首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rat sciatic nerve Schwann cells in culture respond to a limited range of mitogens, including glial growth factor, transforming growth factors beta-1 and beta-2 (TGF-beta 1, TGF-beta 2), some cell membrane-associated factors, and to agents such as cholera toxin and forskolin which raise intracellular levels of cAMP. These responses require the presence of FCS, which exhibits little or no mitogenic activity in the absence of other factors. However, we recently found that forskolin greatly potentiates the mitogenic signal from TGFs-beta 1 and beta 2, raising the possibility that cAMP might couple other factors to mitogenesis. We have therefore screened a range of candidate mitogens using DNA synthesis assays. Other than TGFs-beta and glial growth factor, none of the factors tested were mitogenic in the presence of 10% serum alone. With the addition of forskolin, however, porcine PDGF, human PDGF, acidic and basic FGF were potent mitogens for rat Schwann cells, stimulating DNA synthesis and increasing cell number. Cholera toxin and dibutyrylcyclicAMP, but not 1,9-dideoxyforskolin, can substitute for forskolin indicating that the mitogenic effect is mediated via adenylyl cyclase activation. Porcine PDGF gave half-maximal stimulation at 15 pM, and human PGDF an equivalent response at 1 nM. Basic FGF was half maximal at 5 pM, acidic FGF at 1 nM. The recognition of PDGFs and FGFs as mitogens for Schwann cells has many implications for the study of Schwann cell proliferation in the development and regeneration of nerves, and in Schwann cell tumorigenesis.  相似文献   

2.
Human acidic and basic fibroblast growth factors (aFGF and bFGF) inhibit epidermal growth factor (EGF) receptor binding in mouse Swiss 3T3 cells. Scatchard analysis indicates that aFGF and bFGF cause a decrease in the high affinity EGF receptor population, similar to that observed for activators of protein kinase C such as phorbol esters, platelet-derived growth factor (PDGF) and bombesin. However, unlike phorbol esters, aFGF and bFGF inhibit EGF binding in protein kinase C-deficient cells. The time course and dose response of inhibition of EGF binding by both aFGF and bFGF are very similar, with an ID50 of approximately 0.10 ng/ml. In contrast to bombesin but like PDGF, neither aFGF nor bFGF act on the EGF receptor through a pertussis toxin-sensitive G protein. These results indicate that both acidic and basic FGF depress high affinity EGF binding in Swiss 3T3 cells with similar potency through a protein kinase C/Gi-independent pathway.  相似文献   

3.
Summary The distributions of acidic fibroblast growth factor (aFGF) and basic FGF (bFGF) in extracts of various cultured mammalian cells were determined from their elution profiles on heparin-affinity chromatography, and assay of activity as ability to stimulate DNA synthesis in BALB/c3T3 cells. Only aFGF was found in extracts of mouse melanoma B 16 cell and rat Morris hepatoma cell (MH1C1) lines. Other tumor cell lines established from solid tumors and some normal cells contained bFGF as a main component, but blood tumor cell lines contained no aFGF or bFGF. The FGFs in extracts of solid tumor tissues derived by transplantations of these cultured tumor cells and various normal tissues of mice were also examined. Tumors formed by all cell lines, regardless of whether they produced aFGF, bFGF, or neither, contained bFGF that was probably derived from host cells including capillary endothelial cells, in addition to the tumor-derived aFGF or bFGF, if produced. The content of bFGF, possibly derived from the host, in these tumor tissues was comparable to those of various mouse organs other than thymus, lung, spleen, and testis, which have higher bFGF contents. Tumor tissues derived from cultured cells producing bFGF had relatively higher bFGF contents. Like bFGF, aFGF was distributed almost ubiquitously in normal mouse tissues.  相似文献   

4.
5.
Fibroblast growth factors (FGFs), like nerve growth factor (NGF), induce morphological differentiation of PC12 cells. This activity of FGF is regulated by glycosaminoglycans. To further understand the mechanisms of FGF and glycosaminoglycan actions in PC12 cells, we studied the regulation of protein phosphorylation and ornithine decarboxylase (ODC) activity by FGF in the presence and absence of heparin. As with NGF, aFGF and bFGF increased the incorporation of radioactive phosphate into the protein tyrosine hydroxylase (TH). The increase in TH phosphorylation was localized to the tryptic peptide, T3. Both T3 and T1 phosphorylations occur in response to NGF, but there was no evidence that aFGF or bFGF stimulated the phosphorylation of the T1 peptide. This result suggests differential regulation of second messenger systems by NGF and FGF in PC12 cells. Heparin, at a concentration that potentiated aFGF-induced neurite outgrowth 100-fold (100 micrograms/ml), did not alter the ability of aFGF to increase S6 phosphorylation or ODC activity. One milligram per milliliter of heparin, a concentration that inhibited bFGF-induced neurite outgrowth, also inhibited bFGF-induced increases in S6 phosphorylation and ODC activity. These observations suggest (i) that acidic and basic FGF activate a protein kinase, possibly protein kinase C, resulting in the phosphorylation of peptide T3 of TH; (ii) that the FGFs and NGF share some but not all second messenger systems; (iii) that heparin potentiates aFGF actions and inhibits bFGF actions in PC12 cells via distinct mechanisms; (iv) that heparin does not potentiate the neurite outgrowth promoting activity of aFGF by enhancing binding to its PC12 cell surface receptor; and (v) that heparin may coordinately regulate several activities of bFGF (induction of protein phosphorylation, ODC and neurite outgrowth) via a common mechanism, most likely by inhibiting the productive binding of bFGF to its PC12 cell surface receptor.  相似文献   

6.
The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.  相似文献   

7.
We previously described that the growth of human uterine leiomyomas was associated with a significant remodelling of the extracellular matrix of these tumours. Significant weight-related increase of collagen and heparan sulphate contents was detected. The latter was known as a component, which bound some peptide growth factors, mainly FGFs, therefore it was decided to evaluate the amounts of acidic FGF (aFGF) and basic FGF (bFGF) in human myometrium and in leiomyomas of various weight and FGF-binding to tissue components. It was found that myometrium and uterine leiomyomas contain picogram amount of aFGF and nanogram amounts of bFGF. No free aFGF was found. Slight amounts of free bFGF were detected both in myometrium and in the tumours. The aFGF and most of bFGF existed in a form of complex with a high molecular component(s). These complexes were very stable and they did not dissociate in denaturation conditions. In comparison to myometrium the tumours contained several times more FGFs and their amounts distinctly increased during the tumour growth. The expression of FGF-receptor I (FGF RI) in the tumours was more distinct in comparison to myometrium. The extracts from myometrium did not bind exogenous 125I-bFGF. In contrast to that the tumours of different weights contained at least two high molecular weight FGF-binding components. One of them (150 kDa) corresponded to FGF-receptor. The other one (190-200 kDa) might be a heparan sulphate-proteoglycan. It seems that aFGF and bFGF play an important role in transformation of normal myometrium into leiomyoma and further growth of this tumour. The action of FGFs on tumour cells enhances biosynthesis of collagen and sulphated glycosaminoglycans, especially heparan sulphate which binds FGFs in the vicinity of cells and facilitates their interaction with membrane receptors. The effect of these processes may be further stimulation of tumour growth and remodelling of tumour extracellular matrix.  相似文献   

8.
Basic fibroblast growth factor (bFGF), but not acidic fibroblast growth factor (aFGF), was found to be mitogenic for cultured mouse keratinocytes. A six-to-nine fold increase in 3H-thymidine (3H-dT) incorporation into the acid insoluble pool and a similar increase of the labeling index can be measured when bFGF, at a concentration between 1 and 10 ng/ml, is added to keratinocytes arrested in serum-free and growth factor-free medium with a Ca++-concentration below 0.1 mM. The half-maximal response is observed between 0.2 and 0.7 ng/ml. In the same culture system, insulin-like growth factor I/somatomedin C (IGF-I) and insulin act as mitogens. IGF-I shows half-maximal stimulation with 2-3 ng/ml, insulin with 100-500 ng/ml. Basic FGF, IGF-I and insulin can be classified as strong stimulators of DNA synthesis in mouse keratinocytes. In this regard they are comparable to epidermal growth factor, which shows a half-maximal stimulation at a concentration between 1.5-2 ng/ml. These results show that in addition to mesenchymal cells, FGF is a growth factor not only for neuroectodermal cells, but ectodermal cells in general. They further support the idea that the growth promoting effect of insulin on keratinocytes may be mediated by the IGF-I receptor.  相似文献   

9.
Four temperature-sensitive cell-cycle mutants of rat 3Y1 clonal fibroblasts representing separate complementation groups (3Y1tsD123, 3Y1tsF121, 3Y1tsG125 and 3Y1tsH203) are arrested at restrictive temperature, primarily with a G1-phase DNA content (temperature arrest). We examined various factors affecting signal transduction for activity which induces DNA synthesis at the restrictive temperature when added to the temperature-arrested cultures of these mutants. The factors examined were theophylline, dibutyryl cyclic AMP, cholera toxin (CT), dibutyryl cyclic GMP, sodium nitroprusside, phorbol 12-myristate 13-acetate, 1-oleoyl 2-acetylglycerol, bombesin, vasopressin, basic fibroblast growth factor (FGF), platelet-derived growth factor, A23187, monensin, epidermal growth factor (EGF), insulin and fetal calf serum (FCS). None of these factors induced DNA synthesis in 3Y1tsH203. In one mutant (3Y1ts121), FGF, EGF and FCS individually induced DNA synthesis. In the other 2 mutants (3Y1tsD123 and 3Y1tsG125), FGF and CT individually induced DNA synthesis. The FGF-induced DNA synthesis was suppressed by islet-activating protein (IAP) in 3Y1tsD123 and 3Y1tsG125, but not in 3Y1tsF121. The CT-induced DNA synthesis was also suppressed by IAP, as previously shown. When temperature-arrested cultures were shifted to a permissive temperature, all 4 mutants initiated DNA synthesis in the presence of IAP. These results suggest that (1) a cell can prepare for the initiation of DNA synthesis by using several independent signal transduction pathways, and (2) in a given situation, the cell uses a particular pathway because of its availability, which depends on the culture conditions.  相似文献   

10.
Kidney tubulogenesis is the initial step in renal organogenesis. The precise molecular determinants of this pattern formation are presently unknown, although soluble factors, such as growth factors, and insoluble factors, such as extracellular matrix molecules, most likely play fundamental roles in this process. To define the molecular determinants of renal proximal tubule morphogenesis, primary cultures of rabbit renal proximal tubule cells in hormonally defined, serum-free media were treated with transforming growth factor-beta 1 (TGF-beta 1), epidermal growth factor (EGF), and the retinoid, all trans-retinoic acid (RA), singly or in combination. Utilizing phase contrast and light and transmission electron microscopy, the simultaneous administration of TGF-beta 1 (10 ng/ml), EGF (1 nM), and RA (0.1 nM) transformed a confluent monolayer of renal proximal tubule cells within 5 to 6 days into three-dimensional cell aggregates containing lumens within the interior of the cell clusters. The lumens were bordered by tubule cells possessing a polarized epithelial cell phenotype with extensive microvilli formation and tight junctional complexes along the luminal border. All three factors were necessary and sufficient to induce this phenotypic transformation. Further studies demonstrated that RA promoted the deposition of the A and B1 chains of laminin, a cell attachment protein of the basement membrane, in a small subset of proximal tubule cells in culture, as deduced by indirect immunofluorescent microscopy. Additional studies demonstrated that soluble purified laminin fully substituted for RA in this system to promote renal tubulogenesis when combined with TGF-beta 1 and EGF. These results demonstrate that the growth factors, TGF-beta 1 and EGF, and the retinoid, RA, promote tubulogenesis in adult renal proximal tubule cells in tissue culture in a manner reminiscent of inductive embryonic kidney morphogenesis. These observations define a coordinated interplay between growth factors and retinoids to induce pattern formation and morphogenesis. Furthermore, the demonstration of RA-induced laminin deposition as a critical event in this morphogenic process identifies laminin as a possible target protein for RA to act as a morphogen.  相似文献   

11.
The bioactivity of both bFGF and aFGF in the BALB/MK-1 cell line has been compared to that of EGF. Our results indicate that, for that cell type, aFGF was far more potent than bFGF in inducing cell proliferation. In the presence of heparin, aFGF was as potent as EGF. In addition, excess bFGF has an inhibitory effect on the proliferation of MK cells exposed to a saturating concentration of aFGF, therefore acting as a partial agonist of aFGF. Surprisingly, bFGF, although it had low biological activity, was capable of synergizing the effect of EGF. In its presence, cultures exposed to saturating concentration of EGF have a final cell density 3- to 4-fold higher than that of counterpart cultures exposed to EGF alone. TGF beta, which in previous studies has been shown to inhibit the growth of keratinocytes, also inhibited the growth of BALB/MK-1 cells in response to either bFGF or aFGF. These studies suggest a role for FGF in regulating BALB/MK proliferation. aFGF provides positive growth signals which can be negatively modulated by excess bFGF or TGF beta, while bFGF, although a poor mitogen, could act by potentiating the effect of subsaturating concentrations of EGF.  相似文献   

12.
The labeling pattern of mouse embryonic eye frozen sections incubated with radioiodinated brain acidic and basic fibroblasts growth factors (aFGF and bFGF) was investigated by autoradiography. Both growth factors bind to basement membranes in a dose-dependent way, with a higher affinity for bFGF. Similar data were obtained with eye-derived growth factors (EDGF), the retinal forms of FGF. There was a heterogeneity in the affinity of the various basement membranes toward these growth factors. The inner limiting membrane of the retina and the posterior part of the lens capsule have a higher binding capacity than the posterior part of the Bruch's membrane. The specificity of the growth factor-basement membrane interaction was demonstrated by the following experiments: (i) an excess of unlabeled growth factor displaced the labeling; (ii) unrelated proteins with different isoelectric points--gelatin, serum albumin, histones--did not modify the labeling; and (iii) iodinated EGF or PDGF did not label basement membrane. In order to get a better understanding of the nature of this binding, we performed the incubation of the frozen sections with iodinated FGFs preincubated with various compounds: (i) heparin which is known to have a strong affinity for aFGF and bFGF partially decreases the labeling, and (ii) chondroitin sulfate B and dextran sulfate at high concentrations were also partially effective. In addition, enzymatic treatment of the sections reveals that only heparitinase, not collagenase or chondroitinase ABC, completely prevents the labeling without destroying the overall structure of the basement membrane. An antibody against the proteic part of EHS mouse proteoheparan sulfate does not affect the signal. Esterification of the acidic groups cancelled the binding. These results demonstrate that FGFs bind specifically to basement membranes, probably on the polysaccharidic part of the proteoheparan sulfate, and suggest that this type of interaction may be a general feature of the mechanism of action of these growth factors.  相似文献   

13.
Effects of epidermal growth factor (EGF) on the development of mouse 2-cell embryos cultured in vitro were investigated. The addition of EGF at a concentration of 0.5 ng/ml enhanced the development of 2-cell embryos during 24 h of incubation. As expected, EGF stimulated the synthesis of DNA in the 2-cell embryos about 4-fold over the control. The growth-promoting effect of EGF seemed to be specific in that other growth factors, such as transforming growth factor-alpha (TGF-alpha), transforming growth factor-beta (TGF-beta), insulin-like growth factor-1 (IGF-1), platelet-derived growth factor (PDGF), nerve growth factor (NGF) and fibroblast growth factor (FGF) had no effect on the embryonal development. The addition of EGF also increased the rate of RNA synthesis in a dose-related manner between 0.1 and 50 ng/ml. However, protein synthesis was unaffected by EGF. These results raise the possibility that EGF may participate in the process of early embryogenesis in vivo.  相似文献   

14.
Rabbit polyclonal antibodies were raised against ovalbumin conjugates of purified bovine brain acidic fibroblast growth factor (aFGF) and a synthetic peptide containing the N alpha-terminal 1-24 amino acid sequence of bovine basic fibroblast growth factor (bFGF). These antibodies were used to specifically detect 1-ng quantities of aFGF and bFGF by using enzyme-linked immunosorbent assay (ELISA) and Western immunoblot procedures. Antibodies raised against aFGF recognized bovine brain aFGF and bovine recombinant aFGF but very poorly recognized recombinant bFGF or purified porcine or bovine pituitary bFGF with ELISA and Western immunoblot procedures. Antibodies raised against bFGF (1-24) recognized purified bovine, porcine, and recombinant human bFGF but only very poorly recognized aFGF with ELISA and Western immunoblot procedures. In vitro addition of anti-bFGF antibodies was able to partially neutralize bFGF-stimulated 3H-thymidine incorporation by COMMA-D mouse mammary epithelial cells while having no effect on aFGF or epidermal growth factor (EGF) stimulation. In vitro addition of anti-aFGF antibodies had no effect on bFGF- or EGF-stimulated 3H-thymidine incorporation, but surprisingly, had a potentiating effect on aFGF stimulation. Antibodies against aFGF immobilized on protein A-Sepharose were able to specifically and completely remove mitogenic activity from solutions containing aFGF but had no effect on removal of mitogenic activity from control solutions containing bFGF or EGF. Similarly, immobilized anti-bFGF antibodies completely removed mitogenic activity from solutions of bFGF, but not aFGF or EGF controls. These antibodies have been useful for the identification and characterization of growth factors from tissue and recombinant sources.  相似文献   

15.
Acidic and basic fibroblast growth factors (FGFs) influence cell division and differentiation in retina cells. Their effects are thought to be mainly mediated through stimulation of a specific membrane receptor and subsequent generation of an intracellular signal pathway. In this study, we purified a FGF receptor of 130 kDa from bovine neural retina using wheat germ agglutinin affinity chromatography followed by FGF-affinity chromatography. The isolated receptor showed ligand binding activity with dissociation constants of 0.8 nM and 2 nM for aFGF and bFGF, respectively. Furthermore, binding of aFGF and bFGF to purified receptor resulted in self-phosphorylation, demonstrating that the isolated receptor had an unaltered intrinsic kinase activity.  相似文献   

16.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

17.
Acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) are present in high levels in most areas of the embryonic rodent brain. To begin to understand the role of these growth factors in brain development, the effects of aFGF and bFGF on dissociated cell cultures prepared from embryonic and neonatal rat brain were studied. Addition of aFGF and heparin or bFGF alone to serum-free cultures of the dissociated Embryonic Day (E) 14.5 mesencephalon stimulates cell proliferation, as judged by [3H]thymidine autoradiography, leading to a maximal 75-fold increase in the total number of cells. This effect is dose-dependent with half-maximal increases at concentrations of about 5-6 ng/ml of aFGF or bFGF and is inhibited by the FGF antagonist HBGF-1U. The effect of aFGF on cell proliferation in cultures prepared from E14.5 mesencephalon is similar to that in cultures prepared from E14.5 cortex. However, in cultures prepared from E14.5 rhombencephalon or diencephalon, the proliferative effect of aFGF is much reduced. In all brain areas studied, the proliferative effect of aFGF declines with increasing age. Immunocytochemical analysis of E14.5 mesencephalic cultures demonstrated that the aFGF-induced increase in cell number is due to the proliferation of A2B5-immunoreactive (IR) glial precursor cells, but not of neuronal precursors, fibroblasts, or microglial cells. Moreover, differentiated glial fibrillary acidic protein-IR astrocytes and 2',3'-cyclic nucleotide 3'-phosphohydrolase-IR oligodendrocytes were not observed in cultures continuously treated with aFGF or bFGF, but were observed in high numbers after removal of the growth factors. These results suggest (1) that aFGF and bFGF are potent mitogens for glial precursor cells in all embryonic brain regions, (2) that the magnitude of the effects of aFGF depends on embryonic age and brain region, and (3) that both growth factors inhibit the differentiation of astrocyte or oligodendrocyte precursors. These observations made in vitro strongly support the hypothesis that FGF plays a critical role in gliogenesis and the timing of glial differentiation in the brain.  相似文献   

18.
This article sumarizes the structural and biological properties of the family of fibroblast growth factors (FGF). Basic FGF (bFGF) and acidic FGF (aFGF) are the best characterized members of this family. bFGF and aFGF are potent modulators of cell proliferation, motility and differentiation. They are also potent angiogenesis factors in vivo. Some of the important biological characteristics of bFGF and aFGF discussed in the review include the affinity of bFGF and aFGF for heparin, their lack of secretion in culture and their association with extracellular matrix. Recently, several oncogenes, 40–50% homologous in sequence to bFGF and aFGF have been identified. These include int-2, hst, K-fgf and FGF-5. The structural and biological properties of these FGF-related oncogenes are also discussed.  相似文献   

19.
Summary The somatomedin-like growth factors cartilage-derived factor (CDF) and multiplication-stimulating activity (MSA) stimulate DNA synthesis and proliferation of rabbit costal chondrocytes under serum-free conditions. Previously, we suggeted that CDF and MSA act on chondrocytes in an early G1 phase to stimulate DNA synthesis. CDF and MSA have synergistic effects with epidermal growth factor (EGF) or fibroblast growth factor (FGF) in stimulating DNA synthesis of the cells. The mode of combined action of CDF or MSA with EGF or FGF in chondrocytes was studied by sequential treatments with these agents. EGF or FGF had synergistic effects with CDF or MSA in stimulating DNA synthesis, even when added 10 h after the latter. Synergism was also observed in cells pretreated with CDF or MSA; That is, the cultures were treated for 5 h with CDF or MSA and then washed, and treated with FGF or EGF. However, when CDF or MSA was added more than 5 h after EGF or FGF, no synergism of effects was observed. These findings suggest that the cultured chondrocytes become activated to interact with FGF or EGF for commitment to DNA synthesis when they are exposed to somatomedin-like growth factors at an early stage in the G1 phase. Thus chondrocytes are under a different mechanism of growth control from fibroblastic cells.Abbreviations CDF cartilage-derived factor - MSA multiplication-stimulating activity - EGF epidermal growth factor - FGF fibroblast growth factor  相似文献   

20.
In a search of the growth factors possibly involved in brain ontogenesis we have examined the effects of transforming growth factor beta 1 (TGF-beta 1) on the growth and phenotypic expression of rat astroblasts in primary culture. Along TGF-beta 1 elicited only a slight negative effect on the growth of these cells. However, this factor was found to modulate the mitogenic effects of other growth factors. On quiescent cells it potentiates the mitogenic effect of basic fibroblast growth factor (bFGF) but not that of other growth factors, namely, epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and thrombin. TGF-beta 1 did not modulate significantly the stimulatory effect of these growth factors on the activity of the enzyme glutamine synthetase (GS); but kinetic studies showed that TGF-beta 1 delays the stimulation of GS activity. DNA synthesis monitored by the incorporation of [125I]iododeoxyuridine (125I-dUrd) was maximum after 24-30 h of treatment with bFGF. With bFGF plus TGF-beta 1 the maximum was shifted to 30-36 h. This shift is compatible with the idea that TGF-beta 1 induces responsiveness in some cells which are otherwise unresponsive to the mitogenic action of bFGF, and that this induction requires some time. This hypothesis is sustained by the observation that in cells treated for only 12 h with bFGF, the treatment with TGF-beta 1 for the same 12 h or for longer time did not stimulate significantly the cell growth. Stimulation occurred only when the bFGF treatment was continued after 12 h. Potentiation of the mitogenic effect of bFGF and shift of the maximum 125I-dUrd incorporation towards 24 h was seen with cells pretreated with TGF-beta 1. This potentiation effect decreased with increasing time between the two treatments. The potentiation effect of TGF-beta 1 is not mediated by an induction of new bFGF membrane receptors as seen by binding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号