首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.  相似文献   

2.
The production of microalga Phaeodactylum tricornutum in an outdoor helical reactor was analysed. The influence of temperature, solar irradiance and air flow rate on the yield of the culture was evaluated. Biomass productivities up to 1.5 g l(-1) per day and photosynthetic efficiency up to 14% were obtained by maintaining the cultures below 30 degrees C, dissolved oxygen levels less than 400% Sat. (with respect to air saturated culture) and controlling the cell density in order to achieve an average irradiance within the culture below 250 microE m(-2) s(-1). Under these conditions, the fluorescence parameter, Fv/Fm, which reflects the maximal efficiency of PSII photochemistry, remained roughly 0.6-0.7 and growth rates up to 0.050 h(-1) were achieved. The average irradiance and the light/dark cycle frequency, were the variables determining the behaviour of the cultures. A hyperbolic relationship between growth rate and biomass productivity with the average irradiance was observed, whereas both biomass productivity and photosynthetic efficiency linearly increased with the light/dark cycle frequencies. Optimum design and operational conditions which maximise the production of P. tricornutum biomass in outdoor helical reactors were determined.  相似文献   

3.
Analysis of light energy distribution in culture is important for maximizing the growth efficiency of photosynthetic cells and the productivity of a photobioreactor. To characterize the irradiance conditions in a photobioreactor, we developed a light distribution model for a single-radiator system and then extended the model to multiple radiators using the concept of parallel translation. Mathematical expressions for the local light intensity and the average light intensity were derived for a cylindrical photobioreactor with multiple internal radiators. The proposed model was used to predict the irradiance levels inside an internally radiating photobioreactor using Synechococcus sp. PCC 6301 as a model photosynthetic microorganism. The effects of cell density and radiator number were interpreted through photographic and model simulation studies. The predicted light intensity values were found to be very close to those obtained experimentally, which suggests that the proposed model is capable of accurately interpreting the local light energy profiles inside the photobioreactor system. Due to the simplicity and flexibility of the proposed model, it was also possible to predict the light conditions in other complex photobioreactors, including optical-fiber and pond-type photobioreactors.  相似文献   

4.
A mathematical model to estimate the solar irradiance profile and average light intensity inside a tubular photobioreactor under outdoor conditions is proposed, requiring only geographic, geometric, and solar position parameters. First, the length of the path into the culture traveled by any direct or disperse ray of light was calculated as the function of three variables: day of year, solar hour, and geographic latitude. Then, the phenomenon of light attenuation by biomass was studied considering Lambert-Beer's law (only considering absorption) and the monodimensional model of Cornet et al. (1900) (considering absorption and scattering phenomena). Due to the existence of differential wavelength absorption, none of the literature models are useful for explaining light attenuation by the biomass. Therefore, an empirical hyperbolic expression is proposed. The equations to calculate light path length were substituted in the proposed hyperbolic expression, reproducing light intensity data obtained in the center of the loop tubes. The proposed model was also likely to estimate the irradiance accurately at any point inside the culture. Calculation of the local intensity was thus extended to the full culture volume in order to obtain the average irradiance, showing how the higher biomass productivities in a Phaeodactylum tricornutum UTEX 640 outdoor chemostat culture could be maintained by delaying light limitation. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 701-714, 1997.  相似文献   

5.
Engineering analyses combined with experimental observations in horizontal tubular photobioreactors and vertical bubble columns are used to demonstrate the potential of pneumatically mixed vertical devices for large-scale outdoor culture of photosynthetic microorganisms. Whereas the horizontal tubular systems have been extensively investigated, their scalability is limited. Horizontal tubular photobioreactors and vertical bubble column type units differ substantially in many ways, particularly with respect to the surface–to–volume ratio, the amount of gas in dispersion, the gas–liquid mass transfer characteristics, the nature of the fluid movement and the internal irradiance levels. As illustrated for eicosapentaenoic acid production from the microalga Phaeodactylum tricornutum, a realistic commercial process cannot rely on horizontal tubular photobioreactor technology. In bubble columns, presence of gas bubbles generally enhances internal irradiance when the Sun is low on the horizon. Near solar noon, the bubbles diminish the internal column irradiance relative to the ungassed state. The optimal dimensions of vertical column photobioreactors are about 0.2 m diameter and 4 m column height. Parallel east–west oriented rows of such columns located at 36.8°N latitude need an optimal inter-row spacing of about 3.5 m. In vertical columns the biomass productivity varies substantially during the year: the peak productivity during summer may be several times greater than in the winter. This seasonal variation occurs also in horizontal tubular units, but is much less pronounced. Under identical conditions, the volumetric biomass productivity in a bubble column is 60% of that in a 0.06 m diameter horizontal tubular loop, but there is substantial scope for raising this value.  相似文献   

6.
The photosynthetic performance of a conical, helical tubular photobioreactor (HTP) incorporating Chlorella sorokiniana was investigated under conditions of high temperature and light intensity during midsummer in an outdoor environment. Although the culture medium temperature exceeded 40 degrees C for approximately 5 h each day, peaking at 47.5 degrees C under sunny conditions, a photosynthetic productivity of 30.0 g x m(-2) (installation area) x day(-1) and a photosynthetic efficiency of 8.66% [photosynthetically active radiation (PAR), 400-700 nm] were achieved. A maximum photosynthetic productivity of 33.2 g x m(-2) x day(-1) was achieved on a sunny day, when solar energy input was also maximal (11.5 MJ x m(-2) x day(-1) [PAR]). On the other hand, a maximum photosynthetic efficiency of 9.54% was obtained on a day that was rainy in the morning and cloudy in the afternoon, and there was relatively little solar energy input. The average daily photosynthetic efficiency over the two culture periods (August 4 to 7 and August 10 to 13, 1999) was 7.25%. Thus, a high level of photosynthetic performance was achieved in the conical HTP incorporating Chlorella sorokiniana despite the fact that culture medium temperature was not controlled. The use of Chlorella sorokiniana in the conical HTP should be a good choice to produce microalgal biomass during the summer under field conditions.  相似文献   

7.
This study describes the response of Arthrospira platensis to a variety of temperature conditions as reflected in variations of photosynthetic parameters, pigmentation, and biomass productivity in indoor photobioreactor (PBR) cultivations. These experiments are designed to better understand the impact of temperature, seasonal variations, and acclimation effects on outdoor biomass production. The irradiance level and temperature range (20–39°C) are chosen to enable modeling of semi-continuous operation of large-scale outdoor PBR deployments. Overall, the cultivations are quite stable with some pigment-related instabilities after prolonged high-temperature exposure. Changes in productivity with temperature, as reflected in measured photosynthetic parameters, are immediate and mainly attributable to the temperature dependence of the photosaturation parameter, a secondary factor being variation in pigment content on a longer time scale corresponding to turnover of the culture population. Though pigment changes are not accompanied by significant changes in productivity, prolonged exposure at 35°C and above yields a clear degradation in performance. Productivities in a semi-continuous operation are quantitatively reproduced with a productivity model incorporating photosynthetic parameters measured herein. This study confirms the importance of temperature for biomass and pigment production in Arthrospira cultivations and provides a basis for risk assessments related to temperature mitigation for large-scale outdoor cultivations.  相似文献   

8.
The principal fatty acids from the lipid profiles of two autochthonous dinoflagellates (Alexandrium minutum and Karlodinium veneficum) and one raphidophyte (Heterosigma akashiwo) maintained in bubble column photobioreactors under outdoor culture conditions are described for the first time. The biomass production, lipid content and lipid productivity of these three species were determined and the results compared to those obtained when the strains were cultured indoors. Under the latter condition, the biotic values did not significantly differ among species, whereas under outdoor conditions, differences in both duplication time and fatty acids content were observed. Specifically, A. minutum had higher biomass productivity (0.35 g·L?1 day?1), lipid productivity (80.7 mg lipid·L?1 day?1) and lipid concentration (252 mg lipid·L?1) at harvest time (stationary phase) in outdoor conditions. In all three strains, the growth rate and physiological response to the light and temperature fluctuations of outdoor conditions greatly impacted the production parameters. Nonetheless, the species could be successfully grown in an outdoor photobioreactor and were of sufficient robustness to enable the establishment of long-term cultures yielding consistent biomass and lipid production.  相似文献   

9.
Maximal productivity of a 14 mm light‐path panel photobioreactor under high irradiance was determined. Under continuous illumination of 2,100 µmol photons m?2 s?1 with red light emitting diodes (LEDs) the effect of dilution rate on photobioreactor productivity was studied. The light intensity used in this work is similar to the maximal irradiance on a horizontal surface at latitudes lower than 37°. Chlorella sorokiniana, a fast‐growing green microalga, was used as a reference strain in this study. The dilution rate was varied from 0.06 to 0.26 h?1. The maximal productivity was reached at a dilution rate of 0.24 h?1, with a value of 7.7 g dw m?2 h?1 (m2 of illuminated photobioreactor surface) and a volumetric productivity of 0.5 g dw L?1 h?1. At this dilution rate the biomass concentration inside the reactor was 2.1 g L?1 and the photosynthetic efficiency was 1.0 g dw mol photons. This biomass yield on light energy is high but still lower than the theoretical maximal yield of 1.8 g mol photons?1 which must be related to photosaturation and thermal dissipation of absorbed light energy. Biotechnol. Bioeng. 2009; 104: 352–359 © 2009 Wiley Periodicals, Inc.  相似文献   

10.
The growth of the marine red microalga Porphyridium sp. in a bubble-column photobioreactor was simulated. The proposed model constitutes a dynamic integration of the kinetics of photosynthesis and photoinhibition with the fluid dynamics of the bubble column, including the effects of shear stress on the kinetics of growth. The kinetic data used in the model were obtained in independent experiments run in a thin-film photobioreactor with defined light/dark cycles. The maintenance term was modified to take into account the effects of liquid flow in the bioreactor on the growth rate. A hybrid method proposed for the approximate solution of the equations gave an appreciable reduction of the calculation time. Extrapolations of the model indicated the possibility of predicting the optimal diameter for an assembly of bubble column photobioreactors. Satisfactory fit was found with the experimental results of biomass growth in a 13-liter bubble column.  相似文献   

11.
To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab‐scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on‐line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 μmol m?1 s?1) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O2 and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L?1) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing‐induced light/dark fluctuations is marginal. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
The luminostat regime has been proposed as a way to maximize light absorption and thus to increase the microalgae photosynthetic efficiency within photobioreactors. In this study, simulated outdoor light conditions were applied to a lab-scale photobioreactor in order to evaluate the luminostat control under varying light conditions. The photon flux density leaving the reactor (PFDout) was varied from 4 to 20 μmol photons m−2 s−1and the productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed.Maximal volumetric productivity (1.22 g kg−1 d−1) and biomass yield on PAR photons (400-700 nm) absorbed (1.27 g mol−1) were found when PFDout was maintained between 4 and 6 μmol photons m−2 s−1. The resultant photosynthetic efficiency was comparable to that already reported in a chemostat-controlled reactor. A strict luminostat regime could not be maintained under varying light conditions. Further modifications to the luminostat control are required before application under outdoor conditions.  相似文献   

13.
High annual microalgae productivities can only be achieved if solar light is efficiently used through the different seasons. During winter the productivity is low because of the light and temperature conditions. The productivity and photosynthetic efficiency of Chlorella sorokiniana were assessed under the worst-case scenario found during winter time in Huelva, south of Spain. The maximum light intensity (800?μmol photons m-2 s-1) and temperature (20°C) during winter were simulated in a lab-scale photobioreactor with a short light-path of 14?mm. Chemostat conditions were applied and the results were compared with a temperature-controlled situation at 38°C (optimal growth temperature for C. sorokiniana). When temperature was optimal the highest productivity was found at a dilution rate of 0.18 h-1 (P v?=?0.28?g Kg-1 h-1), and the biomass yield on light energy was high (Y x,E?=?1.2?g?mol-1 photons supplied). However, at suboptimal temperature, the specific growth rate of C. sorokiniana was surprisingly low, not being able to support continuous operation at a dilution rate higher than 0.02 h-1. The slow metabolism under suboptimal temperature resulted in a decline of the light energy requirements of the cells. Consequently, the maximum winter irradiance was experienced as excessive, leading to a low photosynthetic efficiency and productivity (Y x,E?=?0.5?g mol-1 photons supplied, P v?=?0.1?g Kg-1 h-1). At suboptimal temperature a higher carotenoid-to-chlorophyll ratio was observed indicating the activation of light-dissipating processes. We conclude that temperature control and/or light dilution during winter time will enhance the productivity.  相似文献   

14.

Background

Microalgae are a potential source of sustainable commodities of fuels, chemicals and food and feed additives. The current high production costs, as a result of the low areal productivities, limit the application of microalgae in industry. A first step is determining how the different production system designs relate to each other under identical climate conditions. The productivity and photosynthetic efficiency of Nannochloropsis sp. CCAP 211/78 cultivated in four different outdoor continuously operated pilot-scale photobioreactors under the same climatological conditions were compared. The optimal dilution rate was determined for each photobioreactor by operation of the different photobioreactors at different dilution rates.

Results

In vertical photobioreactors, higher areal productivities and photosynthetic efficiencies, 19–24 g m?2 day?1 and 2.4–4.2 %, respectively, were found in comparison to the horizontal systems; 12–15 g m?2 day?1 and 1.5–1.8 %. The higher ground areal productivity in the vertical systems could be explained by light dilution in combination with a higher light capture. In the raceway pond low productivities were obtained, due to the long optical path in this system. Areal productivities in all systems increased with increasing photon flux densities up to a photon flux density of 30 mol m?2 day?1. Photosynthetic efficiencies remained constant in all systems with increasing photon flux densities. The highest photosynthetic efficiencies obtained were; 4.2 % for the vertical tubular photobioreactor, 3.8 % for the flat panel reactor, 1.8 % for the horizontal tubular reactor, and 1.5 % for the open raceway pond.

Conclusions

Vertical photobioreactors resulted in higher areal productivities than horizontal photobioreactors because of the lower incident photon flux densities on the reactor surface. The flat panel photobioreactor resulted, among the vertical photobioreactors studied, in the highest average photosynthetic efficiency, areal and volumetric productivities due to the short optical path. Photobioreactor light interception should be further optimized to maximize ground areal productivity and photosynthetic efficiency.
  相似文献   

15.
Tubular photobioreactor design for algal cultures.   总被引:3,自引:0,他引:3  
Principles of fluid mechanics, gas-liquid mass transfer, and irradiance controlled algal growth are integrated into a method for designing tubular photobioreactors in which the culture is circulated by an airlift pump. A 0.2 m(3) photobioreactor designed using the proposed approach was proved in continuous outdoor culture of the microalga Phaeodactylum tricornutum. The culture performance was assessed under various conditions of irradiance, dilution rates and liquid velocities through the tubular solar collector. A biomass productivity of 1.90 g l(-1) d(-1) (or 32 g m(-2) d(-1)) could be obtained at a dilution rate of 0.04 h(-1). Photoinhibition was observed during hours of peak irradiance; the photosynthetic activity of the cells recovered a few hours later. Linear liquid velocities of 0.50 and 0.35 m s(-1) in the solar collector gave similar biomass productivities, but the culture collapsed at lower velocities. The effect of dissolved oxygen concentration on productivity was quantified in indoor conditions; dissolved oxygen levels higher or lower than air saturation values reduced productivity. Under outdoor conditions, for given levels of oxygen supersaturation, the productivity decline was greater outdoors than indoors, suggesting that under intense outdoor illumination photooxidation contributed to loss of productivity in comparison with productivity loss due to oxygen inhibition alone. Dissolved oxygen values at the outlet of solar collector tube were up to 400% of air saturation.  相似文献   

16.
The biological photosynthetic process is useful and environmentally benign compared with other carbon dioxide (CO2) mitigation processes. In the present study, Anabaena sp. PCC 7120 was utilized for carbon dioxide mitigation. A customized airlift photobioreactor was found to provide higher light utilization efficiency and a higher rate of CO2 biofixation compared with that of a bubble column. The maximum biomass concentrations were 0.71 and 1.13 g L?1 in the bubble column and airlift photobioreactor, respectively, using BG110 medium under aerated conditions. A lower mixing time in the airlift photobioreactor compared with that of the bubble column resulted in improved mass transfer. The CO2 biofixation rate of Anabaena sp. PCC 7120 was determined using different phosphate concentrations at a light intensity of 120 μE m?2 s?1 and 5% (v/v) CO2-enriched air in the airlift photobioreactor. However, it was observed that the specific growth rate was independent at higher light intensity. In addition, it was observed that increased light intensity, phosphate and CO2 concentrations could enhance the CO2 biofixation efficiency to a greater extent.  相似文献   

17.
The feasibility of a one-step method for the continuous production of astaxanthin by the microalga Haematococcus pluvialis has been verified outdoors. To this end, influence of dilution rate, nitrate concentration in the feed medium, and irradiance on the performance of continuous cultures of H. pluvialis was firstly analyzed indoors in bubble column reactors under daylight cycles, and then outdoors, using a tubular photobioreactor. At the laboratory scale, the behavior of the cultures agreed with that previously recorded in continuous illumination experiences, and attested that the major factors determining biomass and astaxanthin productivity were average irradiance and specific nitrate supply. The rate of astaxanthin accumulation was proportional to the average irradiance inside the culture, provided that a nitrate limiting situation had been established. The accumulation of astaxanthin under daylight cycles was maximal for a specific nitrate input of 0.5 mmol/g day. The recorded performance has been modeled on the basis of previously developed equations, and the validity of the model checked under outdoor conditions. Productivity values for biomass and astaxanthin of 0.7 g/L day and 8.0 mg/L day respectively, were obtained in a pilot scale tubular photobioreactor operating under continuous conditions outdoors. The magnitude of the experimental values, which matched those simulated from the obtained model, demonstrate that astaxanthin can be efficiently produced outdoors in continuous mode through a precise dosage of the specific nitrate input, taking also into consideration the average irradiance inside the culture.  相似文献   

18.
In this paper, the biomass and lutein productivity of the lutein-rich new strain Scenedesmus almeriensis is modelled versus irradiance and temperature. The results demonstrate that S. almeriensis is a mesophile microorganism with an optimal growth temperature of 35 degrees C, and capable of withstanding up to 48 degrees C, which caused culture death. This strain is also tolerant to high irradiances, showing no signs of photoinhibition even at the maximum irradiance essayed of 1625 microE m(-2) s(-1) accumulating up to 0.55% dry weight (d.wt.) of lutein. The optimal conditions that maximise the biomass productivity also favour the lutein productivity, lutein being a primary metabolite. Maximal biomass and lutein productivities of 0.87 g l(-1) day(-1) and 4.77 mg l(-1) day(-1), respectively, were measured. The analysis of light availability inside the cultures, quantified as average irradiance, demonstrates that the cultures were mainly photo-limited, although photosaturation also took place at high external irradiances. The effect of temperature was also investigated finding that the specific maximal growth rate is modified by the temperature according to the Arrhenius equation. The influence of both light availability and temperature was included in an overall growth model, which showed, as a result, capable of fitting the whole set of experimental data. An overall lutein accumulation rate model was also proposed and used in a regression analysis. Simulations performed using the proposed models show that under outdoor conditions a biomass productivity of 0.95 g l(-1) day(-1) can be expected, with a lutein productivity up to 5.31 mg l(-1) day(-1). These models may be useful to assist the design and operation optimisation of outdoor cultures of this strain.  相似文献   

19.
Net productivity and biomass night losses in outdoor chemostat cultures ofPhaeodactylum tricornutum were analyzed in two tubular airlift photobioreactors at different dilution rates, photobioreactor surface/volume ratios and incident solar irradiance. In addition, an approximate model for the estimation of light profile and average irradiance inside outdoor tubular photobioreactors was proposed. In both photobioreactors, biomass productivity increased with dilution rate and daily incident solar radiation except at the highest incident solar irradiances and dilution rates, when photoinhibition effect was observed in the middle of the day. Variation of estimated average irradiance vs mean incident irradiance showed two effects: first, the outdoor cultures are adapted to average irradiance, and second, simultaneous photolimitation and photoinhibition took place at all assayed culture conditions, the extent of this phenomena being a function of the (incident)1 irradiance and light regime inside the culture. Productivity ranged between 0.50 and 2.04 g L–1 d–1 in the tubular photobioreactor with the lower surface/volume ratio (S/V = 77.5 m–1) and between 1.08 and 2.76 g L–1 d–1 in the other (S/V = 122.0 m–1). The optimum dilution rate was 0.040 h–1 in both reactors. Night-time biomass losses were a function of the average irradiance inside the culture, being lower in TPB0.03 than TPB0.06, due to a better light regime in the first. In both photobioreactors, biomass night losses strongly decreased when the photoinhibition effect was pronounced. However, net biomass productivity also decreased due to lower biomass generation during the day. Thus, optimum culture conditions were obtained when photolimitation and photoinhibition were balanced.  相似文献   

20.
A microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient‐replete conditions in photobioreactors or outdoor ponds. Growth is modeled by first estimating the light attenuation by biomass according to Beer‐Lambert's Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model uses only two physical and two species‐specific biological input parameters, all of which are relatively easy to determine: incident light intensity, culture depth, as well as the biomass light absorption coefficient and the specific growth rate as a function of light intensity. Roux bottle culture experiments were performed with Nannochloropsis salina at constant temperature (23°C) at six different incident light intensities (10, 25, 50, 100, 250, and 850 µmol/m2 s) to determine both the specific growth rate under non‐shading conditions and the biomass light absorption coefficient as a function of light intensity. The model was successful in predicting the biomass growth rate in these Roux bottle batch cultures during the light‐limited linear phase at different incident light intensities. Model predictions were moderately sensitive to minor variations in the values of input parameters. The model was also successful in predicting the growth performance of Chlorella sp. cultured in LED‐lighted 800 L raceway ponds operated in batch mode at constant temperature (30°C) and constant light intensity (1,650 µmol/m2 s). Measurements of oxygen concentrations as a function of time demonstrated that following exposure to darkness, it takes at least 5 s for cells to initiate dark respiration. As a result, biomass loss due to dark respiration in the aphotic zone of a culture is unlikely to occur in highly mixed small‐scale photobioreactors where cells move rapidly in and out of the light. By contrast, as supported also by the growth model, biomass loss due to dark respiration occurs in the dark zones of the relatively less well‐mixed pond cultures. In addition to screening novel microalgae strains for high biomass productivities, the model can also be used for optimizing the pond design and operation. Additional research is needed to validate the biomass growth model for other microalgae species and for the more realistic case of fluctuating temperatures and light intensities observed in outdoor pond cultures. Biotechnol. Bioeng. 2013; 110: 1583–1594. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号