首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Despite the advances in the physiology of fruit ripening, the role and contribution of water pathways are still barely considered. Our aim was therefore to characterize aquaporins, proteins that render the molecular basis for putative regulatory mechanisms in water transport. We focused our work on strawberry ( Fragaria × ananassa ) fruit, a non-climacteric fruit of special interest because of its forced brief commercial shelf life. A full-length cDNA was isolated with high homology with plasma membrane (PM) intrinsic proteins (named FaPIP1;1), showing a profile with high expression in fruit, less in ovaries and no detection at all in other parts. Its cellular localization was confirmed at the PM. As reported in other plasma membrane intrinsic proteins subtype 1 (PIP1s), when expressing the protein in Xenopus leavis oocytes, FaPIP1;1 shows low water permeability values that only increased when it is coexpressed with a plasma membrane intrinsic protein subtype 2. Northern blotting using total RNA shows that its expression increases during fruit ripening. Moreover, functional characterization of isolated PM vesicles from red stage fruit unequivocally demonstrates the presence of active water channels, i.e. high water permeability values and a low Arrhenius activation energy, both evidences of water transport mediated by proteins. Interestingly, as many ripening-related strawberry genes, the expression pattern of FaPIP1;1 was also repressed by the presence of auxins. We therefore report a fruit specific PIP1 aquaporin with an accumulation pattern tightly associated to auxins and to the ripening process that might be responsible for increasing water permeability at the level of the PM in ripe fruit.  相似文献   

2.
3.
FaPYR1 is involved in strawberry fruit ripening   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
6.
7.
8.
9.
We have isolated and characterized a cDNA from a strawberry fruit subtractive library that shows homology to class-I low-molecular-weight (LMW) heat-shock protein genes from other higher plants. The strawberry cDNA (clone njjs4) was a 779 bp full-length cDNA with a single open reading frame of 468 bp that is expected to encode a protein of ca. 17.4 kDa with a pI of 6.57. Southern analysis with genomic DNA showed several high-molecular-weight hybridization bands, indicating that the corresponding njjs4 gene is not present as a single copy in the genome. This strawberry gene was not expressed in roots, leaves, flowers and stolons but in fruits at specific stages of elongation and ripening. However, a differential pattern of mRNA expression was detected in the fruit tissues achenes and receptacle. The njjs4 gene expression increased in achenes accompanying the process of seed maturation whereas in the receptacle, a high mRNA expression was detected in the W2 stage, during which most of the metabolic changes leading to the fruit ripening are occurring. Our results clearly show a specific relationship of this njjs4 strawberry gene with the processes of seed maturation and fruit ripening, and strongly support that at least some of the class-I LMW heat-shock protein-like genes have a heat-stress-independent role in plant development, including fruit ripening.  相似文献   

10.
11.
12.
Short-chain esters contribute to the blend of volatiles that define the strawberry aroma. The last step in their biosynthesis involves an alcohol acyltransferase that catalyses the esterification of an acyl moiety of acyl-CoA with an alcohol. This study identified a novel strawberry alcohol acyltransferase gene (FaAAT2) whose expression pattern during fruit receptacle growth and ripening is in accordance with the production of esters throughout strawberry fruit ripening. The full-length FaAAT2 cDNA was cloned and expressed in Escherichia coli and its activity was analysed with acyl-CoA and alcohol substrates. The semi-purified FaAAT2 enzyme had activity with C1-C8 straight-chain alcohols and aromatic alcohols in the presence of acetyl-CoA. Cinnamyl alcohol was the most efficient acyl acceptor. When FaAAT2 expression was transiently downregulated in the fruit receptacle by agroinfiltration, the volatile ester production was significantly reduced in strawberry fruit. The results suggest that FaAAT2 plays a significant role in the production of esters that contribute to the final strawberry fruit flavour.  相似文献   

13.
Inhibition of expression of tomato-ripening genes at high temperature   总被引:4,自引:2,他引:2  
Abstract. Ripening tomato fruits incubated at 35°C fail to achieve normal pigmentation, soften little and show a marked decline in ethylene evolution. Labelling studies in vivo indicate that protein synthesis continues throughout incubation at 35°C although the spectrum of labelled proteins is different to that observed at 25°C. Translation of mRNAs in vitro shows traces of several 'heat-shock' mRNAs at 35°C and the loss of several others normally found in fruit ripened at 25°C. Using ripening-related cDNA clones as hybridization probes the expression of 12 ripening-related genes was followed during incubation at 25°C and 35°C. In general, there was a marked decline in the amounts of these mRNAs following incubation of ripening fruit at 35°C. In particular, mRNA homologous to pTOM 6, a cDNA clone coding for polygalacturonase, a major cell wall degrading enzyme, showed a rapid decline following incubation at 35°C and after 72-h at elevated temperature was undetectable. There was no recovery of expression during 120 h at 35°C and the application of exogenous ethylene did not overcome the inhibition of ripening or lead to the renewed accumulation of polygalacturonase mRNA. It is proposed that the failure to soften normally at elevated temperature is due, in part, to the suppression of polygalacturonase mRNA and that the inhibition of other facets of ripening at 35°C is due to the inhibition or reduced expression of other, as yet unidentified, ripening-related genes.  相似文献   

14.
15.
16.
Kenneth Manning 《Planta》1998,205(4):622-631
The ripening of strawberry (Fragaria ananassa Duch.), a non-climacteric fruit, is a complex developmental process that involves many changes in gene expression. To understand how these changes relate to the biochemistry and composition of the fruit the specific genes involved have been examined. A high-quality cDNA library prepared from ripe strawberry fruit was differentially screened for ripening-related clones using cDNA from ripe and white fruits. From 112 up-regulated clones obtained in the primary screen, 66 differentially expressed clones were isolated from the secondary screen. The partial sequences of these cDNAs were compared with database sequences and 26 families of non-redundant clones were identified. Northern analysis confirmed that all of these cDNAs were ripening-enhanced. The expression of many of their corresponding genes was negatively regulated in auxin-treated fruit. These sequences, several of which are novel to fruits, encode proteins involved in key metabolic events including anthocyanin biosynthesis, cell wall degradation, sucrose and lipid metabolism, protein synthesis and degradation, and respiration. These findings are discussed in relation to the role of these genes in determining fruit quality characteristics. Received: 19 January 1998 / Accepted: 5 February 1998  相似文献   

17.
The beta-xylosidase-encoding xlnD gene of Aspergillus niger 90196 was amplified by the PCR technique from first-strand cDNA synthesized on mRNA isolated from the fungus. The nucleotide sequence of the cDNA fragment was verified to contain a 2,412-bp open reading frame that encodes a 804-amino-acid propeptide. The 778-amino-acid mature protein, with a putative molecular mass of 85.1 kDa, was fused in frame with the Saccharomyces cerevisiae mating factor alpha1 signal peptide (MFalpha1(s)) to ensure correct posttranslational processing in yeast. The fusion protein was designated Xlo2. The recombinant beta-xylosidase showed optimum activity at 60 degrees C and pH 3.2 and optimum stability at 50 degrees C. The K(i(app)) value for D-xylose and xylobiose for the recombinant beta-xylosidase was determined to be 8.33 and 6.41 mM, respectively. The XLO2 fusion gene and the XYN2 beta-xylanase gene from Trichoderma reesei, located on URA3-based multicopy shuttle vectors, were successfully expressed and coexpressed in the yeast Saccharomyces cerevisiae under the control of the alcohol dehydrogenase II gene (ADH2) promoter and terminator. These recombinant S. cerevisiae strains produced 1,577 nkat/ml of beta-xylanase activity when expressing only the beta-xylanase and 860 nkat/ml when coexpressing the beta-xylanase with the beta-xylosidase. The maximum beta-xylosidase activity was 5.3 nkat/ml when expressed on its own and 3.5 nkat/ml when coexpressed with the beta-xylanase. Coproduction of the beta-xylanase and beta-xylosidase enabled S. cerevisiae to degrade birchwood xylan to D-xylose.  相似文献   

18.
A cDNA encoding a putative translationally controlled tumor protein (TCTP) was isolated from a cDNA library made with mRNA isolated from red ripe strawberry fruits. This protein is highly conserved in all species analyzed. Expression of strawberry TCTP increased along the ripening of strawberry fruits, and is constitutively expressed in vegetative tissues. The putative function of this protein remains still unknown  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号