首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Long-chain 3-hydroxyacyl-CoA dehydrogenase was extracted from the washed membrane fraction of frozen rat liver mitochondria with buffer containing detergent and then was purified. This enzyme is an oligomer with a molecular mass of 460 kDa and consisted of 4 mol of large polypeptide (79 kDa) and 4 mol of small polypeptides (51 and 49 kDa). The purified enzyme preparation was concluded to be free from the following enzymes based on marked differences in behavior of the enzyme during purification, molecular masses of the native enzyme and subunits, and immunochemical properties: enoyl-CoA hydratase, short-chain 3-hydroxyacyl-CoA dehydrogenase, peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase bifunctional protein, and mitochondrial and peroxisomal 3-ketoacyl-CoA thiolases. The purified enzyme exhibited activities toward enoyl-CoA hydratase and 3-ketoacyl-CoA thiolase together with the long-chain 3-hydroxyacyl-CoA dehydrogenase activity. The carbon chain length specificities of these three activities of this enzyme differed from those of the other enzymes. Therefore, it is concluded that this enzyme is not long-chain 3-hydroxyacyl-CoA dehydrogenase; rather, it is enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein.  相似文献   

2.
The hypolipidaemic drugs methyl clofenapate, BR-931, Wy-14643 and procetofen induced a marked proliferation of peroxisomes in the parenchymal cells of liver and the proximal-convoluted-tubular epithelium of mouse kidney. The proliferation of peroxisomes was associated with 6–12-fold increase in the peroxisomal palmitoyl-CoA oxidizing capacity of the mouse liver. Enhanced activity of the peroxisomal palmitoyl-CoA oxidation system was also found in the renal-cortical homogenates of hypolipidaemic-drug-treated mice. The activity of enoyl-CoA hydratase in the mouse liver increased 30–50-fold and in the kidney cortex 3–5-fold with hypolipidaemic-drug-induced peroxisome proliferation in these tissues, and over 95% of this induced activity was found to be heat-labile peroxisomal enzyme in both organs. Sodium dodecyl sulphate/polyacrylamide-gel-electrophoretic analysis of large-particle and microsomal fractions obtained from the liver and kidney cortex of mice treated with hypolipidaemic peroxisome proliferators demonstrated a substantial increase in the quantity of an 80000-mol.wt. peroxisome-proliferation-associated polypeptide (polypeptide PPA-80). The heat-labile peroxisomal enoyl-CoA hydratase was purified from the livers of mice treated with the hypolipidaemic drug methyl clofenapate; the antibodies raised against this electrophoretically homogeneous protein yielded a single immunoprecipitin band with purified mouse liver enoyl-CoA hydratase and with liver and kidney cortical extracts of normal and hypolipidaemic-drug-treated mice. These anti-(mouse liver enoyl-CoA hydratase) antibodies also cross-reacted with purified rat liver enoyl-CoA hydratase and with the polypeptide PPA-80 obtained from rat and mouse liver. Immunofluorescence studies with anti-(polypeptide PPA-80) and anti-(peroxisomal enoyl-CoA hydratase) provided visual evidence for the localization and induction of polypeptide PPA-80 and peroxisomal enoyl-CoA hydratase in the liver and kidney respectively of normal and hypolipidaemic-drug-treated mice. In the kidney, the distribution of these two proteins is identical and limited exclusively to the cytoplasm of proximal-convoluted-tubular epithelium. The immunofluorescence studies clearly complement the biochemical and ultrastructural observations of peroxisome induction in the liver and kidney cortex of mice fed on hypolipidaemic drugs. In addition, preliminary ultrastructural studies with the protein-A–gold-complex technique demonstrate that the heat-labile hepatic enoyl-CoA hydratase is localized in the peroxisome matrix.  相似文献   

3.
Peroxisome proliferators, which induce proliferation of hepatic peroxisomes, have been shown previously to cause a marked increase in an 80,000 mol wt polypeptide predominantly in the light mitochondrial and microsomal fractions of liver of rodents. We now present evidence to show that this hepatic peroxisome-proliferation-associated polypeptide, referred to as polypeptide PPA-80, is immunochemically identical with the multifunctional peroxisome protein displaying heat-labile enoyl-CoA hydratase activity. This conclusion is based on the following observations: (a) the purified polypeptide PPA-80 and the heat- labile enoyl-CoA hydratase from livers of rats treated with the peroxisome proliferators Wy-14,643 {[4-chloro-6(2,3-xylidino)-2-pyrimidinylthio]acetic acid} exhibit identical minimum molecular weights of approximately 80,000 on SDS polyacrylamide gel electrophoresis; (b) these two proteins are immunochemically identical on the basis of ouchterlony double diffusion, immunotitration, rocket immunoelectrophoresis, and crossed immunoelectrophoresis analysis; and (c) the immunoprecipitates formed by antibodies to polypeptide PPA-80 when dissociated on a sephadex G-200 column yield enoyl-CoA hydratase activity. Whether the polypeptide PPA-80 exhibits the activity of other enzyme(s) of the peroxisomal β-oxidation system such as fatty acyl-CoA oxidase activity or displays immunochemical identity with such enzymes remains to be determined. The availability of antibodies to polypeptide PPA-80 and enoyl-CoA hydratase facilitated immunofluorescent and immunocytochemical localization of the polypeptide PPA- 80 and enoyl-CoA hydratase in the rat liver. The indirect immunofluorescent studies with these antibodies provided direct visual evidence for the marked induction of polypeptide PPA-80 and enoyl-CoA hydratase in the livers of rats treated with Wy-14,643. The present studies also provide immunocytochemical evidence for the localization of polypeptide PPA- 80 and the heat-labile enoyl-CoA hydratase in the peroxisome, but not in the mitochondria, of hepatic parenchymal cells. These studies, therefore, provide morphological evidence for the existence of fatty acyl-CoA oxidizing system in peroxisomes. An increase of polypeptide PPA-80 on SDS polyacrylamide gel electrophoretic analysis of the subcellular fractions of liver of rodents treated with lipid-lowering drugs should serve as a reliable and sensitive indicator of enhanced peroxisomal β- oxidation system.  相似文献   

4.
In the present study, the hepatic microsomal and peroxisomal bifunctional trans-2-enoyl CoA hydratases were isolated and purified from rats treated with 2% di-(2-ethylhexyl)phthalate for 8 days. These two enzymes (microsomal and peroxisomal) were purified with the identical purification procedures and had identical molecular masses of 76 kDa. A single band was observed on an electrophoretic gel of an equimixture of the two proteins. Both preparations had identical pI's of 8.6 and pH optima of 6.0 for the dehydrogenase (reductase) and 7.5 for the hydratase activity. Two-dimensional gel analysis of an equimixture of the two preparations showed only one band. Ouchterlony double-diffusion analysis showed that an antibody raised against the purified microsomal enzyme interacted at a point with the peroxisomal enzyme, indicating immunologic identity. Western blot analysis demonstrated that the antibody formed a single band with total microsomal and peroxisomal fractions. The antibody inhibited the enzymatic activities of both preparations in a similar manner. Interestingly, the antibody had a markedly greater inhibitory effect on the reductase activity of the two enzyme preparations, and a much less inhibitory effect on the hydratase activity, suggesting that the antigenic determinants reside at or near the catalytic site of the reductase portion of the protein. These results suggest that the microsomal and peroxisomal bifunctional proteins are identical.  相似文献   

5.
A protein exhibiting only enoyl-CoA hydratase (EC 4.2.1.17) activity was purified from an n- alkane-grown yeast, Candida tropicalis. This enzyme had a homotetrameric form composed of subunits with a molecular mass of 36kDa. On the other hand, a bifunctional enzyme exhibiting enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase (EC 1.1.1.35) activities was obtained from the same yeast cells when purified in the presence of protease inhibitors, phenylmethylsulfonyl fluoride, antipain and chymostatin. The enzyme had a molecular mass of 105 kDa and was a monomeric form. Limited proteolysis of the bifunctional enzyme with α-chymotrypsin yielded a peptide mixture containing a 36 kDa fragment, the mixture showing about 76% of the original enoyl-CoA hydratase activity but no 3-hydroxyacyl-CoA dehydrogenase activity. Comparison of the peptide maps of the purified enoyl-CoA hydratase and the 36 kDa fragment obtained from the bifunctional enzyme showed the similarity of these proteins. These results strongly suggest that the domain of enoyl-CoA hydratase is separable from the bifunctional enzyme through the action of a certain protease.  相似文献   

6.
Rat liver peroxisomal D-3-hydroxyacyl-CoA dehydratase, which in combination with enoyl-CoA hydratase catalyzes the epimerization of 3-hydroxyacyl-CoA, was purified by a five-step procedure to yield a highly purified preparation as judged by gel electrophoresis of the native and denatured enzyme. Since the molecular mass of the native dehydratase was estimated to be twice that of its 44-kDa subunit, the enzyme seems to be composed of two, possibly identical subunits. This dehydratase catalyzes the reversible dehydration of D-3-hydroxyacyl-CoA to 2-trans-enoyl-CoA, but, in contrast to enoyl-CoA hydratase, does not act on 2-cis-enoyl-CoA. The dehydratase is virtually inactive toward crotonyl-CoA, but exhibits high activity with 2-trans-hexenoyl-CoA as a substrate and acts with decreasing efficiency on all 2-enoyl-CoAs tested from 2-hexenoyl-CoA to 2-hexadecenoyl-CoA. The pH optimum of the enzyme is close to 8. Equilibrium ratios of 3-hydroxyoctanoyl-CoA/2-trans-octenoyl-CoA and 3-hydroxyoctanoyl-CoA/2-cis-octenoyl-CoA were found to be close to 3 and 137, respectively. It is suggested that 2-cis-enoyl-CoA intermediates formed during the beta-oxidation of polyunsaturated fatty acids in peroxisomes are hydrated by enoyl-CoA hydratase to D-3-hydroxyacyl-CoAs which are epimerized to their L-isomers by the sequential actions of D-3-hydroxyacyl-CoA dehydratase and enoyl-CoA hydratase.  相似文献   

7.
Activity of enoyl-CoA hydratase in rat liver was elevated about 6-fold by the administration of di-(2-ethylhexyl)phthalate, a hepatic peroxisome proliferator. Almost all of the increased activity was the peroxisomal enzyme, which was distinguished by its heat-lability from mitochondrial one. Heat-labile enoyl-CoA hydratase was copurified with peroxisomal 3-hydroxyacyl-CoA dehydrogenase. The purified enzyme corresponded to a peroxisome specific peptide with a molecular weight of 80,000.  相似文献   

8.
Rates of the NAD+-dependent oxidation of 2-trans,4-trans-decadienoyl-CoA, a metabolite of trans-omega-6-unsaturated fatty acids, catalyzed by the mitochondrial enoyl-CoA hydratase plus 3-hydroxyacyl-CoA dehydrogenase and by the corresponding enzymes from peroxisomes, as well as Escherichia coli, were compared. The study of the mitochondrial system revealed that the conventional kinetic theory of coupled enzyme reactions cannot be applied to systems in which the primary reaction has a small equilibrium constant, and/or the concentration of coupling enzyme is higher than 0.01 Km for the intermediate and higher than the steady-state concentration of the intermediate. In contrast to the results obtained with the mitochondrial beta-oxidation system of unlinked enzymes, the steady-state velocities of 2-trans,4-trans-decadienoyl-CoA degradation catalyzed by either the peroxisomal bifunctional enzyme or by the E. coli fatty acid oxidation complex were found to be equal to the activities of enoyl-CoA hydratase even though the concentration of coupling enzyme was equal to that of the primary enzyme, and the quotient of Vmax/Km for the dehydration of 3-hydroxy-4-trans-decenoyl-CoA is much larger than the Vmax/Km for its dehydrogenation. The extraordinarily high efficiencies of these two multifunctional proteins in catalyzing the degradation of 2-trans,4-trans-decadienoyl-CoA is best explained by the direct transfer of the 3-hydroxy-4-trans-decenoyl-CoA intermediate from the active site of enoyl-CoA hydratase to that of 3-hydroxyacyl-CoA dehydrogenase. The discovery of an intermediate channeling mechanism on the peroxisomal bifunctional enzyme explains on the molecular level why the peroxisomal beta-oxidation system is well suited for the degradation of trans-fatty acids.  相似文献   

9.
The 70-kDa peroxisomal membrane protein (PMP70) is one of the major integral membrane proteins of rat liver peroxisomes. cDNA clones for PMP70 were isolated and sequenced. The predicted amino acid sequence (659 amino acid residues) revealed that the carboxyl-terminal region of PMP70 has strong sequence similarities to a group of ATP-binding proteins such as MalK and Mdr. These proteins form a superfamily and are involved in various biological processes including membrane transport. Limited protease treatment of peroxisomes showed that the ATP-binding domain of PMP70 is exposed to the cytosol. The hydropathy profile, in comparison with those of several other members of the ATP-binding protein superfamily, suggests that PMP70 is a transmembrane protein possibly forming a channel. Based on these results, we propose that PMP70 is involved in active transport across the peroxisomal membrane.  相似文献   

10.
11.
Peroxisomes are massively induced when methylotrophic yeasts are cultured on methanol as the sole carbon and energy source. An analysis of the protein composition of the peroxisomal membrane and the generation of probes against two peroxisomal membrane proteins (PMPs) have been undertaken. Peroxisomes from Candida boidinii were obtained from sucrose gradients as previously described or from a novel one-step purification of the organelle on a Percoll gradient. The protein composition of the membranes from these two preparations was virtually identical. About 10 proteins comprise nearly all of its protein mass. The most prominent proteins have molecular masses of 120, 100, 47, 31-32 (a triplet), and 20 kDa; significant amounts of alcohol oxidase and dihydroxyacetone synthase, the two abundant matrix proteins, also remain associated with the membrane. Glycosylation of the membrane proteins could not be detected. Exposure of the membrane to chaotropes shows that PMPs 100 and 20 are the most easily removable, whereas PMP 47 appears to be the most tightly associated. Mice were injected with peroxisomal membrane, and hybridoma lines were isolated that produced antibody against PMP 20, PMP 47, and dihydroxyacetone synthase. Indirect immunofluorescence with these monoclonal antibodies confirmed that all three proteins are localized to the peroxisomal cluster. Immunoblotting experiments demonstrated that peroxisomal membrane as well as matrix proteins are induced by methanol.  相似文献   

12.
Peroxisomal beta-oxidation enzyme proteins in the Zellweger syndrome   总被引:12,自引:0,他引:12  
The absence of peroxisomes in patients with the cerebro-hepato-renal (Zellweger) syndrome is accompanied by a number of biochemical abnormalities, including an accumulation of very long-chain fatty acids. We show by immunoblotting that there is a marked deficiency in livers from patients with the Zellweger syndrome of the peroxisomal beta-oxidation enzyme proteins acyl-CoA oxidase, the bifunctional protein with enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase activities and 3-oxoacyl-CoA thiolase. Using anti-(acyl-CoA oxidase), increased amounts of cross-reactive material of low Mr were seen in the patients. With anti-(oxoacyl-CoA thiolase), high Mr cross-reactive material, presumably representing precursor forms of 3-oxoacyl-CoA thiolase, was detected in the patients. Catalase protein was not deficient, in accordance with the finding that catalase activity is not diminished in the patients. Thus in contrast to the situation with catalase functional peroxisomes are required for the stability and normal activity of peroxisomal beta-oxidation enzymes.  相似文献   

13.
To elucidate structural relationships between the mitochondrial and peroxisomal isozymes of beta-oxidation systems, cDNA of the mitochondrial enoyl-CoA hydratase was cloned and sequenced. The 1454-bp cDNA sequence contained a 870 bp of open reading frame, encoding a polypeptide of 290 amino acid residues. When compared with the amino-terminal sequence of the mature enzyme, the predicted sequence contained a 29-residue presequence at the amino terminus. This presequence had characteristics typical of a mitochondrial signal peptide. The primary structure of this enzyme showed significant similarity with the amino-terminal portion of sequence of the peroxisomal enoyl-CoA hydratase: 3-hydroxyacyl-CoA dehydrogenase bifunctional enzyme. The carboxy-terminal part of the latter enzyme has sequence similarity with mitochondrial 3-hydroxyacyl-CoA dehydrogenase [Ishii, N., Hijikata, M., Osumi, T. & Hashimoto, T. (1987) J. Biol. Chem. 262, 8144-8150]. These findings suggest that the peroxisomal bifunctional enzyme has the hydratase and dehydrogenase functions on the amino- and carboxy-terminal sides, respectively. The mitochondrial beta-oxidation enzymes and the peroxisomal bifunctional enzyme may have common evolutionary origins.  相似文献   

14.
Two major proteins with subunit molecular masses of 68 and 70 kDa were isolated from the integral membrane protein fraction of peroxisomes purified from mouse liver. The two proteins were shown to be distinct proteins by two criteria: first, immunoblot analysis demonstrated that antisera against the 68 kDa protein did not cross-react with the 70 kDa protein, and vice versa; and second, the partial peptide maps resulting from proteinase digestion of the proteins were different. Immunoblot analyses to test the specificities of the antisera demonstrated that only the expected molecular mass species in purified peroxisomes, and in membranes prepared from these organelles, were recognized; there was no identification of proteins from purified mitochondrial or microsomal fractions. The concentrations of both of these proteins were increased in livers of mice treated with clofibrate, a hypolipidemic drug and peroxisome proliferator, with the effect being greater for the 70 kDa component. The localization of the 68 kDa protein was shown to be completely integral to the peroxisome membrane. Although some 70 kDa protein was integral to the membrane, a significant proportion was released from the membrane by some procedures believed to detach peripheral proteins. The 70 kDa protein was also particularly susceptible to degradation during isolation - in particular, addition of EDTA to media used for isolation of peroxisomes resulted in membranes in which this protein was degraded to smaller immunoreactive fragments. These data have been discussed in relation to the significant clarification which they have provided of the status and characteristics of the major protein components of peroxisomal membranes.  相似文献   

15.
Distinct organellar forms of the β-oxidation enzyme enoyl-coenzyme A (CoA) hydratase were partially purified and characterized from 2-day germinated pea (Pisum sativum L.) seedlings. The purification was accomplished by disruption of purified mitochondria or peroxisomes, (NH4)2SO4 fractionation, and gel permeation chromatography using a column of Sephacryl S-300. The organellar isozymes had distinct kinetic constants for the substrates 2-butenoyl-CoA and 2-octenoyl-CoA, and could be easily distinguished by differences in thermostability and salt activation. The peroxisomal isozyme had a native Mr of 75,000 and appeared to be a typical bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, while the mitochondrial isozyme had a native Mr of 57,000 and did not have associated dehydrogenase activity. Western blots of total pea mitochondrial proteins gave a positive signal when probed with anti-rat liver mitochondrial enoyl-CoA hydratase antibodies but there was no signal when blots of total peroxisomal proteins were probed.  相似文献   

16.
Peroxisomes were purified from livers of control mice and from mice treated with three agents which induce proliferation of hepatic peroxisomes — namely two structurally unrelated hypolipidemic drugs, clofibrate (ethyl--p-chlorophenoxyisobutyrate) and Wy-14,643 (4-chloro-6[2,3-xylidino)-2-pyrimidinylthio] acetic acid), and a plasticizer, DEHP (di-(2-ethylhexyl)phthalate).Membranes were isolated from these purified peroxisomes and analysed by SDS-polyacrylamide gel electrophoresis. All membranes which were tested, displayed two predominant integral membrane proteins of apparent molecular weights of 68 kDa and 70 kDa respectively, as well as a number of minor components. Treatment of animals with clofibrate, Wy-14,643 and DEHP was observed to result in each case in an increased proportion of the 70 kDa protein in the peroxisomal membranes. These treatments also resulted in increased peroxisomal fatty acid oxidation in livers and an increase in the proportion of catalase activity in the cytosolic fraction of liver cells.These results have been discussed in relation to alterations in the molecular composition of the membranes, the mechanisms of peroxisome proliferation and the inducibility of peroxisomal membrane proteins.  相似文献   

17.
The cDNA sequence of human liver 70 kDa peroxisomal membrane protein (hPMP70) was determined. The nucleotide sequence contains an open reading frame of 1977 base pairs and encodes an amino acid sequence of 659 residues which exhibits 95.0% identity with that of rat liver PMP70. hPMP70 shares close similarity to the members of a superfamily of ATP-binding transport proteins.  相似文献   

18.
We have used a PCR-based subtractive hybridization method to identify upregulated cDNAs in the livers of rats treated with a peroxisome proliferator [clofibrate or di(2-ethylhexyl) phthalate]. After four rounds of subtractive hybridization 62 differentially hybridizing clones were partially sequenced and analyzed by sequence homology searching. Of 62, 49 were identical to 14 different upregulated rat sequences in the databank (mostly genes encoding microsomal or peroxisomal enzymes), 4 of 62 were fragments of three previously unknown genes, and 9 of 62 were false positives. Two of the unknown fragments hybridized to a single novel cDNA that was found to be more than 20-fold induced by both peroxisome proliferators. The 36-kDa predicted protein product of this cDNA shows a high degree of sequence homology to enoyl-CoA hydratases of several different species and has a C-terminal peroxisomal targeting sequence. An epitope-tagged protein product of a full-length cDNA was targeted to peroxisomes in a human cell line. We named this gene, which encodes an apparent peroxisomal enoyl-CoA hydratase, ECH1. We have also identified human ECH1 cDNA and mapped its structural gene to 19q13, 3′ to the ryanodine receptor, by hybridization to somatic cell hybrid DNA and chromosome 19-specific cosmid arrays. Possible roles for the ECH1 protein product in peroxisomal β-oxidation are discussed.  相似文献   

19.
D-bifunctional protein (D-BP) plays an indispensable role in peroxisomal beta-oxidation, and its inherited deficiency in humans is associated with severe clinical abnormalities. Three different subtypes of D-BP deficiency can be distinguished: 1) a complete deficiency of D-BP (type I), 2) an isolated D-BP enoyl-CoA hydratase deficiency (type II), and 3) an isolated D-BP 3-hydroxyacyl-CoA dehydrogenase deficiency (type III). In this study, we developed a method to measure D-BP dehydrogenase activity independent of D-BP hydratase (D-BP HY) activity to distinguish between D-BP deficiency type I and type II, which until now was only possible by mutation analysis. For this assay, the hydratase domain of D-BP was expressed in the yeast Saccharomyces cerevisiae. After a coincubation of yeast homogenate expressing D-BP HY with fibroblast homogenate of patients using the enoyl-CoA ester of the bile acid intermediate trihydroxycholestanoic acid as substrate, D-BP dehydrogenase activity was measured. Fibroblasts of patients with a D-BP deficiency type II displayed D-BP dehydrogenase activity, whereas type I and type III patients did not. This newly developed assay to measure D-BP dehydrogenase activity in fibroblast homogenates provides a quick and reliable method to assign patients with deficient D-BP HY activity to the D-BP deficiency subgroups type I or type II.  相似文献   

20.
The multifunctional protein (MFP) of peroxisomal beta-oxidation catalyses four separate reactions, two of which (2-trans enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase) are core activities required for the catabolism of all fatty acids. We have isolated and characterized five Arabidopsis thaliana mutants in the MFP2 gene that is expressed predominantly in germinating seeds. Seedlings of mfp2 require an exogenous supply of sucrose for seedling establishment to occur. Analysis of mfp2-1 seedlings revealed that seed storage lipid was catabolized more slowly, long-chain acyl-CoA substrates accumulated and there was an increase in peroxisome size. Despite a reduction in the rate of beta-oxidation, mfp2 seedlings are not resistant to the herbicide 2,4-dichlorophenoxybutyric acid, which is catabolized to the auxin 2,4-dichlorophenoxyacetic acid by beta-oxidation. Acyl-CoA feeding experiments show that the MFP2 2-trans enoyl-CoA hydratase only exhibits activity against long chain (C18:0) substrates, whereas the MFP2 L-3-hydroxyacyl-CoA dehydrogenase is active on C6:0, C12:0 and C18:0 substrates. A mutation in the abnormal inflorescence meristem gene AIM1, the only homologue of MFP2, results in an abnormal inflorescence meristem phenotype in mature plants (Richmond and Bleecker, Plant Cell 11, 1999, 1911) demonstrating that the role of these genes is very different. The mfp2-1 aim1double mutant aborted during the early stages of embryo development showing that these two proteins share a common function that is essential for this key stage in the life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号