首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The three mammalian nitric-oxide synthases produce NO from arginine in a reaction requiring 3 electrons per NO, which are supplied to the catalytic center from NADPH through reductase domains incorporating FAD and FMN cofactors. The isoforms share a common reaction mechanism and requirements for reducing equivalents but differ in regulation; the endothelial and neuronal isoforms are controlled by calcium/calmodulin modulation of the electron transfer system, while the inducible isoform binds calmodulin at all physiological Ca(2+) concentrations and is always on. The thermodynamics of electron transfer through the flavin domains in all three isoforms are basically similar. The major flavin states are FMN, FMNH., FMNH(2), FAD, FADH., and FADH(2). The FMN/FMNH. couple is high potential ( approximately 100 mV) in all three isoforms and is unlikely to be catalytically competent; the other three flavin couples form a nearly isopotential group clustered around -250 mV. Reduction of the flavins by the pyridine nucleotide couple at -325 mV is thus moderately thermodynamically favorable. The ferri/ferroheme couple in all three isoforms is approximately -270 mV in the presence of saturating arginine. Ca(2+)/calmodulin has no effect on the potentials of any of the couples in endothelial nitric-oxide synthase (eNOS) or neuronal nitric-oxide synthase (nNOS). The pH dependence of the flavin couples suggests the presence of ionizable groups coupled to the flavin redox/protonation states.  相似文献   

2.
The objective of this study was to clarify the mechanism of electron transfer in the human neuronal nitric oxide synthase (nNOS) flavin domain using the recombinant human nNOS flavin domains, the FAD/NADPH domain (contains FAD- and NADPH-binding sites), and the FAD/FMN domain (the flavin domain including a calmodulin-binding site). The reduction by NADPH of the two domains was studied by rapid-mixing, stopped-flow spectroscopy. For the FAD/NADPH domain, the results indicate that FAD is reduced by NADPH to generate the two-electron-reduced form (FADH(2)) and the reoxidation of the reduced FAD proceeds via a neutral (blue) semiquinone with molecular oxygen or ferricyanide, indicating that the reduced FAD is oxidized in two successive one-electron steps. The neutral (blue) semiquinone form, as an intermediate in the air-oxidation, was unstable in the presence of O(2). The purified FAD/NADPH domain prepared under our experimental conditions was activated by NADP(+) but not NAD(+). These results indicate that this domain exists in two states; an active state and a resting state, and the enzyme in the resting state can be activated by NADP(+). For the FAD/FMN domain, the reduction of the FAD-FMN pair of the oxidized enzyme with NADPH proceeded by both one-electron equivalent and two-electron equivalent mechanisms. The formation of semiquinones from the FAD-FMN pair was greatly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form, FAD-FMNH(.), was further rapidly reduced by NADPH with an increase at 520 nm, which is a characteristic peak of the FAD semiquinone. Results presented here indicate that intramolecular one-electron transfer from FAD to FMN is activated by the binding of Ca(2+)/CaM.  相似文献   

3.
The sequences of nitric-oxide synthase (NOS) flavin domains closely resemble that of NADPH-cytochrome P450 reductase (CPR), with the exception of a few regions. One such region is the C terminus; all NOS isoforms are 20-40 amino acids longer than CPR, forming a "tail" that is absent in CPR. To investigate its function, we removed the 21-amino acid C-terminal tail from murine macrophage inducible NOS (iNOS) holoenzyme and from a flavin domain construct. Both the truncated holoenzyme and reductase domain exhibited cytochrome c reductase activities that were 7-10-fold higher than the nontruncated forms. The truncated holoenzyme catalyzed NO formation approximately 20% faster than the intact form. Using stopped-flow spectrophotometry, we demonstrated that electron transfer into and between the two flavins and from the flavin to the heme domain is 2-5-fold faster in the absence of the C-terminal tail. The heme-nitrosyl complex, formed in all NOS isoforms during NO catalysis, is 5-fold less stable in truncated iNOS. Although both CPR and intact NOS can exist in a stable, one electron-reduced semiquinone form, neither the truncated holoenzyme nor the truncated flavin domain demonstrate such a form. We propose that this C-terminal tail curls back to interact with the flavin domain in such a way as to modulate the interaction between the two flavin moieties.  相似文献   

4.
The neuronal NO synthase (nNOS) flavin domain, which has similar redox properties to those of NADPH-cytochrome P450 reductase (P450R), contains binding sites for calmodulin, FAD, FMN, and NADPH. The aim of this study is to elucidate the mechanism of activation of the flavin domain by calcium/calmodulin (Ca(2+)/CaM). In this study, we used the recombinant nNOS flavin domains, which include or delete the calmodulin (CaM)-binding site. The air-stable semiquinone of the nNOS flavin domains showed similar redox properties to the corresponding FAD-FMNH(&z.ccirf;) of P450R. In the absence or presence of Ca(2+)/CaM, the rates of reduction of an FAD-FMN pair by NADPH have been investigated at different wavelengths, 457, 504 and 590 nm by using a stopped-flow technique and a rapid scan spectrophotometry. The reduction of the oxidized enzyme (FAD-FMN) by NADPH proceeds by both one-electron equivalent and two-electron equivalent mechanisms, and the formation of semiquinone (increase of absorbance at 590 nm) was significantly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form of the enzyme was also rapidly reduced by NADPH. The results suggest that an intramolecular one-electron transfer between the two flavins is activated by the binding of Ca(2+)/CaM. The F(1)H(2), which is the fully reduced form of the air-stable semiquinone, can donate one electron to the electron acceptor, cytochrome c. The proposed mechanism of activation by Ca(2+)/CaM complex is discussed on the basis of that provided by P450R.  相似文献   

5.
We have analyzed the mechanism of one-electron reduction of adriamycin (Adr) using recombinant full-length human neuronal nitric-oxide synthase and its flavin domains. Both enzymes catalyzed aerobic NADPH oxidation in the presence of Adr. Calcium/calmodulin (Ca(2+)/CaM) stimulated the NADPH oxidation of Adr. In the presence or absence of Ca(2+)/CaM, the flavin semiquinone radical species were major intermediates observed during the oxidation of the reduced enzyme by Adr. The FAD-NADPH binding domain did not significantly catalyze the reduction of Adr. Neither the FAD semiquinone (FADH*) nor the air-stable semiquinone (FAD-FMNH*) reacted rapidly with Adr. These data indicate that the fully reduced species of FMN (FMNH(2)) donates one electron to Adr, and that the rate of Adr reduction is stimulated by a rapid electron exchange between the two flavins in the presence of Ca(2+)/CaM. Based on these findings, we propose a role for the FAD-FMN pair in the one-electron reduction of Adr.  相似文献   

6.
Flavin electron transferases can catalyze one- or two-electron reduction of quinones including bioreductive antitumor quinones. The recombinant neuronal nitric oxide synthase (nNOS) reductase domain, which contains the FAD-FMN prosthetic group pair and calmodulin-binding site, catalyzed aerobic NADPH-oxidation in the presence of the model quinone compound menadione (MD), including antitumor mitomycin C (Mit C) and adriamycin (Adr). Calcium/calmodulin (Ca2+/CaM) stimulated the NADPH oxidation of these quinones. The MD-mediated NADPH oxidation was inhibited in the presence of NAD(P)H:quinone oxidoreductase (QR), but Mit C- and Adr-mediated NADPH oxidations were not. In anaerobic conditions, cytochrome b5 as a scavenger for the menasemiquinone radical (MD*-) was stoichiometrically reduced by the nNOS reductase domain in the presence of MD, but not of QR. These results indicate that the nNOS reductase domain can catalyze a only one-electron reduction of bivalent quinones. In the presence or absence of Ca2+/CaM, the semiquinone radical species were major intermediates observed during the oxidation of the reduced enzyme by MD, but the fully reduced flavin species did not significantly accumulate under these conditions. Air-stable semiquinone did not react rapidly with MD, but the fully reduced species of both flavins, FAD and FMN, could donate one electron to MD. The intramolecular electron transfer between the two flavins is the rate-limiting step in the catalytic cycle [H. Matsuda, T. Iyanagi, Biochim. Biophys. Acta 1473 (1999) 345-355). These data suggest that the enzyme functions between the 1e- <==> 3e- level during one-electron reduction of MD, and that the rates of quinone reductions are stimulated by a rapid electron exchange between the two flavins in the presence of Ca2+/CaM.  相似文献   

7.
NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH*/FMNH2 couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.  相似文献   

8.
The interactions of neuronal nitric-oxide synthase (nNOS) with calmodulin (CaM) and mutant forms of CaM, including CaM-troponin C chimeras, have been previously reported, but there has been no comparable investigation of CaM interactions with the other constitutively expressed NOS (cNOS), endothelial NOS (eNOS), or the inducible isoform (iNOS). The present study was designed to evaluate the role of the four CaM EF hands in the activation of eNOS and iNOS. To assess the role of CaM regions on aspects of enzymatic function, three distinct activities associated with NOS were measured: NADPH oxidation, cytochrome c reduction, and nitric oxide (*NO) generation as assessed by the oxyhemoglobin capture assay. CaM activates the cNOS enzymes by a mechanism other than stimulating electron transfer into the oxygenase domain. Interactions with the reductase moiety are dominant in cNOS activation, and EF hand 1 is critical for activation of both nNOS and eNOS. Although the activation patterns for nNOS and eNOS are clearly related, effects of the chimeras on all the reactions are not equivalent. We propose that cytochrome c reduction is a measure of the release of the FMN domain from the reductase complex. In contrast, cytochrome c reduction by iNOS is readily activated by each of the chimeras examined here and may be constitutive. Each of the chimeras were co-expressed with the human iNOS enzyme in Escherichia coli and subsequently purified. Domains 2 and 3 of CaM contain important elements required for the Ca2+/CaM independence of *NO production by the iNOS enzyme. The disparity between cytochrome c reduction and *NO production at low calcium can be attributed to poor association of heme and FMN domains when the bound CaM constructs are depleted of Ca2+. In general cNOSs are much more difficult to activate than iNOS, which can be attributed to their extra sequence elements, which are adjacent to the CaM-binding site and associated with CaM control.  相似文献   

9.
Neuronal nitric oxide synthase (nNOS) is composed of an oxygenase domain that binds heme, (6R)-tetrahydrobiopterin, and Arg, coupled to a reductase domain that binds FAD, FMN, and NADPH. Activity requires dimeric interaction between two oxygenase domains and calmodulin binding between the reductase and oxygenase domains, which triggers electron transfer between flavin and heme groups. We constructed four different nNOS heterodimers to determine the path of calmodulin-induced electron transfer in a nNOS dimer. A predominantly monomeric mutant of rat nNOS (G671A) and its Arg binding mutant (G671A/E592A) were used as full-length subunits, along with oxygenase domain partners that either did or did not contain the E592A mutation. The E592A mutation prevented Arg binding to the oxygenase domain in which it was present. It also prevented NO synthesis when it was located in the oxygenase domain adjacent to the full-length subunit. However, it had no effect when present in the full-length subunit (i.e. the subunit containing the reductase domain). The active heterodimer (G671A/E592A full-length subunit plus wild type oxygenase domain subunit) showed remarkable similarity with wild type homodimeric nNOS in its catalytic responses to five different forms and chimeras of calmodulin. This reveals an active involvement of calmodulin in supporting transelectron transfer between flavin and heme groups on adjacent subunits in nNOS. In summary, we propose that calmodulin functions to properly align adjacent reductase and the oxygenase domains in a nNOS dimer for electron transfer between them, leading to NO synthesis by the heme.  相似文献   

10.
The crystal structure of the neuronal nitric-oxide synthase (nNOS) NADPH/FAD binding domain indicated that Ser-1176 is within hydrogen bonding distance of Asp-1393 and the O4 atom of FAD and is also near the N5 atom of FAD (3.7 A). This serine residue is conserved in most of the ferredoxin-NADP+ reductase family of proteins and is important in electron transfer. In the present study, the homologous serines of both nNOS (Ser-1176) and endothelial nitric-oxide synthase (eNOS) (Ser-942) were mutated to threonine and alanine. Both substitutions yielded proteins that exhibited decreased rates of electron transfer through the flavin domains, in the presence and absence of Ca2+/CaM, as measured by reduction of potassium ferricyanide and cytochrome c. Rapid kinetics measurements of flavin reduction of all the mutants also showed a decrease in the rate of flavin reduction, in the absence and presence of Ca2+/CaM, as compared with the wild type proteins. The serine to alanine substitution caused both nNOS and eNOS to synthesize NO more slowly; however, the threonine mutants gave equal or slightly higher rates of NO production compared with the wild type enzymes. The midpoint redox potential measurements of all the redox centers revealed that wild type and threonine mutants of both nNOS and eNOS are very similar. However, the redox potentials of the FMN/FMNH* couple for alanine substitutions of both nNOS and eNOS are >100 mV higher than those of wild type proteins and are positive. These data presented here suggest that hydrogen bonding of the hydroxyl group of serine or threonine with the isoalloxazine ring of FAD and with the amino acids in its immediate milieu, particularly nNOS Asp-1393, affects the redox potentials of various flavin states, influencing the rate of electron transfer.  相似文献   

11.
Garnaud PE  Koetsier M  Ost TW  Daff S 《Biochemistry》2004,43(34):11035-11044
Electron transfer through neuronal nitric oxide synthase (nNOS) is regulated by the reversible binding of calmodulin (CaM) to the reductase domain of the enzyme, the conformation of which has been shown to be dependent on the presence of substrate, NADPH. Here we report the preparation of the isolated flavin mononucleotide (FMN)-binding domain of nNOS with bound CaM and the electrochemical analysis of this and the isolated flavin adenine dinucleotide (FAD)-binding domain in the presence and absence of NADP(+) and ADP (an inhibitor). The FMN-binding domain was found to be stable only in the presence of bound CaM/Ca(2+), removal of which resulted in precipitation of the protein. The FMN formed a kinetically stabilized blue semiquinone with an oxidized/semiquinone reduction potential of -179 mV. This is 80 mV more negative than the potential of the FMN in the isolated reductase domain, that is, in the presence of the FAD-binding domain. The FMN semiquinone/hydroquinone redox couple was found to be similar in both constructs. The isolated FAD-binding domain, generated by controlled proteolysis of the reductase domain, was found to have similar FAD reduction potentials to the isolated reductase domain. Both formed a FAD-hydroquinone/NADP(+) charge-transfer complex with a long-wavelength absorption band centered at 780 nm. Formation of this complex resulted in thermodynamic destabilization of the FAD semiquinone relative to the hydroquinone and a 30 mV increase in the FAD semiquinone/hydroquinone reduction potential. Binding of ADP, however, had little effect. The possible role of the nicotinamide/FADH(2) stacking interaction in controlling electron transfer and its likely dependence on protein conformation are discussed.  相似文献   

12.
To clarify the role of the autoinhibitory insert in the endothelial (eNOS) and neuronal (nNOS) nitric-oxide synthases, the insert was excised from nNOS and chimeras with its reductase domain; the eNOS and nNOS inserts were swapped and put into the normally insertless inducible (iNOS) isoform and chimeras with the iNOS reductase domain; and an RRKRK sequence in the insert suggested by earlier peptide studies to be important (Salerno, J. C., Harris, D. E., Irizarry, K., Patel, B., Morales, A. J., Smith, S. M., Martasek, P., Roman, L. J., Masters, B. S., Jones, C. L., Weissman, B. A., Lane, P., Liu, Q., and Gross, S. S. (1997) J. Biol. Chem. 272, 29769-29777) was mutated. Insertless nNOS required calmodulin (CaM) for normal NOS activity, but the Ca(2+) requirement for this activity was relaxed. Furthermore, insert deletion enhanced CaM-free electron transfer within nNOS and chimeras with the nNOS reductase, emphasizing the involvement of the insert in modulating electron transfer. Swapping the nNOS and eNOS inserts gave proteins with normal NOS activities, and the nNOS insert acted normally in raising the Ca(2+) dependence when placed in eNOS. Insertion of the eNOS insert into iNOS and chimeras with the iNOS reductase domain significantly lowered NOS activity, consistent with inhibition of electron transfer by the insert. Mutation of the eNOS RRKRK to an AAAAA sequence did not alter the eNOS Ca(2+) dependence but marginally inhibited electron transfer. The salt dependence suggests that the insert modulates electron transfer within the reductase domain prior to the heme/reductase interface. The results clarify the role of the reductase insert in modulating the Ca(2+) requirement, electron transfer rate, and overall activity of nNOS and eNOS.  相似文献   

13.
Neuronal nitric-oxide synthase (nNOS or NOS I) and endothelial NOS (eNOS or NOS III) differ widely in their reductase and nitric oxide (NO) synthesis activities, electron transfer rates, and propensities to form a heme-NO complex during catalysis. We generated chimeras by swapping eNOS and nNOS oxygenase domains to understand the basis for these differences and to identify structural elements that determine their catalytic behaviors. Swapping oxygenase domains did not alter domain-specific catalytic functions (cytochrome c reduction or H(2)O(2)-supported N(omega)-hydroxy-l-arginine oxidation) but markedly affected steady-state NO synthesis and NADPH oxidation compared with native eNOS and nNOS. Stopped-flow analysis showed that reductase domains either maintained (nNOS) or slightly exceeded (eNOS) their native rates of heme reduction in each chimera. Heme reduction rates were found to correlate with the initial rates of NADPH oxidation and heme-NO complex formation, with the percentage of heme-NO complex attained during the steady state, and with NO synthesis activity. Oxygenase domain identity influenced these parameters to a lesser degree. We conclude: 1) Heme reduction rates in nNOS and eNOS are controlled primarily by their reductase domains and are almost independent of oxygenase domain identity. 2) Heme reduction rate is the dominant parameter controlling the kinetics and extent of heme-NO complex formation in both eNOS and nNOS, and thus it determines to what degree heme-NO complex formation influences their steady-state NO synthesis, whereas oxygenase domains provide minor but important influences. 3) General principles that relate heme reduction rate, heme-NO complex formation, and NO synthesis are not specific for nNOS but apply to eNOS as well.  相似文献   

14.
In this study, we have analyzed interflavin electron transfer reactions from FAD to FMN in both the full-length inducible nitric oxide synthase (iNOS) and its reductase domain. Comparison is made with the interflavin electron transfer in NADPH-cytochrome P450 reductase (CPR). For the analysis of interflavin electron transfer and the flavin intermediates observed during catalysis we have used menadione (MD), which can accept an electron from both the FAD and FMN sites of the enzyme. A characteristic absorption peak at 630 and 520 nm can identify each FAD and FMN semiquinone species, which is derived from CPR and iNOS, respectively. The charge transfer complexes of FAD with NADP+ or NADPH were monitored at 750 nm. In the presence of MD, the air-stable neutral (blue) semiquinone form (FAD-FMNH*) was observed as a major intermediate during the catalytic cycle in both the iNOS reductase domain and full-length enzyme, and its formation occurred without any lag phase indicating rapid interflavin electron transfer following the reduction of FAD by NADPH. These data also strongly suggest that the low level reactivity of a neutral (blue) FMN semiquinone radical with electron acceptors enables one-electron transfer in the catalytic cycle of both the FAD-FMN pairs in CPR and iNOS. On the basis of these data, we propose a common model for the catalytic cycle of both CaM-bound iNOS reductase domain and CPR.  相似文献   

15.
In neuronal nitric-oxide synthase (nNOS), calmodulin (CaM) binding is thought to trigger electron transfer from the reductase domain to the heme domain, which is essential for O(2) activation and NO formation. To elucidate the electron-transfer mechanism, we characterized a series of heterodimers consisting of one full-length nNOS subunit and one oxygenase-domain subunit. The results support an inter-subunit electron-transfer mechanism for the wild type nNOS, in that electrons for catalysis transfer in a Ca(2+)/CaM-dependent way from the reductase domain of one subunit to the heme of the other subunit, as proposed for inducible NOS. This suggests that the two different isoforms form similar dimeric complexes. In a series of heterodimers containing a Ca(2+)/CaM-insensitive mutant (delta40), electrons transferred from the reductase domain to both hemes in a Ca(2+)/CaM-independent way. Thus, in the delta40 mutant electron transfer from the reductase domains to the heme domains can occur via both inter-subunit and intra-subunit mechanisms. However, NO formation activity was exclusively linked to inter-subunit electron transfer and was observed only in the presence of Ca(2+)/CaM. This suggests that the mechanism of activation of nNOS by CaM is not solely dependent on the activation of electron transfer to the nNOS hemes but may involve additional structural factors linked to the catalytic action of the heme domain.  相似文献   

16.
Nitric-oxide synthase (NOS) is composed of a C-terminal, flavin-containing reductase domain and an N-terminal, heme-containing oxidase domain. The reductase domain, similar to NADPH-cytochrome P450 reductase, can be further divided into two different flavin-containing domains: (a) the N terminus, FMN-containing portion, and (b) the C terminus FAD- and NADPH-binding portion. The crystal structure of the FAD/NADPH-containing domain of rat neuronal nitric-oxide synthase, complexed with NADP(+), has been determined at 1.9 A resolution. The protein is fully capable of reducing ferricyanide, using NADPH as the electron donor. The overall polypeptide fold of the domain is very similar to that of the corresponding module of NADPH-cytochrome P450 oxidoreductase (CYPOR) and consists of three structural subdomains (from N to C termini): (a) the connecting domain, (b) the FAD-binding domain, and (c) the NADPH-binding domain. A comparison of the structure of the neuronal NOS FAD/NADPH domain and CYPOR reveals the strict conservation of the flavin-binding site, including the tightly bound water molecules, the mode of NADP(+) binding, and the aromatic residue that lies at the re-face of the flavin ring, strongly suggesting that the hydride transfer mechanisms in the two enzymes are very similar. In contrast, the putative FMN domain-binding surface of the NOS protein is less positively charged than that of its CYPOR counterpart, indicating a different nature of interactions between the two flavin domains and a different mode of regulation in electron transfer between the two flavins involving the autoinhibitory element and the C-terminal 33 residues, both of which are absent in CYPOR.  相似文献   

17.
Mammalian nitric-oxide synthases are large modular enzymes that evolved from independently expressed ancestors. Calmodulin-controlled isoforms are signal generators; calmodulin activates electron transfer from NADPH through three reductase domains to an oxygenase domain. Structures of the reductase unit and its homologs show FMN and FAD in contact but too isolated from the protein surface to permit exit of reducing equivalents. To study states in which FMN/heme electron transfer is feasible, we designed and produced constructs including only oxygenase and FMN binding domains, eliminating strong internal reductase complex interactions. Constructs for all mammalian isoforms were expressed and purified as dimers. All synthesize NO with peroxide as the electron donor at rates comparable with corresponding oxygenase constructs. All bind cofactors nearly stoichiometrically and have native catalytic sites by spectroscopic criteria. Modest differences in electrochemistry versus independently expressed heme and FMN binding domains suggest interdomain interactions. These interactions can be convincingly demonstrated via calmodulin-induced shifts in high spin ferriheme EPR spectra and through mutual broadening of heme and FMNH. radical signals in inducible nitric-oxide synthase constructs. Blue neutral FMN semiquinone can be readily observed; potentials of one electron couple (in inducible nitric-oxide synthase oxygenase FMN, FMN oxidized/semiquinone couple = +70 mV, FMN semiquinone/hydroquinone couple = -180 mV, and heme = -180 mV) indicate that FMN is capable of serving as a one electron heme reductant. The construct will serve as the basis for future studies of the output state for NADPH derived reducing equivalents.  相似文献   

18.
The object of this study was to clarify the mechanism of electron transfer in the human endothelial nitric oxide synthase (eNOS) reductase domain using recombinant eNOS reductase domains; the FAD/NADPH domain containing FAD- and NADPH-binding sites and the FAD/FMN domain containing FAD/NADPH-, FMN-, and a calmodulin-binding sites. In the presence of molecular oxygen or menadione, the reduced FAD/NADPH domain is oxidized via the neutral (blue) semiquinone (FADH(*)), which has a characteristic absorption peak at 520 nm. The FAD/NADPH and FAD/FMN domains have high activity for ferricyanide, but the FAD/FMN domain has low activity for cytochrome c. In the presence or absence of calcium/calmodulin (Ca(2+)/CaM), reduction of the oxidized flavins (FAD-FMN) and air-stable semiquinone (FAD-FMNH(*)) with NADPH occurred in at least two phases in the absorbance change at 457nm. In the presence of Ca(2+)/CaM, the reduction rate of both phases was significantly increased. In contrast, an absorbance change at 596nm gradually increased in two phases, but the rate of the fast phase was decreased by approximately 50% of that in the presence of Ca(2+)/CaM. The air-stable semiquinone form was rapidly reduced by NADPH, but a significant absorbance change at 520 nm was not observed. These findings indicate that the conversion of FADH(2)-FMNH(*) to FADH(*)-FMNH(2) is unfavorable. Reduction of the FAD moiety is activated by CaM, but the formation rate of the active intermediate, FADH(*)-FMNH(2) is extremely low. These events could cause a lowering of enzyme activity in the catalytic cycle.  相似文献   

19.
Intersubunit intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in nitric oxide (NO) synthesis by NO synthase (NOS). Previous crystal structures and functional studies primarily concerned an enzyme conformation, which serves as the input state for reduction of FMN by electrons from NADPH and flavin adenine dinucleotide (FAD) in the reductase domain. To favor the formation of the output state for the subsequent IET from FMN to heme in the oxygenase domain, a novel truncated two-domain oxyFMN construct of rat neuronal NOS (nNOS), in which only the FMN and heme domains were present, was designed and expressed. The kinetics of IET between the FMN and heme domains in the nNOS oxyFMN construct in the presence and absence of added calmodulin (CaM) were directly determined using laser flash photolysis of CO dissociation in comparative studies on partially reduced oxyFMN and single-domain heme oxygenase constructs. The IET rate constant in the presence of CaM (262 s(-)(1)) was increased approximately 10-fold compared to that in the absence of CaM (22 s(-)(1)). The effect of CaM on interdomain interactions was further evidenced by electron paramagnetic resonance (EPR) spectra. This work provides the first direct evidence of the CaM control of electron transfer (ET) between FMN and heme domains through facilitation of the FMN/heme interactions in the output state. Therefore, CaM controls IET between heme and FMN domains by a conformational gated mechanism. This is essential in coupling ET in the reductase domain in NOS with NO synthesis in the oxygenase domain.  相似文献   

20.
Nitric oxide (NO) is a physiological mediator synthesized by NO synthases (NOS). Despite their structural similarity, endothelial NOS (eNOS) has a 6-fold lower NO synthesis activity and 6-16-fold lower cytochrome c reductase activity than neuronal NOS (nNOS), implying significantly different electron transfer capacities. We utilized purified reductase domain constructs of either enzyme (bovine eNOSr and rat nNOSr) to investigate the following three mechanisms that may control their electron transfer: (i) the set point and control of a two-state conformational equilibrium of their FMN subdomains; (ii) the flavin midpoint reduction potentials; and (iii) the kinetics of NOSr-NADP+ interactions. Although eNOSr and nNOSr differed in their NADP(H) interaction and flavin thermodynamics, the differences were minor and unlikely to explain their distinct electron transfer activities. In contrast, calmodulin (CaM)-free eNOSr favored the FMN-shielded (electron-accepting) conformation over the FMN-deshielded (electron-donating) conformation to a much greater extent than did CaM-free nNOSr when the bound FMN cofactor was poised in each of its three possible oxidation states. NADPH binding only stabilized the FMN-shielded conformation of nNOSr, whereas CaM shifted both enzymes toward the FMN-deshielded conformation. Analysis of cytochrome c reduction rates measured within the first catalytic turnover revealed that the rate of conformational change to the FMN-deshielded state differed between eNOSr and nNOSr and was rate-limiting for either CaM-free enzyme. We conclude that the set point and regulation of the FMN conformational equilibrium differ markedly in eNOSr and nNOSr and can explain the lower electron transfer activity of eNOSr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号