首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of inducible defenses and constitutive defenses on population dynamics were investigated in a freshwater plankton system with rotifers as predators and different algal strains as prey. We made predictions for these systems using a chemostat predator–prey model and focused on population stability and predator persistence as a function of flow-through rate. The model exhibits three major types of behavior at a high nutrient concentration: (1) at high dilution rates, only algae exist; (2) at intermediate dilution rates, algae and rotifers show stable coexistence; (3) at low dilution rates, large population fluctuations occur, with low minimum densities entailing a risk of stochastic rotifer extinctions. The size and location of the corresponding areas in parameter space critically depend on the type of algal defense strategy. In an 83-day high-nutrient chemostat experiment we changed the dilution rate every 3 weeks, from 0.7 to 0.5 to 0.3 to 0.1 per day. Within this range of dilution rates, rotifers and algae coexisted, and population fluctuations of algae clearly increased as dilution rates decreased. The CV of herbivore densities was highest at the end of the experiment, when the dilution rate was low. On day 80, herbivorous rotifers had become undetectable in all three chemostats with permanently defended algae (where rotifer densities had already been low) and in two out of three chemostats where rotifers had been feeding on algae with inducible defenses (that represented more edible food). We interpret our results in relation to the paradox of enrichment.  相似文献   

2.
Recent theoretical work ( Vos et al. 2004 ) predicts that inducible defences prevent strong population fluctuations under high levels of nutrient enrichment. Here we evaluate this model prediction and show that inducible defences in algae stabilize the dynamics of experimentally assembled bi‐ and tritrophic planktonic food chains. At high phosphorus levels, we observed strong population fluctuations in all food chains with undefended algae. These fluctuations did not occur when algae had inducible defences. At low phosphorus levels, we observed deterministic consumer extinctions, as predicted by stoichiometric theory. Our study thus shows that both biotically and abiotically induced changes in algal food quality affect the stability and persistence of planktonic food chains.  相似文献   

3.
Climate forecasts project further increases in extremely high‐temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta‐community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re‐establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29°C and 39°C). Animal species that suffered heat‐induced extinction were subsequently re‐introduced at the same time and density, in each of the two treatments. The 39°C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re‐establish itself in the postheat wave community. In contrast, such closure never occurred after a 29°C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re‐introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re‐introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high‐temperature events may change subsequent ecological recovery and even prevent the successful re‐establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial to the success of species re‐introduction programs and to our ability to restore ecosystems damaged by environmental extremes.  相似文献   

4.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from –0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

5.
Theoretical studies have predicted that inducible defenses affect food chain dynamics and persistence. Here we review and evaluate laboratory experiments that tested hypotheses developed from these theoretical studies. This review specifically focuses on the effects of inducible defenses in phytoplankton-rotifer food chain dynamics. First, we describe the occurrence of colony formation within different strains of green algae (Scenedesmaceae) in response to infochemicals released during grazing by the herbivorous rotifer Brachionus calyciflorus. Then we examined the effects of inducible defenses on the population dynamics of this planktonic system in which algal strains that differed in their defense strategies were used. Simple food chains were composed of green algae (Scenedesmaceae), herbivorous rotifers (Brachionus calyciflorus) and carnivorous rotifers (Asplanchna brightwellii). In this system B. calyciflorus exhibits an inducible defense against predation by developing long postero-lateral spines. Experimental studies showed that inducible defenses, as opposed to their absence, could prevent high-amplitude population fluctuations. We discuss the dual effects of induced defenses on extinction probabilities and consider the fit of a theoretical model to experimental data to understand the mechanisms that underlie the observed dynamics. Guest editors: S. S. S. Sarma, R. D. Gulati, R. L. Wallace, S. Nandini, H. J. Dumont & R. Rico-Martínez Advances in Rotifer Research  相似文献   

6.
Trade-offs between defence and other fitness components are expected in principle, and can have major qualitative impacts on ecological dynamics. Here we show that such a trade-off exists even in the simple unicellular alga Chlorella vulgaris. We grew algal populations for multiple generations in either the presence ('grazed algae') or absence ('non-grazed algae') of the grazing rotifer Brachionus calyciflorus, and then evaluated their defence and competitive abilities. Grazed algae were better defended, yielding rotifer growth rate 32% below that of animals fed non-grazed algae, but they also had diminished competitive ability, with a growth rate under nutrient-limiting conditions 28% below that of non-grazed algae. Grazed algae also had a smaller cell size and were more concentrated in carbon and nitrogen. Thus, C. vulgaris genotypes vary phenotypically in their position along a trade-off curve between defence against grazing and competitive ability. This genetic variation underlies rapid algal evolution that significantly alters the ecological predator-prey cycles between rotifers and algae.  相似文献   

7.
1. The calanoid copepods, Boeckella triarticulata Sars and Boeckella hamata Brehm, are major components of the freshwater zooplankton of New Zealand. It was not known whether these copepods ingest rotifers, nor whether the inclusion of rotifers in their diets might improve their fitness. The present study aimed to identify rotifer taxa which are eaten by each copepod species, and to examine the fitness consequences of the inclusion of one species of rotifer in the diet of B. triarticulata .
2. In feeding experiments using natural rotifer assemblages, both species of copepod ingested the rotifer Anuraeopsis fissa (0.4–4% of daily carbon intake), and B. triarticulata also ingested Polyarthra dolichoptera (6–30% of daily carbon intake) and Keratella cochlearis tecta (1% of daily carbon intake).
3. The contribution of rotifers to the fitness of adult female B. triarticulata was assessed by comparing survival and reproduction among five diets that contained varying densities of algae ( Cryptomonas sp.) and/or Polyarthra dolichoptera (4 μg C L−1). Boeckella triarticulata produced fewer clutches on a rotifer-only diet than on a solely algal diet, and addition of rotifers to a threshold algal diet did not affect copepod fitness relative to the solely algal diets. The present results suggest that Polyarthra at 4 μg C L−1 is not a high-quality food for B. triarticulata .  相似文献   

8.
Steady-state rotifer growth in a two-stage, computer-controlled turbidostat   总被引:1,自引:0,他引:1  
Steady-state populations of rotifers (Brachionus calyciflorus)were maintained in twostage, continuous-flow turbidostatic cultureon the green alga Chlorella pyrenoidosa. In this system, themaximum specific growth rate,µmax of the rotifers wasmaintained by using a computer to control the concentrationof algae, as rotifer food, in the rotifer culture. As rotifersconsumed algae, the turbidity decreased until a set-point wasreached. Then fresh algal suspension (supplied from a steady-statealgal chemostat) was metered into the rotifer culture, whichwas held in the dark. Rotifer and algal populations, as wellas rotifer µmax entered steady states. These steady-stateresults were consistent with previous data from chemostat studies,but growth transients indicated that the of the µmaxrotifersmay be subject to selection. The system is unique in providinga means to explore population dynamics of a metazoan maintainednear its µmax.  相似文献   

9.
Phytoplankton often develop various defense mechanisms in response to zooplankton grazing, such as spines and colonies. While it is now known that increased spine length and cells in a colony of members of the genus Scenedesmus, when zooplankton grazing is intense, helps in reducing zooplankton filtering rates, the effect of these defense mechanisms at the population level has been observed in few studies. Here we present data on the growth rates of four zooplankton species, Brachionus calyciflorus, B. patulus, Ceriodaphnia dubia and Daphnia pulex at two food levels using two species of colony-forming Scenedesmus spp.: S. acutus (cell length = 18.2 ± 0.4 µm; width = 4.2 ± 0.1 µm; average colony length = 90 µm; width: 21 µm) and S. quadricauda (cell length: 21 ± 0.5 width 7.5 ± 0.3 µm; average colony length: 84 µm; width: 30 µm). Whereas S. acutus had no spines, S. quadricauda had spines of 6–10 µm. Population growth experiments of the test rotifers and cladocerans were conducted in 100 ml containers with 50 ml of the medium with test algae. Algae concentrations used were: 13 and 52 mg dw l–1 of each of the two algal species offered in colonial forms. We used an initial inoculation zooplankter density of 1 ind. ml–1 for either of the rotifer species and 0.2 ind. ml–1 for either of the cladoceran species. In all, we had 64 test containers (4 test species of zooplankton × 2 test species of algae × 2 algal densities × 4 replicates). We found a significant effect of algal size on the growth rates of all the four tested species of zooplankton. The population growth rates of zooplankton ranged from ?0.58 to 0.66 and were significantly higher on diet of S. acutus than of S. quadricauda. Thus, our study confirms that the larger colony size and the formation of spines in S. quadricauda were effective defenses against grazing by both rotifers and smaller sized cladoceran Ceriodaphnia dubia but that larger-bodied Daphnia pulex could exploit both the algal populations equally.  相似文献   

10.
Zooplankton abundance was related to hydrological and environmental variables in a hydrologically dynamic lake fed by a pseudokarstic aquifer. The study period (2002–2006) in Lake Tovel covered different hydrological situations with water residence time (WRT) having the lowest values in 2002 and the highest values in 2003. WRT was negatively correlated with silica concentrations and algal biovolume. Furthermore, the biovolume of small algae was highest in spring and summer, while large algae did not show any pattern. In multivariate analysis, high abundance of crustacean species in autumn and winter was positively related to WRT and negatively to algal biovolume, while high abundance of rotifer species in spring and summer was negatively related to WRT and positively to algal biovolume. With the exception of Keratella cochlearis and Gastropus stylifer, rotifers showed a pattern of crustacean avoidance, and three groups were distinguished: (i) Ascomorpha ecaudis and Polyarthra dolichoptera, (ii) Asplanchna priodonta and Synchaeta spp., and (iii) Filinia terminalis and Keratella quadrata. These groups were associated with different food sources and depths. We suggest that WRT influenced the rotifer–crustacean relationship by wash-out effects and competition for food resources. The dynamics of single rotifer species were attributable to specific feeding requirements and adaptations. In summary, WRT determined the platform for abiotic and biotic interactions that influenced population dynamics of crustaceans and rotifers.  相似文献   

11.
In Lake G»rdsjön (Southwest Sweden), liming as an experimental improvement of living conditions for pelagic algae, resulted in a significant increase of algal biomass and a reduction of mean cell size. The algal development was beneficial for small sized filter feeding zooplankton, particularly rotifers, which showed a significant increase. The increase in abundance of small sized zooplankton created better food conditions for the smaller instars, and thus a much better overall survival of Chaoborus larvae. The resulting, 6–7 times larger population of Chaoborus larvae significantly changed the structure of the crustacean zooplankton community. Bosmina coregoni, the fastest swimmer of the crustacean species suffered most and was strongly reduced by the increased predation from Chaoborus. The share of cladocerans decreased, while copepods increased in importance.  相似文献   

12.
1. A year-round study was conducted in a mesotrophic reservoir to determine the dynamics of zooplankton populations as a function of food availability (edible phytoplankton), nutrient concentration, temperature and hydraulic regime.
2. Rotifer biomass was correlated with soluble reactive phosphorus (SRP) concentration. The abundance of the rotifers Keratella cochlearis and Anuraeopsis fissa were not correlated with food availability (measured by chlorophyll and cell counts) but showed a strong dependence on P availability. Another rotifer, Synchaeta oblonga , and crustacean species were not related to nutrient availability but seemed to be dependent on food concentrations, especially of some phytoplankton taxa.
3. In this field study, rotifers seemed more susceptible than Daphnia or copepods to P-limitation. Among rotifer species, Keratella seemed to be more susceptible than Anuraeopsis to P limitation. Different susceptibilities of zooplankton species to nutrient limitation may be important in explaining the dynamics of these organisms in natural situations. Further analyses are warranted to clarify the interactions between nutrient limitation and energy limitation among zooplankton.  相似文献   

13.
14.
Summary Field distribution patterns and laboratory feeding experiments have suggested that blooms of colonial blue-green algae strongly inhibit relatively large-bodied daphnid cladocerans. We conducted laboratory experiments to test the hypothesis that blooms of the colonial blue-green alga Microcystis aeruginosa would shift competitive dominance away from large-bodied daphnid cladocerans toward smaller-bodied cladocerans, copepods, and rotifers. In laboratory competition experiments, increasing the proportion of M. aeruginosa in the algal food supply resulted in a shift from dominance by the relatively largebodied cladoceran Daphnia ambigua to dominace by the copepod Diaptomus reighardi. The small-bodied cladoceran Bosmina longirostris was always numerically heavily dominant over D. ambigua, but its estimated population biomasses were only slightly higher than those of D. ambigua. Daphnia ambigua consistently outcompeted the rotifer Brachionus calyciflorus. Our results demonstrate that blooms of M. aeruginosa can alter zooplankton competitive relations in laboratory experiments, favoring small-bodied cladocerans and copepods at the expense of large-bodied cladocerans. However, contrary to predictions, blooms of M. aeruginosa did not improve the competitive ability of rotifers.  相似文献   

15.
SUMMARY. 1. The relationship between population growth rates and the concentrations of several algal species was determined in laboratory experiments with the rotifers Brachionus rubens and B. calyciflorus .
2. The effects of food quantity were well described by a modified Monod model with a threshold for zero population growth. The model parameters depended on particle size and nutritional quality of the food algae. Differences between the rotifer species were significant and reflected their varying food-size preferences.
3. For each rotifer species, thresholds were lowest for algae in the most readily ingested size range. The lowest thresholds were 0.07–0.09 mgC 1−1 with algae of about 5 μm equivalent spherical diameter (ESD) for B. rubens , and 0.19 mgC 1−1 with algae of about 10 μm ESD for B. calyciflorus .
4. Maximal growth rates ( r max) were slightly below 0.8 day−1 for both rotifers with most algal species. The highest r max values for both rotifers were observed when Cyclotella meneghiniana was provided as food. With this alga, B. calyciflorus had a significantly higher rmax (1.02 day−1) than B. rubens (0.838 day−1).
5. From a comparison of the relationship between growth rates and ingestion rates, Chlamydomonas reinhardii appeared to be of low nutritional quality for B. rubens .
6. Egg ratios were related to growth rate and were not influenced by the algal food used. Egg development times and average mortality rates were estimated from the relationship between egg ratio and growth rate. B. calyciflorus appeared to have a high average mortality rate (0.383 day−1) compared to B. rubens (0.083 day−1).  相似文献   

16.
Indirect defence, the adaptive top‐down control of herbivores by plant traits that enhance predation, is a central component of plant–herbivore interactions. However, the scope of interactions that comprise indirect defence and associated ecological and evolutionary processes has not been clearly defined. We argue that the range of plant traits that mediate indirect defence is much greater than previously thought, and we further organise major concepts surrounding their ecological functioning. Despite the wide range of plant traits and interacting organisms involved, indirect defences show commonalities when grouped. These categories are based on whether indirect defences boost natural enemy abundance via food or shelter resources, or, alternatively, increase natural enemy foraging efficiency via information or alteration of habitat complexity. The benefits of indirect defences to natural enemies should be further explored to establish the conditions in which indirect defence generates a plant–natural enemy mutualism. By considering the broader scope of plant–herbivore–natural enemy interactions that comprise indirect defence, we can better understand plant‐based food webs, as well as the evolutionary processes that have shaped them.  相似文献   

17.
Inducible defences and the paradox of enrichment   总被引:13,自引:0,他引:13  
In order to evaluate the effects of inducible defences on community stability and persistence, we analyzed models of bitrophic and tritrophic food chains that incorporate consumer-induced polymorphisms. These models predict that intra-specific heterogeneity in defence levels resolves the paradox of enrichment for a range of top-down effects that affect consumer death rates and for all possible levels of primary productivity. We show analytically that this stability can be understood in terms of differences in handling times on the different prey types. Our predictions still hold when defences also affect consumer attack rates. The predicted stability occurs in both bitrophic and tritrophic food chains.
Inducible defences may promote population persistence in tritrophic food chains. Here the minimum densities of cycling populations remain bound away from zero, thus decreasing the risk of population extinctions. However, the reverse can be true for the equivalent bitrophic predator–prey model. This shows that theoretical extrapolations from simple to complex communities should be made with caution. Our results show that inducible defences are among the ecological factors that promote stability in multitrophic communities.  相似文献   

18.
1. Thermally assisted hydrolysis and methylation of cellular lipids, by means of Curie‐point pyrolysis of intact whole cells in the presence of a quaternary ammonium hydroxide reagent, provided analytical access (pyrolysis‐gas chromatography; Py‐GC) to the very small amounts of algal carbon delivered by fluorescence‐activated cell sorting. Based on differences in pigment composition, population‐specific in situ fatty acid profiles could be obtained of the major taxa present in the phytoplankton of Lake Loosdrecht (The Netherlands). 2. By combining Py‐GC and compound‐specific isotope‐ratio mass spectrometry (Py‐GC‐IRMS) the in situ carbon isotopic signatures could be established of the fatty acid profiles retrieved by flow cytometry. Colonial phytoplankton not amenable to cell sorting and zooplankton specimens were also isotopically characterised with this technique by subjecting handpicked samples to pyrolytic methylation. In this way proxies could be obtained in great detail for isotopic end‐members delineating important carbon sources and sinks in the pelagic food web of Lake Loosdrecht. 3. These analyses suggested a significant isotopic heterogeneity among major representatives of the phytoplankton in Lake Loosdrecht. This heterogeneity was also reflected in the isotopic composition of the zooplankton, implying the occurrence of preferential grazing. A differential labelling of the phytoplankton using 13C‐CO2 in a laboratory confinement, and subsequent monitoring of label transfer to the zooplankton, corroborated selective feeding in some rotifer species. The large‐bodied rotifer Asplanchna, previously thought to be predaceous, apparently mainly fed on algae rather than small rotifers, whereas Euchlanis dilatata actively selected filamentous cyanobacteria. Flow cytometric cell sorting in concert with Py‐GC‐IRMS offers new possibilities in carbon isotope‐based food web studies.  相似文献   

19.
We investigated the nutritional effects of both food quantity and quality on Brachionus plicatilis. Decomposition of particulate and dissolved organic matter by rotifer digestive enzymes play a crucial role in rotifer nutrition. Among other enzymes, rotifers produce phosphatases, non‐specific enzymes that allow for the release of orthophosphate from a variety of organic phosphorus compounds. Phosphatase saturation was measured in B. plicatilis homogenates using the spectrofluorimetric method. We examined population growth rate, reproduction and phosphatase activity in the homogenate of rotifers (PARH) fed by nutrient‐replete algal food supplied at different quantities. Population growth rate, number of eggs per individual and PARH were affected by food quantity. Growth rate and number of eggs per individual significantly increased in rotifers fed by food supplied at the highest quantity. The highest population growth rate was reached by rotifers fed by nutrient‐replete food, while it did not significantly differ between rotifers fed on nitrogen (N)‐depleted and phosphorus (P)‐depleted food. The number of eggs per individual was more affected by N than P supply. PARH and rotifer RNA content were not influenced by different food quality. The results indicate that B. plicatilis is not able to regulate its digestive apparatus in terms of efficiently getting access to essential nutrients when scarce, but do this when nutrient‐replete food is available in different quantity. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
1. Nutrient and fish manipulations in mesocosms were carried out on food‐web interactions in a Mediterranean shallow lake in south‐east Spain. Nutrients controlled biomass of phytoplankton and periphyton, while zooplankton, regulated by planktivorous fish, influenced the relative percentages of the dominant phytoplankton species. 2. Phytoplankton species diversity decreased with increasing nutrient concentration and planktivorous fish density. Cyanobacteria grew well in both turbid and clear‐water states. 3. Planktivorous fish increased concentrations of soluble reactive phosphorus (SRP). Larger zooplankters (mostly Ceriodaphnia and copepods) were significantly reduced when fish were present, whereas rotifers increased, after fish removal of cyclopoid predators and other filter feeders (cladocerans, nauplii). The greatest biomass and diversity of zooplankton was found at intermediate nutrient levels, in mesocosms without fish and in the presence of macrophytes. 4. Water level decrease improved underwater light conditions and favoured macrophyte persistence. Submerged macrophytes (Chara spp.) outcompeted algae up to an experimental nutrient loading equivalent to added concentrations of 0.06 mg L?1 PO4‐P and 0.6 mg L?1 NO3‐N, above which an exponential increase in periphyton biomass and algal turbidity caused characean biomass to decline. 5. Declining water levels during summer favoured plant‐associated rotifer species and chroococcal cyanobacteria. High densities of chroococcal cyanobacteria were related to intermediate nutrient enrichment and the presence of small zooplankton taxa, while filamentous cyanobacteria were relatively more abundant in fishless mesocosms, in which Crustacea were more abundant, and favoured by dim underwater light. 6. Benthic macroinvertebrates increased significantly at intermediate nutrient levels but there was no relationship with planktivorous fish density. 7. The thresholds of nutrient loading and in‐lake P required to avoid a turbid state and maintain submerged macrophytes were lower than those reported from temperate shallow lakes. Mediterranean shallow lakes may remain turbid with little control of zooplankton on algal biomass, as observed in tropical and subtropical lakes. Nutrient loading control and macrophyte conservation appear to be especially important in these systems to maintain high water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号