures. In this article, we have explored the potential of protein structure network (PSN) parameters to validate the native proteins against a large number of decoy structures generated by diverse methods. We are guided by two principles: (a) the PSNs capture the local properties from a global perspective and (b) inclusion of non-covalent interactions, at all-atom level, including the side-chain atoms, in the network construction accommodates the sequence dependent features. Several network parameters such as the size of the largest cluster, community size, clustering coefficient are evaluated and scored on the basis of the rank of the native structures and the Z-scores. The network analysis of decoy structures highlights the importance of the global properties contributing to the uniqueness of native structures. The analysis also exhibits that the network parameters can be used as metrics to identify the native structures and filter out non-native structures/decoys in a large number of data-sets; thus also has a potential to be used in the protein 'structure prediction' problem.  相似文献   

7.
We have revisited the protein coarse-grained optimized potential for efficient structure prediction (OPEP). The training and validation sets consist of 13 and 16 protein targets. Because optimization depends on details of how the ensemble of decoys is sampled, trial conformations are generated by molecular dynamics, threading, greedy, and Monte Carlo simulations, or taken from publicly available databases. The OPEP parameters are varied by a genetic algorithm using a scoring function which requires that the native structure has the lowest energy, and the native-like structures have energy higher than the native structure but lower than the remote conformations. Overall, we find that OPEP correctly identifies 24 native or native-like states for 29 targets and has very similar capability to the all-atom discrete optimized protein energy model (DOPE), found recently to outperform five currently used energy models.  相似文献   

8.
Liang S  Meroueh SO  Wang G  Qiu C  Zhou Y 《Proteins》2009,75(2):397-403
The identification of near native protein-protein complexes among a set of decoys remains highly challenging. A strategy for improving the success rate of near native detection is to enrich near native docking decoys in a small number of top ranked decoys. Recently, we found that a combination of three scoring functions (energy, conservation, and interface propensity) can predict the location of binding interface regions with reasonable accuracy. Here, these three scoring functions are modified and combined into a consensus scoring function called ENDES for enriching near native docking decoys. We found that all individual scores result in enrichment for the majority of 28 targets in ZDOCK2.3 decoy set and the 22 targets in Benchmark 2.0. Among the three scores, the interface propensity score yields the highest enrichment in both sets of protein complexes. When these scores are combined into the ENDES consensus score, a significant increase in enrichment of near-native structures is found. For example, when 2000 dock decoys are reduced to 200 decoys by ENDES, the fraction of near-native structures in docking decoys increases by a factor of about six in average. ENDES was implemented into a computer program that is available for download at http://sparks.informatics.iupui.edu.  相似文献   

9.
We present a knowledge‐based function to score protein decoys based on their similarity to native structure. A set of features is constructed to describe the structure and sequence of the entire protein chain. Furthermore, a qualitative relationship is established between the calculated features and the underlying electromagnetic interaction that dominates this scale. The features we use are associated with residue–residue distances, residue–solvent distances, pairwise knowledge‐based potentials and a four‐body potential. In addition, we introduce a new target to be predicted, the fitness score, which measures the similarity of a model to the native structure. This new approach enables us to obtain information both from decoys and from native structures. It is also devoid of previous problems associated with knowledge‐based potentials. These features were obtained for a large set of native and decoy structures and a back‐propagating neural network was trained to predict the fitness score. Overall this new scoring potential proved to be superior to the knowledge‐based scoring functions used as its inputs. In particular, in the latest CASP (CASP10) experiment our method was ranked third for all targets, and second for freely modeled hard targets among about 200 groups for top model prediction. Ours was the only method ranked in the top three for all targets and for hard targets. This shows that initial results from the novel approach are able to capture details that were missed by a broad spectrum of protein structure prediction approaches. Source codes and executable from this work are freely available at http://mathmed.org /#Software and http://mamiris.com/ . Proteins 2014; 82:752–759. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
We develop a protocol for estimating the free energy difference between different conformations of the same polypeptide chain. The conformational free energy evaluation combines the CHARMM force field with a continuum treatment of the solvent. In almost all cases studied, experimentally determined structures are predicted to be more stable than misfolded "decoys." This is due in part to the fact that the Coulomb energy of the native protein is consistently lower than that of the decoys. The solvation free energy generally favors the decoys, although the total electrostatic free energy (sum of Coulomb and solvation terms) favors the native structure. The behavior of the solvation free energy is somewhat counterintuitive and, surprisingly, is not correlated with differences in the burial of polar area between native structures and decoys. Rather. the effect is due to a more favorable charge distribution in the native protein, which, as is discussed, will tend to decrease its interaction with the solvent. Our results thus suggest, in keeping with a number of recent studies, that electrostatic interactions may play an important role in determining the native topology of a folded protein. On this basis, a simplified scoring function is derived that combines a Coulomb term with a hydrophobic contact term. This function performs as well as the more complete free energy evaluation in distinguishing the native structure from misfolded decoys. Its computational efficiency suggests that it can be used in protein structure prediction applications, and that it provides a physically well-defined alternative to statistically derived scoring functions.  相似文献   

11.
Guang Hu  Bairong Shen 《Proteins》2014,82(4):556-564
An accurate score function for detecting the most native‐like models among a huge number of decoy sets is essential to the protein structure prediction. In this work, we developed a novel integrated score function (SVR_CAF) to discriminate native structures from decoys, as well as to rank near‐native structures and select best decoys when native structures are absent. SVR_CAF is a machine learning score, which incorporates the contact energy based score ( C E_score), amino acid network based score ( A AN_score), and the fast Fourier transform based score ( F FT_score). The score function was evaluated with four decoy sets for its discriminative ability and it shows higher overall performance than the state‐of‐the‐art score functions. Proteins 2014; 82:556–564. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Arriving at the native conformation of a polypeptide chain characterized by minimum most free energy is a problem of long standing interest in protein structure prediction endeavors. Owing to the computational requirements in developing free energy estimates, scoring functions--energy based or statistical--have received considerable renewed attention in recent years for distinguishing native structures of proteins from non-native like structures. Several cleverly designed decoy sets, CASP (Critical Assessment of Techniques for Protein Structure Prediction) structures and homology based internet accessible three dimensional model builders are now available for validating the scoring functions. We describe here an all-atom energy based empirical scoring function and examine its performance on a wide series of publicly available decoys. Barring two protein sequences where native structure is ranked second and seventh, native is identified as the lowest energy structure in 67 protein sequences from among 61,659 decoys belonging to 12 different decoy sets. We further illustrate a potential application of the scoring function in bracketing native-like structures of two small mixed alpha/beta globular proteins starting from sequence and secondary structural information. The scoring function has been web enabled at www.scfbio-iitd.res.in/utility/proteomics/energy.jsp.  相似文献   

13.
We present a new structurally derived pair-to-pair substitution matrix (P2PMAT). This matrix is constructed from a very large amount of integrated high quality multiple sequence alignments (Blocks) and protein structures. It evaluates the likelihoods of all 160,000 pair-to-pair substitutions. P2PMAT matrix implicitly accounts for evolutionary conservation, correlated mutations, and residue-residue contact potentials. The usefulness of the matrix for structural predictions is shown in this article. Predicting protein residue-residue contacts from sequence information alone, by our method (P2PConPred) is particularly accurate in the protein cores, where it performs better than other basic contact prediction methods (increasing accuracy by 25-60%). The method mean accuracy for protein cores is 24% for 59 diverse families and 34% for a subset of proteins shorter than 100 residues. This is above the level that was recently shown to be sufficient to significantly improve ab initio protein structure prediction. We also demonstrate the ability of our approach to identify native structures within large sets of (300-2000) protein decoys. On the basis of evolutionary information alone our method ranks the native structure in the top 0.3% of the decoys in 4/10 of the sets, and in 8/10 of sets the native structure is ranked in the top 10% of the decoys. The method can, thus, be used to assist filtering wrong models, complementing traditional scoring functions.  相似文献   

14.
Khashan R  Zheng W  Tropsha A 《Proteins》2012,80(9):2207-2217
Accurate prediction of the structure of protein-protein complexes in computational docking experiments remains a formidable challenge. It has been recognized that identifying native or native-like poses among multiple decoys is the major bottleneck of the current scoring functions used in docking. We have developed a novel multibody pose-scoring function that has no theoretical limit on the number of residues contributing to the individual interaction terms. We use a coarse-grain representation of a protein-protein complex where each residue is represented by its side chain centroid. We apply a computational geometry approach called Almost-Delaunay tessellation that transforms protein-protein complexes into a residue contact network, or an undirectional graph where vertex-residues are nodes connected by edges. This treatment forms a family of interfacial graphs representing a dataset of protein-protein complexes. We then employ frequent subgraph mining approach to identify common interfacial residue patterns that appear in at least a subset of native protein-protein interfaces. The geometrical parameters and frequency of occurrence of each "native" pattern in the training set are used to develop the new SPIDER scoring function. SPIDER was validated using standard "ZDOCK" benchmark dataset that was not used in the development of SPIDER. We demonstrate that SPIDER scoring function ranks native and native-like poses above geometrical decoys and that it exceeds in performance a popular ZRANK scoring function. SPIDER was ranked among the top scoring functions in a recent round of CAPRI (Critical Assessment of PRedicted Interactions) blind test of protein-protein docking methods.  相似文献   

15.
Root-mean-square-deviation (RMSD), of computationally-derived protein structures from experimentally determined structures, is a critical index to assessing protein-structure-prediction-algorithms (PSPAs). The development of PSPAs to obtain 0 Å RMSD from native structures is considered central to computational biology. However, till date it has been quite challenging to measure how far a predicted protein structure is from its native — in the absence of a known experimental/native structure. In this work, we report the development of a metric “D2N” (distance to the native) — that predicts the “RMSD” of any structure without actually knowing the native structure. By combining physico-chemical properties and known universalities in spatial organization of soluble proteins to develop D2N, we demonstrate the ability to predict the distance of a proposed structure to within ± 1.5 ? error with a remarkable average accuracy of 93.6% for structures below 5 ? from the native. We believe that this work opens up a completely new avenue towards assigning reliable structures to whole proteomes even in the absence of experimentally determined native structures. The D2N tool is freely available at http://www.scfbio-iitd.res.in/software/d2n.jsp.  相似文献   

16.
How to refine a near‐native structure to make it closer to its native conformation is an unsolved problem in protein‐structure and protein–protein complex‐structure prediction. In this article, we first test several scoring functions for selecting locally resampled near‐native protein–protein docking conformations and then propose a computationally efficient protocol for structure refinement via local resampling and energy minimization. The proposed method employs a statistical energy function based on a Distance‐scaled Ideal‐gas REference state (DFIRE) as an initial filter and an empirical energy function EMPIRE (EMpirical Protein‐InteRaction Energy) for optimization and re‐ranking. Significant improvement of final top‐1 ranked structures over initial near‐native structures is observed in the ZDOCK 2.3 decoy set for Benchmark 1.0 (74% whose global rmsd reduced by 0.5 Å or more and only 7% increased by 0.5 Å or more). Less significant improvement is observed for Benchmark 2.0 (38% versus 33%). Possible reasons are discussed. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

17.
Zhu J  Zhu Q  Shi Y  Liu H 《Proteins》2003,52(4):598-608
One strategy for ab initio protein structure prediction is to generate a large number of possible structures (decoys) and select the most fitting ones based on a scoring or free energy function. The conformational space of a protein is huge, and chances are rare that any heuristically generated structure will directly fall in the neighborhood of the native structure. It is desirable that, instead of being thrown away, the unfitting decoy structures can provide insights into native structures so prediction can be made progressively. First, we demonstrate that a recently parameterized physics-based effective free energy function based on the GROMOS96 force field and a generalized Born/surface area solvent model is, as several other physics-based and knowledge-based models, capable of distinguishing native structures from decoy structures for a number of widely used decoy databases. Second, we observe a substantial increase in correlations of the effective free energies with the degree of similarity between the decoys and the native structure, if the similarity is measured by the content of native inter-residue contacts in a decoy structure rather than its root-mean-square deviation from the native structure. Finally, we investigate the possibility of predicting native contacts based on the frequency of occurrence of contacts in decoy structures. For most proteins contained in the decoy databases, a meaningful amount of native contacts can be predicted based on plain frequencies of occurrence at a relatively high level of accuracy. Relative to using plain frequencies, overwhelming improvements in sensitivity of the predictions are observed for the 4_state_reduced decoy sets by applying energy-dependent weighting of decoy structures in determining the frequency. There, approximately 80% native contacts can be predicted at an accuracy of approximately 80% using energy-weighted frequencies. The sensitivity of the plain frequency approach is much lower (20% to 40%). Such improvements are, however, not observed for the other decoy databases. The rationalization and implications of the results are discussed.  相似文献   

18.
A major challenge of the protein docking problem is to define scoring functions that can distinguish near‐native protein complex geometries from a large number of non‐native geometries (decoys) generated with noncomplexed protein structures (unbound docking). In this study, we have constructed a neural network that employs the information from atom‐pair distance distributions of a large number of decoys to predict protein complex geometries. We found that docking prediction can be significantly improved using two different types of polar hydrogen atoms. To train the neural network, 2000 near‐native decoys of even distance distribution were used for each of the 185 considered protein complexes. The neural network normalizes the information from different protein complexes using an additional protein complex identity input neuron for each complex. The parameters of the neural network were determined such that they mimic a scoring funnel in the neighborhood of the native complex structure. The neural network approach avoids the reference state problem, which occurs in deriving knowledge‐based energy functions for scoring. We show that a distance‐dependent atom pair potential performs much better than a simple atom‐pair contact potential. We have compared the performance of our scoring function with other empirical and knowledge‐based scoring functions such as ZDOCK 3.0, ZRANK, ITScore‐PP, EMPIRE, and RosettaDock. In spite of the simplicity of the method and its functional form, our neural network‐based scoring function achieves a reasonable performance in rigid‐body unbound docking of proteins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
《Proteins》2017,85(4):741-752
Protein–RNA docking is still an open question. One of the main challenges is to develop an effective scoring function that can discriminate near‐native structures from the incorrect ones. To solve the problem, we have constructed a knowledge‐based residue‐nucleotide pairwise potential with secondary structure information considered for nonribosomal protein–RNA docking. Here we developed a weighted combined scoring function RpveScore that consists of the pairwise potential and six physics‐based energy terms. The weights were optimized using the multiple linear regression method by fitting the scoring function to L_rmsd for the bound docking decoys from Benchmark II. The scoring functions were tested on 35 unbound docking cases. The results show that the scoring function RpveScore including all terms performs best. Also RpveScore was compared with the statistical mechanics‐based method derived potential ITScore‐PR, and the united atom‐based statistical potentials QUASI‐RNP and DARS‐RNP. The success rate of RpveScore is 71.6% for the top 1000 structures and the number of cases where a near‐native structure is ranked in top 30 is 25 out of 35 cases. For 32 systems (91.4%), RpveScore can find the binding mode in top 5 that has no lower than 50% native interface residues on protein and nucleotides on RNA. Additionally, it was found that the long‐range electrostatic attractive energy plays an important role in distinguishing near‐native structures from the incorrect ones. This work can be helpful for the development of protein–RNA docking methods and for the understanding of protein–RNA interactions. RpveScore program is available to the public at http://life.bjut.edu.cn/kxyj/kycg/2017116/14845362285362368_1.html Proteins 2017; 85:741–752. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
The DOcking decoy‐based Optimized Potential (DOOP) energy function for protein structure prediction is based on empirical distance‐dependent atom‐pair interactions. To optimize the atom‐pair interactions, native protein structures are decomposed into polypeptide chain segments that correspond to structural motives involving complete secondary structure elements. They constitute near native ligand–receptor systems (or just pairs). Thus, a total of 8609 ligand–receptor systems were prepared from 954 selected proteins. For each of these hypothetical ligand–receptor systems, 1000 evenly sampled docking decoys with 0–10 Å interface root‐mean‐square‐deviation (iRMSD) were generated with a method used before for protein–protein docking. A neural network‐based optimization method was applied to derive the optimized energy parameters using these decoys so that the energy function mimics the funnel‐like energy landscape for the interaction between these hypothetical ligand–receptor systems. Thus, our method hierarchically models the overall funnel‐like energy landscape of native protein structures. The resulting energy function was tested on several commonly used decoy sets for native protein structure recognition and compared with other statistical potentials. In combination with a torsion potential term which describes the local conformational preference, the atom‐pair‐based potential outperforms other reported statistical energy functions in correct ranking of native protein structures for a variety of decoy sets. This is especially the case for the most challenging ROSETTA decoy set, although it does not take into account side chain orientation‐dependence explicitly. The DOOP energy function for protein structure prediction, the underlying database of protein structures with hypothetical ligand–receptor systems and their decoys are freely available at http://agknapp.chemie.fu‐berlin.de/doop/ . Proteins 2015; 83:881–890. © 2015 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号