首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The role of allelopathy in biochemical ecology: Experience from Taiwan   总被引:2,自引:0,他引:2  
Allelopathic compounds, including fatty acids, phenolics, flavonoids, terpenoids, and alkaloids, have been found in various plants and soils of different habitats in Taiwan since 1972. For example, in a monoculture of rice plants, phytotoxins were produced during the decomposition of rice residues in soil, suppressed the growth of rice seedlings, and reduced the numbers of tillers and panicles, leading to yield reduction. The allelopathic metabolites are also affected by environmental factors, such as oxygen, temperature, soil moisture, microbial activity, and levels of fertilizers in soil, and allelopathy was pronounced in areas where environmental stresses were severe. Substantial amounts of phytotoxic mimosine and phenolics were released into soil by plant parts of Leucaenaleucocephala, and these suppressed the growth of many understory species except that of L.leucocephala itself. A unique pattern of absence of understory plants was ubiquitous beneathPhyllostachys edulis, due primarily to an allelopathic effect. In a forest pasture intercropping, an aggressive kikuyu grass was planted in a deforested land where Chinese fir grew previously, to help in understanding the mechanism of biological interactions between plants. Aqueous soil leachate and extracts of the grass significantly, retarded the growth of local weeds but not that of the Chinese fir. Allelopathy thus plays an appreciable role in natural vegetation and plantations in Taiwan.  相似文献   

2.
以本氏针茅及其优势种大针茅和百里香种子为受体,采用生物检测的方法研究了0(对照)、0.1、0.2和0.5g/mL本氏针茅根际土甲醇浸提液和水浸提液对3种受体种子萌发的影响,以探究草地演替过程中物种间的生态关系和化感作用的表现形式。结果显示:(1)甲醇浸提液对3种受体种子的发芽均有抑制作用;水浸提液对本氏针茅发芽有促进作用,对百里香有部分促进作用,而对大针茅有抑制作用。(2)甲醇浸提液对本氏针茅和大针茅胚根和胚芽生长无显著影响,而抑制百里香胚根和胚芽的生长;水浸提液对本氏针茅胚根生长无显著影响,对本氏针茅胚芽生长具有显著促进作用,而对其它两种受体胚根和胚芽均无显著影响。(3)各种浓度甲醇浸提液对大针茅和百里香生长表现出了化感综合抑制效应,对本氏针茅生长于0.2g/mL时表现出化感综合抑制效应,其它2种浓度(0.1、0.5g/mL)表现为化感综合促进效应;水浸提液对本氏针茅和百里香表现为化感综合促进效应,而对大针茅表现为化感综合抑制效应。研究表明,本氏针茅根际土甲醇浸提液和水浸提液的化感物质存在差异;不同受体对同一浸提液反应不同,同一受体对不同浸提液的反应也不同。  相似文献   

3.
Six medicinal plants such as Amaranthus spinosus, Barbeya oleoides, Clutia lanceolata, Lavandula pubescens, Maerua oblongifolia and Withania somnifera collected from different locations in the southwestern part of Saudi Arabia were tested for antifungal activities against five plant pathogenic fungi causing serious diseases of vegetable crops. These fungi were Alternaria brassicae, Alternaria solani, Botrytis fabae, Fusarium solani and Phytophthora infestans. Aqueous plant extracts reduced mycelial growth and inhibited spore germination of all fungi tested. It is clear that the aqueous extract of Lavandula pubescens leaves was the best for controlling all phytopathogenic fungi under study. These results suggested that medicinal plant extracts play an important role in controlling the phytopathogenic fungi.  相似文献   

4.
We evaluated the salt tolerance of hybrids of pepper (Capsicum annuum L.) during germination. Treatments were applied at 0, 25, and 50 mM NaCl with preparations of supplemental extracts of the microalgae Dunaliella salina and Phaeodactylum tricornutum to determine the percentage germination rate as well as measured indicators of oxidative stress caused by the salt treatments during seed germination. We found that root growth was favorably influenced by the microalgae leading to increased germination rate. Tissues were analyzed in terms of superoxide radical production, lipid peroxidation, and activity of antioxidant enzymes viz. superoxide dismutase, catalase, and glutathione peroxidase. Our results suggest that application of microalgae extracts significantly reduced (p?<?0.05) superoxide radical production, as well as lower lipid peroxidation in comparison to plants without extracts of microalgae. The antioxidant enzymes increased in the presence of microalgae showing a significant difference (p?<?0.05). The results suggest differences in oxidative metabolism in response to the magnitude of salt stress and concentrations of microalgae help mitigate salt stress in plants during the germination process.  相似文献   

5.
Comparative study about the salt-induced oxidative stress and lipid composition has been realised in primary root tissues for two varieties of maize (Zea mays L.) in order to evaluate their responses to salt stress. The root growth, root water content (WC), hydrogen peroxide (H2O2) generation, lipid peroxidation, membrane stability index and the changes in the profile of fatty acids composition were investigated. Salinity impacts in term of root growth, water content, H2O2 generation, lipid peroxidation and membrane destabilisation were more pronounced in primary roots of Aristo than in those of Arper indicating more sensitivity of the first variety. It was confirmed by gas chromatography that the composition of fatty acids in roots of both varieties was constituted mainly by 16:0 and 18:0 as major saturated fatty acids and 18:1ω9, 18:2ω6 and 18:3ω3 as major unsaturated fatty acids. Total lipid extracts from the roots of both varieties showed that the lipid saturation level increased under salt stress, notwithstanding the increased proportion of polyunsaturated fatty acids. The changes in lipid saturation being predominantly due to decreases in oleic acid (18:1ω9) and increases in palmitic acid (16:0). However, Arper root extracts contained a lower proportion of saturated lipids than Aristo. The enhanced proportion of highly polyunsaturated fatty acids especially linolenic and eicosapentaenoic acids was considered to be the characteristic of the relatively salt tolerance in Arper roots.  相似文献   

6.
Red fescue (Festuca rubra) is a perennial grass used as both forage and turfgrass. Asymptomatic plants of this species are systemically infected by the fungal endophyte Epichloë festucae, which has a beneficial effect on the infected plants. The aim of this study was to determine the effect of the endophyte Epichloë festucae on the allelopathic potential of F. rubra against four associated pasture species that are also considered as weeds in lawns, Trifolium pratense, Trifolium repens, Lotus corniculatus and Plantago lanceolata. Two experiments were designed to evaluate the allelopathic effect of extracts from the roots and leaves of endophyte‐infected (E+) and non‐infected (E?) plants on the germination and seedling growth of the four target species. Regardless of the endophyte status of the host plant, leaf extracts elicited a stronger reduction in germination and seedling growth than root extracts. Extracts from E+ plants reduced the speed of germination index of Trifolium spp. to a greater extent than those from E? plants. Radicle length of the target species was the parameter most affected by the presence of the endophyte in F. rubra. Root extracts from E+ plants had a greater inhibitory effect on the radicle growth of the target species than did root extracts from E? plants. A greater concentration in total phenolic compounds was found in the roots of E+ plants than of E?; however, this difference was not observed in the leaves. Thus, the allelopathic potential of F. rubra is altered in infected plants.  相似文献   

7.
  • Senna occidentalis is an invasive plant producing a series of allelochemicals that might inhibit the development of other plants. The objective of this study was to assess the phytotoxic effect of Soccidentalis extracts on the germination, development and antioxidant defence of the native species Tabebuia chrysotricha, T. pentaphylla, T. roseoalba and Handroanthus impetiginosus (Ipê species).
  • We evaluated the effects of chemicals extracted from Soccidentalis on the germination rate, germination speed index (GSI) and biometric parameters of the test species under controlled conditions. The effect of the extracts on the pigment content, amount of H2O2 and malondialdehyde (MDA), and the activity of the antioxidant enzymes in roots and leaves were also tested.
  • Alkaloids, coumarins, phenols, saponins, free steroids and condensed tannins were present in all extracts of Soccidentalis, while catechins were present only in leaf and stem extracts. Stem and root extracts caused a growth reduction in all Ipê species and total inhibition of seed germination in Tchrysotricha and Troseoalba. All target species showed an increase in H2O2 and MDA in radicles and leaves. Oxidative stress contributed strongly to the morphological changes, such as seed blackening, thinning and darkening of radicle tips and reduction of biomass allocation in all Ipê species.
  • Although there was activation of antioxidant defence mechanisms, such as an increase in activity of ascorbate peroxidase (APX) and peroxidase (POD) enzymes, the joint action of the allelochemicals caused phytotoxicity, leading to cell dysfunction in all Ipê species.
  相似文献   

8.
Codonopsis lanceolata Trautv (Companulaceae) is a folk medicine in Korea. To shift the content of tocopherol and enhance its antioxidant properties, we overexpressed the γ-tocopherol methyltransferase (γ-tmt) gene in C. lanceolata. The antioxidant activity of methanolic crude extracts of the transgenic plants was compared to that of control plants using the 1,1-diphenyl-2-picrylhydrazyl radical scavenging method, with α-tocopherol and butylated hydroxy toluene as standard antioxidants. The antioxidant activity of the leaf and root extracts of transgenic plants was higher (IC 50 12–17.33 and 408–524 μg/ml, respectively) than that of control plant leaf and root extracts (18 and 529 μg/ml, respectively). High-performance liquid chromatography analysis of phenolic compounds confirmed an increase in the levels of 12 major phenolic acids and flavonoids in the leaf and root extracts of transgenic plants compared to control plants. We also found that the rate of photosynthesis was 48% higher in transgenic plants than in control plants. Based on these results, we suggest that increases in the α-tocopherol level in transgenic C. lanceolata plants may result in increases in the photosynthetic performance and antioxidant metabolism of these plants.  相似文献   

9.
The current study was taken up to examine the role of bioagent (Trichoderma hamatum) in mitigating the deleterious effects of NaCl stress in Ochradenus baccatus. Varying concentrations of salt (0, 75, and 150 mM) were used to observe the effect on growth, pigments, some key metabolic attributes, antioxidant enzymes, and elemental accumulation in O. baccatus. The results indicated significant decrease in seed germination, plant growth, pigment content, membrane stability index, tissue water content, and total lipid content with salt stress. Lipid peroxidation increases with the increasing concentration of NaCl. Moreover, salinity stimulated the biosynthesis of phenols, diacylglycerol, sterol esters, nonesterified fatty acids, and enzymatic antioxidants like superoxide dismutase, catalase, peroxidase, ascorbate peroxidase, glutathione reductase. The Na+ content in shoot increases with elevated levels of NaCl concentration, accompanied with significant decreases in K+, Mg2+, and Ca2+. Application of bioagent (T. hamatum) has been observed to alleviate the antagonistic effect of salt stress on plant growth and metabolic processes. In absence and presence of salt stress, the bioagent stimulated the plant growth and alter the plant metabolism through the modification of the above parameters.  相似文献   

10.
Neurospora crassa is a potential expression system for evaluating fatty-acid-modifying genes from plants producing uncommon fatty acids. One such gene encodes the hydroxylase that converts oleate to ricinoleate, a fatty acid with important industrial uses. To develop this expression system, it is critical to evaluate the metabolism and physiological effects of the expected novel fatty acid(s). We therefore examined effects of ricinoleate on lipid biosynthesis and growth of N. crassa. Ricinoleate inhibited growth and reduced levels of phospholipids and of 2-hydroxy fatty acids in glycolipids, but led to increased lipid accumulation on a mass basis. To evaluate incorporation and metabolism of ricinoleate, we followed the fate of 14 M–3 mM [1-14C]ricinoleate. The fate of the [14C]ricinoleate was concentration-dependent. At higher concentrations, ricinoleate was principally incorporated into triacylglycerols. At lower concentrations, ricinoleate was principally metabolized to other compounds. Thus, N. crassa transformants expressing the hydroxylase gene can be detected if the level of hydroxylase expression allows both growth and ricinoleate accumulation.  相似文献   

11.
Seven day old seedlings of Echinochloa crus-galli var. oryzicola (Vasing) had a higher total lipid content when germinated under N2 than in air, although ungerminated seeds contained more lipid than either seedling. The triacylglycerol pool was not depleted under anaerobiosis as it was in air and only air-grown seedlings showed a net increase in free fatty acids and polar lipids. Concentrations of most of the individual acids of the total fatty acid profile declined during germination in air and in the free acid and polar lipid fractions of these seedlings the relative proportion of polyunsaturated fatty acids increased. Compared to air-grown seedlings, ungerminated seeds and N2-grown seedlings had a similar qualitative and quantitative lipid composition. Our results show that mobilization of storage lipids was apparently severely inhibited under anoxia. The importance of lipid metabolism to the germination and growth of Echinochloa during anoxia is discussed in terms of maintaining membrane integrity and serving (indirectly) to reoxidize pyridine nucleotides.  相似文献   

12.
Summary Sorghum vulgare Pers. a tropical fodder crop significantly reduced the vertical growth and drymass of Sorghum vulgare, Pennisetum americanum, Zea mays and Setaria italica. Aqueous extracts of various plant parts, field soils and decaying mulch significantly reduced germination, radicle growth and water contents of all test species. The toxicity levels were depending upon the plant parts used in the biossay experiments and the sensitivity of the test species. It is suggested that the Sorghum fields be rotated with other crops to maximize the crop productivity.  相似文献   

13.
Summary During germination and subsequent growth of fatty seeds, higher plants obtain energy from the glyconeogenic pathway in which fatty acids are converted to succinate in glyoxysomes, which contain enzymes for fatty acid -oxidation and the glyoxylate cycle. TheArabidopsis thaliana ped1 gene encodes a 3-ketoacyl-CoA thiolase (EC 2.3.1.16) involved in fatty acid -oxidation. Theped1 mutant shows normal germination and seedling growth under white light. However, etiolated cotyledons of theped1 mutant grow poorly in the dark and have small cotyledons. To elucidate the mechanisms of lipid degradation during germination in theped1 mutant, we examined the morphology of theped1 mutant. The glyoxysomes in etiolated cotyledons of theped1 mutant appeared abnormal, having tubular structures that contained many vesicles. Electron microscopic analysis revealed that the tubular structures in glyoxysomes are derived from invagination of the glyoxysomal membrane. By immunoelectron microscopic analysis, acyl-CoA synthetase (EC 6.2.1.3), which was located on the membrane of glyoxysomes in wild-type plants, was located on the membranes of the tubular structures in the glyoxysomes in theped1 mutant. These invagination sites were always in contact with lipid bodies. The tubular structure had many vesicles containing substances with the same electron density as those in the lipid bodies. From these results, we propose a model in which there is a direct mechanism of transporting lipids from the lipid bodies to glyoxysomes during fatty acid -oxidation.  相似文献   

14.
The hypothesis that endogenous short chain fatty acids (C 6-C 10) are important in maintaining seeds of wild oat (Avena fatua L.) in the dormant state by acting as natural germination inhibitors (Berrie, Buller, Don, Parker, 1979 Plant Physiol 63: 758-764) was investigated. When germination of nondormant seeds was inhibited by treatment with short chain fatty acids, the seeds did not revert to a similar biochemical and physiological state as exhibited by dormant seeds. First, nonanoic acid-induced inhibition of seed germination was not reversed by hormone treatments which normally break dormancy in wild oat seeds. Second, nondormant seeds treated with short chain fatty acids maintained similar relative proportions of the pentose phosphate pathway and the Embden-Meyerhoff-Parnas pathway for respiratory glucose metabolism as that found in the nondormant controls. Seeds imbibed in the presence of nonanoic acid lost more amino acids and proteins into the imbibition solution than did the untreated controls, suggesting membrane damage had occurred. Inasmuch as increasing concentrations of nonanoic acid also progressively reduced the growth of the coleoptile and roots of intact seedlings until all growth ceased and no germination occurred, the inhibition of seed germination could be due to a nonspecific inhibition of growth of the embryo, perhaps because of disruption of membrane structure and function. Finally, no correlation between endogenous levels of short chain fatty acids in seeds or isolated embryonic axes and seed dormancy could be demonstrated.  相似文献   

15.
Experiments were conducted under laboratory and greenhouse conditions to investigate the allelopathic potential of aqueous extracts of dry and fresh leaves of Psidium guava on purslane weed growth and root-knot nematode, Meloidogyne incognita infecting sunflower plants cv. Giza 102. A Petri dish assay showed that the aqueous extracts significantly reduced seedling length of purslane (Portulaca oleracea), with the degree of inhibition being concentration dependent. Greenhouse studies (in 2008 and 2009) indicated greatest significant inhibition in purslane growth as well as number of galls and egg masses of infecting nematode. However, this inhibition was accompanied with increase in sunflower growth and yield. The studies indicated increase in the endogenous contents of total phenols in purslane tissues which correlated with growth inhibition. Chemical analysis indicated increase in the contents of carbohydrates, protein and oil in sunflower seeds. The studies involved analysis of fatty acid composition by GLC which indicated increasing in the percentage of oleic and linoeic acids in sunflower seeds by fresh and dry leaves extract of P. guava. The percentage of linoleic acid and linolenic acid was higher by fresh and dry leaves extract. A high-performance liquid chromatography analysis of P. guava extracts recorded that the ferulic, coumaric, vanelic, chlorogenic, caffiec acids were present.  相似文献   

16.
The invasive erect prickly pear cactus (Opuntia stricta) has reduced rangeland quality and altered plant communities throughout much of the globe. In central Kenya's Laikipia County, olive baboons (Papio anubis) frequently consume O. stricta fruits and subsequently disperse the seeds via defecation. Animal‐mediated seed dispersal can increase germination and subsequent survival of plants. However, consumption of seeds (seed predation) by rodents may offset the potential benefits of seed dispersal for cactus establishment by reducing the number of viable seeds. We investigated foraging preferences of a common and widely distributed small mammal—the fringe‐tailed gerbil (Gerbilliscus robustus), between O. stricta seeds deposited in baboon faeces versus control O. stricta seeds. In addition to providing evidence of seed predation on O. stricta by G. robustus, our data show that seed removal was higher (shorter time to use) for seeds within faeces than for control seeds. G. robustus clearly prefers seeds within faeces compared to control seeds. These results suggest that high abundances of rodents may limit successful establishment of O. stricta seeds, possibly disrupting seed dispersal via endozoochory by baboons.  相似文献   

17.
The breeding system of the European tussock grass Nardus stricta L. (Poaceae) was investigated with pollination experiments. Plants were sampled from two populations at Lake Pukaki, Canterbury, New Zealand, where the species is recognised as an alien invader. Bagging of flowers with king-sized cigarette paper and hand-pollination were used to test for three modes of reproduction in the greenhouse: (1) agamospermy (apomixis), (2) autogamy and self-compatibility, and (3) allogamy (outcrossing). Two control groups without experimental treatments were further tested for seed set under (1) greenhouse and (2) field conditions. The success or failure of all experimental treatments was assessed with seed set and germination trials. All agamospermy treatments showed high seed set and germination proportions arguing for an apomictic mode of reproduction in Nardus stricta. Cross-pollination treatments were also successful making it difficult to estimate the degree of outcrossing, selfing, and agamospermous seed production in Nardus stricta. Fecundity in field populations was considerably reduced, possibly due to environmental factors acting upon seed development during maturation. The reproductive strategy of Nardus stricta might be particularly beneficial during invasion because single tussocks can form reproducing colonies and high reproductive output is ensured even in the absence of pollination. Genetic studies in combination with pollination experiments would be necessary to gain deeper insights into the breeding strategy of Nardus stricta.  相似文献   

18.
The impact of cis, trans and cyclopropane fatty acids on membrane fluidity was investigated using batch‐grown Pseudomonas putida P8 and Comamonas testosteroni ATCC 17454. A major difference observed between the two investigated strains is the absence of the ability to synthesize trans‐unsaturated fatty acids in Comamonas. When grown exponentially at 30 °C, a shift to 35 °C increased the trans/cis ratios of the fatty acids of P. putida P8 from 0 to 0.81 and 0 to 1.07, in lipid extracts and cell hydrolyzates, respectively. After prolonged growth followed by nutrient deprivation for 48 h, both at 30 °C, trans fatty acids were absent, but the cyclo/cis ratios rose from 0.1 to 1.55 in lipid extracts, and from 0.1 to 1.54 in cell hydrolyzates. C. testosteroni ATCC 17454 contained no cyclo fatty acids when harvested in the exponential phase after 6 h, whereas after 72 h cultivation, the cyclo/cis ratios rose to 0.49 and 0.47, in lipid extracts and cell hydrolyzates, respectively. Trans fatty acids were never observed in this strain. Increased cyclo/cis and trans/cis ratios correlated with decreased fluidity measured by the fluorescence anisotropy of 1,6‐diphenyl‐1,3,5‐hexatriene (DPH) intercalated in the bilayers of liposomes and by Fourier Transform Infrared (FTIR) spectroscopy of lipids prepared from the cells. The specific effect of cyclopropane fatty acids on membrane fluidity was much smaller than that of trans fatty acids. FTIR‐measurements of intact cells of P. putida P8 confirmed the high potency of trans fatty acids to decrease the fluidity. In cells with induced cyclopropane fatty acid synthesis, the membranes remained more fluidized, indicating the lower importance of these fatty acids for homeoviscosis.  相似文献   

19.
31P-NMR has been used to study the chemical nature of cytoplasmic components of live Tetrahymena in a non-invasive manner. The technique has further been used to characterize the physical behaviour of lipids extracted from this organism. In particular, we have shown the presence of large quantities of pyrophosphate and of tripolyphosphate in acid extracts of the organism. These are not detectable in the live cell due to the motionally rigid nature of the storage granules. We have characterized the distribution of phosphonic acids in the organism and followed the phase behaviour of the extracted cell lipids. Aqueous dispersions of extracted lipid show both bilayer and non-bilayer behaviour in the range of the growth temperature. The phosphonolipid in Tetrahymena appears to play a role similar to that of phosphatidylethanolamine in regulating the phase behaviour of the membrane. The high degree of unsaturation in the fatty acids of Tetrahymena is most likely responsible for the polymorphic phase behaviour observed near the growth temperature.  相似文献   

20.
张娟  贺学礼  赵丽莉  许伟  闫姣 《生态学报》2015,35(4):1095-1103
克隆植物,尤其是游击型克隆植物,具有很强的扩展能力,通过克隆扩展可侵入到不同生境斑块。克隆植物入侵可能会影响入侵地土壤营养状况和微生物群落。为了探明克隆植物入侵对DSE(dark septate endophytes)活动和土壤理化性质的影响,于2013年6月在克隆植物羊柴(Hedysarum laeve)和沙鞭(Psammochloa villosa)群落空地沿根状茎延伸方向设置样方,分别于6月、8月和10月在样方内分0—10、10—20、20—30、30—40、40—50 cm土层采集土样和根样,研究了不同采样时间羊柴和沙鞭群落空地DSE和土壤理化性质时空变化。结果表明,从6月到10月,随时间后延,克隆植物逐渐侵入群落空地,沙鞭入侵群落空地数和分株数高于羊柴。羊柴群落空地根系DSE定殖率随采样时间后延,逐渐降低,最大值在6月;沙鞭群落空地根系DSE定殖率随采样时间后延,逐渐升高,最大值在10月。随着克隆植物入侵,入侵地土壤中可利用的营养物质含量显著提高,羊柴入侵提高了入侵群落空地土壤碱解N、有效P和速效K含量,沙鞭入侵提高了入侵群落空地土壤碱解N和有效P含量。相关性分析表明,羊柴群落空地DSE定殖率与土壤p H值和电导率显著正相关,沙鞭群落空地DSE定殖率与土壤p H值极显著负相关,与电导率、碱解N和有效P极显著正相关。克隆植物入侵使得土壤环境更有利于克隆植物自身生长,为荒漠植被恢复提供了前提。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号