首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Protein synthetic patterns during oogenesis in Drosophila melanogaster were examined; in particular the site, time, and rate of tubulin synthesis and accumulation during oogenesis were determined. Ovarian proteins were labeled with [35S]methionine in vivo or in organ culure in vitro, and the proteins synthesized in egg chambers of specific developmental stages displayed by two-dimensional gel electrophoresis. A dissection technique was devised to examine proteins synthesized in each of the three cell types present in stage 10B egg chambers. The majority of proteins which were resolved by two-dimensional gel electrophoresis, including tubulin and actin, were synthesized throughout oogenesis and, at least to some extent, in each of the stage 10B cell types. Protein synthesis specific to developmental stage and/or cell type was also observed; for example, two nonchorion proteins were synthesized only in follicle cells and primarily at stage 10. A sensitive and specific radioimmune assay was developed in order to quantitate tubulin accumulation. Synthesis of several α-tubulin subunits and one β-tubulin subunit was observed. The tubulin content per egg chamber increased from 3 ng in stage 9 to 17 ng in stage 14, a period of about 13 hr. An accumulation rate of 1 ng/hr suggests that tubulin mRNA can account for about 4% of the total, nonmitochondrial, poly(A)+ RNA of the egg. Analysis of separated cell types at stage 10B revealed that both the follicle and nurse cells synthesize and accumulate appreciable amounts of tubulin. The stage 10B oocyte contains relatively little tubulin but actively synthesizes it. These two complementary analyses demonstrate that the tubulin present in the egg is synthesized within the oocyte-nurse cell syncytium, first in the nurse cells and later in the oocyte.  相似文献   

3.
The chromatin proteins of different embryonic stages, ranging from 16 cell to gastrula, of the sea urchin Strongylocentrotus purpuratus were labeled, in vivo, with 14C and were labeled, in vitro, with 3H. The proteins thus labeled were separated by high resolution two-dimensional electrophoresis. The extent of possible cytoplasmic contamination has been examined with reconstruction experiments. Gastrula chromatin contains over 200 separable nonhistone proteins, and about 90% of them are also detected at the 60-cell stage; cleavage stages have over all protein gel patterns displaying numerous differences with the pattern shown by chromatin from later stages. Differences in the proportion of histone to nonhistone proteins that are synthesized are observable at the different embryonic stages, with histones predominating in midcleavage. About half of the nonhistone proteins of the developing embryo that can be labeled with 3H, in vitro, are not labeled with 14C, in vivo, and hence, must originate from a reservoir of nonhistone proteins assembled during oogenesis.  相似文献   

4.
RNA synthesis has been studied in oocytes taken from Xenopus laevis females which have not recently ovulated. Such females contain a population of large (stage 6) oocytes which exhibit white equatorial bands and which are considered to represent the terminal stage of oocyte development. Rates of RNA synthesis in these “banded” oocytes were measured by analyzing the kinetics of incorporation of 3H-guanosine into acid-precipitable, alkaline-labile material, and changes in precursor pool (GTP) specific activity during incubations. In additional experiments, rates of RNA synthesis were measured after 3H-GTP was injected directly into stage 6 oocytes. For comparison, rates of RNA synthesis were measured in lampbrush chromosome stage oocytes (stage 4; 0.5–0.6 mm diameter). The results show that, under the in vitro conditions employed, stage 6 oocytes are not metabolically dormant, but synthesize total RNA at a rate at least as great as the stage 4 oocytes.Qualitative studies on newly synthesized RNA in the two oocyte classes have been performed using sucrose density gradient centrifugation and acrylamide gel electrophoresis. Both stage 4 and stage 6 oocytes exhibited similar patterns, and the bulk of the RNA synthesized and accumulated during 12-hr pulses appears to be ribosomal. These observations are discussed in terms of existing concepts concerning synthetic activity in stage 6 oocytes.  相似文献   

5.
6.
7.
Upon rehydration of the moss Tortula ruralis following desiccation at a rapid or slow rate, there is increasing utilization of newly synthesized-poly(A)+ RNA for protein synthesis. Initially, poly(A)+ RNA conserved in the dry moss is associated with polysomes, but by 2 hours of rehydration there is an overwhelming recruitment of newly synthesized poly(A)+ RNA, at the expense of conserved messages. In rehydrated moss, there is a marked synthesis in vivo of new proteins, which are separable by two-dimensional electrophoresis, and identifiable by fluorography. These new proteins, termed rehydration proteins, are synthesized after both rapid and slow desiccation, but their synthesis persists longer after rapid desiccation. The protein patterns obtained following in vitro translation of bulk RNA from hydrated, desiccated, and rehydrated moss were qualitatively identical. Thus the differences in protein patterns observed in vivo must result from preferential selection of specific mRNAs from the same pool, which is indicative of control of protein synthesis at the translational level. The implications of these observations in relation to the response of the moss to drying in its natural environment are discussed.  相似文献   

8.
Qualitative studies on the in vitro uptake and incorporation of tritiated uridine into RNA of the somatic and germinal elements of the starfish ovary were carried out prior to and during hormone-induced oocyte maturation and spawning.Autoradiography of nonhormone-treated ovaries indicated that the outer ovarian wall contained the highest concentration of label, with lesser amounts in the follicle cells and least in the oocytes. Oocytes and follicle cells localized at the periphery of the ovary were labeled first, and both cells became progressively labeled throughout the ovary with time; the label first appeared localized in the nucleolus of the oocyte.Sucrose gradient analysis of the separated cellular components of prelabeled hormone-treated ovaries indicated that RNA synthesis occurred in all segments of the ovary and that the spawned oocyte fraction was the least active. Synthesis of ribosomal RNA was detectable after a lag period of approximately 4 hr. Oocytes incubated in 3H-uridine during and subsequent to 1-methyladenine-induced spawning and maturation synthesized 15–19 S and low molecular weight RNA but not ribosomal RNA. Synthesis of the 15–19 S RNA was inhibited with ethidium bromide and to a limited extent by actinomycin D. Isolated mitochondrial fractions contained most of the labeled 15–19 S RNA. These data suggest the mitochondrial origin of most, if not all, of this intermediate-weight RNA. On the basis of these studies, it appears that starfish oocytes and follicle cells are metabolically active at the transitional period from growth to maturational stages in oocytes. Synthesis of RNA furthermore apparently continues in the cytoplasm subsequent to germinal vesicle breakdown and spawning.  相似文献   

9.
The poly(A)+ RNA which accumulates during oogenesis in the amphibian Xenopus laevis is shown to be functional mRNA; the RNA was active in the mRNA-dependent “shift assay” for initiation sites in the rabbit reticulocyte lysate, and was an efficient template for protein synthesis in the wheat-germ cell-free system. Analysis of the in vitro protein products showed no differences between the coding properties of poly(A)+ RNA extracted from oocytes at all stages of development from previtellogenesis to maturity. In previtellogenic oocytes, the in vitro products of polysomal and of mRNP-associated poly(A)+ RNA were also identical. Neither was there any evidence for changes in the coding properties of the poly(A)+ mRNA of the oocyte. However, the patterns of oocyte in vivo protein synthesis changed markedly during early vitellogenesis. We conclude that the mRNP-associated poly(A)+ RNA present in mature oocytes constitutes the stored maternal mRNA, and that during oogenesis the coding composition of the poly(A)+ mRNA synthesised does not change markedly, while some form of translational control operates to direct the changing pattern of protein synthesis.  相似文献   

10.
11.
Total RNA, extracted from mature oocytes and tadpoles of Xenopus laevis, was used as a template for in vitro protein synthesis. The oocyte RNA is markedly deficient in abundant mRNA species by comparison to tadpole RNA or other somatic RNAs, in agreement with previous experiments using RNA-cDNA hybridization analysis (S. Perlman and M. Rosbash, 1978, Develop. Biol.63, 197–212). Oocyte pA+ RNA is also larger than tadpole pA+ RNA or other somatic pA+ populations. The larger oocyte pA+ RNA and smaller oocyte pA+ RNA are equally good templates for in vitro protein synthesis, which implies that much, and perhaps all, of the large oocyte pA+ RNA is bona fide mRNA. We suggest that the relatively large size of the oocyte pA+ RNA population is due, at least in part, to the relative lack of abundant mRNA species in the population. This suggestion follows from the observation of 0. Meyuhas and R. P. Perry (1979, Cell16, 139–148) that L-cell-abundant mRNAs are preferentially small and rare mRNAs preferentially large. Most of the oocyte pA+ sequences are also present in tadpoles and are still adenylated at this stage. Oocyte proteins synthesized in vivo do not appear deficient in abundant proteins, suggesting that a translational control mechanism operates to select certain pA+ RNAs at higher frequencies than others.  相似文献   

12.
Injection of labeled leucine into oocytes and developing embryos of the tobacco hornworm, Manduca sexta, revealed that the rate of protein synthesis increases dramatically after fertilization and continues to rise until gastrulation. Cell-free preparations of oocytes and developing embryos show a similar pattern of in vitro incorporation. When messenger RNA extracted from unfertilized oocytes was examined by gradient density centrifugation under denaturing conditions, a broad peak was observed which centered around 15 S. In contrast to mRNA extracted from oocytes, that from embryos was found to be capped by 7-methylguanosine at the 5′ terminus. When translation of oocyte mRNA was compared with that of embryo mRNA in a cell-free translation system derived from wheat germ, oocyte RNA translated less efficiently. In the presence of an inhibitor of methylation, S-adenosylhomocysteine, the differences were further widened. In competition with a cap analog, 7-methylguanosine 5′-monophosphate, embryo mRNA translation was inhibited more than oocyte at low concentrations of analog. These results are taken to indicate that the lack of a cap at the 5′ terminus could be one mechanism to inhibit translation prior to fertilization.  相似文献   

13.
Isolated fully grown mouse oocytes, arrested in dictyate of the first meiotic prophase, synthesize a protein with an apparent molecular weight of 28,000 which is localized in the germinal vesicle of the oocyte (germinal vesicle-associated protein; GVAP). Analyses of the distribution of GVAP have been carried out on SDS-polyacrylamide gels using oocytes cultured in vitro in the presence of [35S]methionine or [3H]lysine and germinal vesicles isolated individually from these cultured oocytes. The results of such analyses show that GVAP contains only about 2% of the total radiolabel incorporated into mouse oocyte proteins, but as much as 40% of the total radiolabel incorporated into proteins associated with isolated germinal vesicles. These measurements indicate that GVAP is at least 1000-fold more concentrated in the germinal vesicle than in the cytoplasm of the oocyte. Furthermore, the synthesis and phosphorylation of GVAP are apparently terminated at a time which coincides with germinal vesicle breakdown during spontaneous meiotic maturation of mouse oocytes in vitro. Although the exact nature of GVAP is not known as yet, it appears to be an example of a protein that is selectively sequestered in the germinal vesicle of the oocyte during oogenesis and whose synthesis and modification are dependent upon the presence of an intact germinal vesicle.  相似文献   

14.
Applications of auxin to the tips of intact aged pea Pisum sativum L. var Alaska epicotyls resulted in an increase in the content of polyribosomes and poly(A) and in the capacity of isolated polysomes to support protein synthesis in vitro. Few changes were seen in the two-dimensional gel patterns of silver-stained proteins accumulated (or degraded) in vivo even after 15 hours of auxin treatment. In contrast, substantial changes were evident in the two-dimensional gel fluorographs of polypeptides generated in vitro by total RNA and by polysomal RNA from tissue treated with auxin for only 6 hours. Of the 200 spots resolved by fluorography, total RNA from auxin-treated tissue generated 33 spots with increased intensity and 10 with decreased intensity; polysomal RNA yielded 33 spots which increased and only three that decreased. In general, the polypeptides that increased in intensity were higher molecular weight and those that decreased were lower molecular weight. These changes occurred prior to growth and might be prerequisite for the auxin-induced slow growth response seen in this aged tissue.  相似文献   

15.
Autoradiographic patterns of [1-35S]methionine-labeled polypeptides separated by two-dimensional polyacrylamide gel electrophoresis were obtained from (1) rabbit oocytes that had undergone meiotic maturation to metaphase II in vivo or in vitro, (2) in vitro matured oocytes cultured for an additional 36 hr, or recovered from the reproductive tract at 36 hr after ovulation, (3) newly fertilized eggs, and (4) embryos developed in vivo or in vitro from the 1-cell stage to the 12- to 16-cell stage. The findings indicate that the detectable synthesis of a set of stage-specific (cleavage) polypeptides is autonomous of fertilization and appears to follow a timed, translational schedule initiated with the breakdown of the oocyte nucleus during the resumption of arrested meiosis.  相似文献   

16.
The RNA of full-grown oocytes of Xenopus laevis contains two distinct size classes of poly(A), designated poly(A)S and poly(A)L, which contain 15–30 (mean = 20) and 40–80 (mean = 61) A residues, respectively. Both poly(A)L and poly(A)S are associated with RNA which is heterogeneous in size. The two classes of poly(A)+ RNA can be separated by affinity chromatography: Only poly(A)L+ RNA binds to oligo(dT)-cellulose under appropriate conditions, but up to 50% of the poly(A)S+ RNA can be isolated from the void fraction by binding to poly(U)-Sepharose. Both classes of poly(A)+ RNA are active as messenger RNA in an in vitro system and yield identical patterns of in vitro protein products. Previtellogenic oocytes contain almost exclusively poly(A)L, which accumulates up to vitellogenesis but remains almost constant in amount (molecules/oocyte) during vitellogenesis and in the full-grown oocyte. Poly(A)S accumulates (molecules/oocyte) from early vitellogenesis up to the full-grown oocyte. The total number of poly(A)+ RNA molecules per oocyte increases throughout oogenesis from 2 × 1010/previtellogenic oocyte [80–90% poly(A)L] to 20 × 1010/full-grown oocyte (25–40% poly(A)L). It is argued that poly(A)S is protected from degradation in the oocyte, thus stabilizing the “maternal” poly(A)+ mRNA.  相似文献   

17.
A modification of the two-dimensional electrophoretic method that involves nonequilibrium pH gradients has been adapted for high resolution of chromatin proteins from sea urchin embryos. A simple method of labeling the protein, in vitro, by reductive methylation with boro[3H]hydride to a specific activity of 100,000 cpm/μg of protein is detailed. Chromatin protein may be labeled, in vivo with 14C-amino acids, and newly synthesized (3H and 14C-labeled) and preexistent proteins (only 3H labeled) may be distinguished. The method reveals that sea urchin embryo chromatin contains over 200 proteins.  相似文献   

18.
RNA synthesis is activated in the cells of the plant embryo very soon after the start of seed imbibition. We previously reported that mainly heterogeneous nuclear RNA is synthesized in the radicle of Zea mays embryo during the first hours of germination. The present study was undertaken in order to detect the time of appearance of the newly synthesized messenger RNA in the polysomes of germinating maize axes.

Free polysomes were prepared from embryonic axes rehydrated for 2 hours in the presence of radioactively labeled uridine. These polysomes were shown to be labeled and to contain labeled particles sedimenting, after dissociation with EDTA, in the 10S to 40S region of a sucrose gradient. The labeled polysomal RNA migrates heterogeneously in a gel with a mean size corresponding to about 16S, and 60% of these molecules are polyadenylated.

The data indicate that the newly synthesized RNA associated with the polysomes after 2 h of germination consists of messenger RNA molecules. Analysis of the polysomes prepared 0.5 and 1 h after the start of imbibition suggests that translation of the newly synthesized messenger RNA probably occurs within the 1st hour of imbibition of the isolated axis, thus well before the completion of the initial water uptake.

  相似文献   

19.
It is possible to label with radioactivity newly synthesized ovarian RNA after intraperitoneal injection of [3H]guanosine and [3H]uridine into immature Xenopus laevis, if ovaries in which only previtellogenic stage 1 oocytes are present. Following the amount of radioactivity in the ovarian pool of acid-soluble precursors indicates a complete clearance of acid-soluble radioactivity within 15–20 days after injection. Incorporation of radioactivity into total RNA (which is almost exclusively 4 and 5S RNAs at this stage) and poly(A)+ RNA ceases between 15 and 20 days after injection, but the total amount of radioactivity in these RNA fractions does not decline appreciably over the next 18 months. During this time, the ovary grows and develops since stage 6 oocytes eventually appear and there is a 10- to 20-fold increase in total RNA content, which changes in composition from almost exclusively (95%) 4 and 5S RNAs to mainly (75%) 18 and 28S RNAs. Thus, despite continued growth and development, radioactive RNA molecules synthesized during previtellogenesis survive for lengths of time commensurate with the length of oogenesis (1–2 years). Although very limited (<7%) reincorporation of radioactivity into RNA is detected, it cannot alone account for the stability of the label in poly(A)+ RNA. These results are interpreted as indicative of synthesis during previtellogenesis of tRNA, 5SrRNA, and messenger RNA molecules which are very long-lived.  相似文献   

20.
The distribution of messenger RNA between polysomes and mRNP in oocytes and embryos of Drosophila melanogaster has been studied by in vitro translational analysis. Poly(A)+ RNA was purified from polysomes or mRNA from mature oocytes and young embryos. The messenger populations were translated in vitro and the peptides synthesized were separated by two-dimensional electrophoresis. Analysis of the 2D gel patterns enabled the detection of three peptides coded by messengers present predominantly in the mRNA pools of mature oocytes. When DNA-binding peptides were selected from the in vitro translation products, they showed, after separation by two-dimensional electrophoresis, less than 100 spots. The analysis of the 2D gels indicated that three DNA-binding peptides are coded by messengers present only in the mRNP of the oocytes. These messengers are later found in the polysomal fraction of embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号