首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two-pore domain (K2P) channels emerged about a decade ago and since then have been an expanding area of interest. This is because their biophysical and pharmacological properties make them good candidates to support background potassium currents and membrane potential in many cell types. There is clear evidence for TREK-1 and TASK-1 in the heart and these channels are likely to regulate cardiac action potential duration through their regulation by stretch, polyunsaturated fatty acids, pH, and neurotransmitters. TREK-1 may also have a critical role in mediating the vasodilator response of resistance arteries to polyunsaturated fatty acids, thus contributing to their protective effect on the cardiovascular system. TASK-1, on the other hand, is a strong candidate for a role in hypoxic vasoconstriction of pulmonary arteries. Many other members of the K2P channel family have been identified in the cardiovascular system, although their functional roles are still to be demonstrated. This review provides an up to date summary of what is known about the involvement of members of the K2P channel family in cells of the heart and arterial circulation. Our knowledge of their roles will improve with the rapidly increasing interest in them and as new selective pharmacological tools emerge. As their physiological roles emerge, the K2P family of potassium channels may offer promising therapeutic solutions to target cardiovascular diseases. EBSA satellite meeting: ion channels, Leeds, July 2007.  相似文献   

2.
The versatility of neuronal electrical activity is largely conditioned by the expression of different structural and functional classes of K+ channels. More than 80 genes encoding the main K+ channel alpha subunits have been identified in the human genome. Alternative splicing, heteromultimeric assembly, post-translational modification and interaction with auxiliary regulatory subunits further increase the molecular and functional diversity of K+ channels. Mammalian two-pore domain K+ channels (K2P) make up one class of K+ channels along with the inward rectifiers and the voltage- and/or calcium-dependent K+ channels. Each K2P channel subunit is made up of four transmembrane segments and two pore-forming (P) domains, which are arranged in tandem and function as either homo- or heterodimeric channels. This novel structural arrangement is associated with unusual gating properties including “background” or “leak” K+ channel activity, in which the channels show constitutive activity at rest. In this review article, we will focus on the lipid-sensitive mechano-gated K2P channel TREK-1 and will emphasize on the polymodal function of this “unconventional” K+ channel. EBSA Satellite meeting: Ion channels, Leeds, July 2007.  相似文献   

3.
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels that set the resting membrane potential. Inhibition of these channels by adrenocorticotropic hormone (ACTH) is coupled to membrane depolarization and cortisol secretion. Curcumin, a phytochemical with medicinal properties extracted from the spice turmeric, was found to modulate both bTREK-1 K+ currents and cortisol secretion from AZF cells. In whole-cell patch clamp experiments, curcumin inhibited bTREK-1 with an IC50 of 0.93 μM by a mechanism that was voltage-independent. bTREK-1 inhibition by curcumin occurred through interaction with an external binding site and was independent of ATP hydrolysis. Curcumin produced a concentration-dependent increase in cortisol secretion that persisted for up to 24 h. At a maximally effective concentration of 50 μM, curcumin increased secretion as much as 10-fold. These results demonstrate that curcumin potently inhibits bTREK-1 K+ channels and stimulates cortisol secretion from bovine AZF cells. The inhibition of bTREK-1 by curcumin may be linked to cortisol secretion through membrane depolarization. Since TREK-1 is widely expressed in a variety of cells, it is likely that some of the biological actions of curcumin, including its therapeutic effects, may be mediated through inhibition of these K+ channels.  相似文献   

4.
In whole cell patch clamp recordings, we found that normal human adrenal zona fasciculata (AZF) cells express voltage-gated, rapidly inactivating Ca2+ and K+ currents and a noninactivating, leak-type K+ current. Characterization of these currents with respect to voltage-dependent gating and kinetic properties, pharmacology, and modulation by the peptide hormones adrenocorticotropic hormone (ACTH) and AngII, in conjunction with Northern blot analysis, identified these channels as Cav3.2 (encoded by CACNA1H), Kv1.4 (KCNA4), and TREK-1 (KCNK2). In particular, the low voltage–activated, rapidly inactivating and slowly deactivating Ca2+ current (Cav3.2) was potently blocked by Ni2+ with an IC50 of 3 µM. The voltage-gated, rapidly inactivating K+ current (Kv1.4) was robustly expressed in nearly every cell, with a current density of 95.0 ± 7.2 pA/pF (n = 64). The noninactivating, outwardly rectifying K+ current (TREK-1) grew to a stable maximum over a period of minutes when recording at a holding potential of −80 mV. This noninactivating K+ current was markedly activated by cinnamyl 1-3,4-dihydroxy-α-cyanocinnamate (CDC) and arachidonic acid (AA) and inhibited almost completely by forskolin, properties which are specific to TREK-1 among the K2P family of K+ channels. The activation of TREK-1 by AA and inhibition by forskolin were closely linked to membrane hyperpolarization and depolarization, respectively. ACTH and AngII selectively inhibited the noninactivating K+ current in human AZF cells at concentrations that stimulated cortisol secretion. Accordingly, mibefradil and CDC at concentrations that, respectively, blocked Cav3.2 and activated TREK-1, each inhibited both ACTH- and AngII-stimulated cortisol secretion. These results characterize the major Ca2+ and K+ channels expressed by normal human AZF cells and identify TREK-1 as the primary leak-type channel involved in establishing the membrane potential. These findings also suggest a model for cortisol secretion in human AZF cells wherein ACTH and AngII receptor activation is coupled to membrane depolarization and the activation of Cav3.2 channels through inhibition of hTREK-1.  相似文献   

5.
Dorsal root ganglion (DRG) neurons express mRNAs for many two-pore domain K+ (K2P) channels that behave as background K+ channels. To identify functional background K+ channels in DRG neurons, we examined the properties of single-channel openings from cell-attached and inside-out patches from the cell bodies of DRG neurons. We found seven types of K+ channels, with single-channel conductance ranging from 14 to 120 pS in 150 mM KCl bath solution. Four of these K+ channels showed biophysical and pharmacological properties similar to TRESK (14 pS), TREK-1 (112 pS), TREK-2 (50 pS), and TRAAK (73 pS), which are members of the K2P channel family. The molecular identity of the three other K+ channels could not be determined, as they showed low channel activity and were observed infrequently. Of the four K2P channels, the TRESK-like (14 pS) K+ channel was most active at 24°C. At 37°C, the 50-pS (TREK-2 like) channel was the most active and contributed the most (69%) to the resting K+ current, followed by the TRESK-like 14-pS (16%), TREK-1-like 112-pS (12%), and TRAAK-like 73-pS (3%) channels. In DRG neurons, mRNAs of all four K2P channels, as well as those of TASK-1 and TASK-3, were expressed, as judged by RT-PCR analysis. Our results show that TREKs and TRESK together contribute >95% of the background K+ conductance of DRG neurons at 37°C. As TREKs and TRESK are targets of modulation by receptor agonists, they are likely to play an active role in the regulation of excitability in DRG neurons. two-pore domain K+ channel; conductance; excitability  相似文献   

6.
The TREK-1 channel, the TWIK-1-related potassium (K+) channel, is a member of a family of 2-pore-domain K+ (K2P) channels, through which background or leak K+ currents occur. An interesting feature of the TREK-1 channel is the run-up of current: i.e. the current through TREK-1 channels spontaneously increases within several minutes of the formation of the whole-cell configuration. To investigate whether intracellular transport is involved in the run-up, we established 293T cell lines stably expressing the TREK-1c channel (K2P2.1) and examined the effects of inhibitors of membrane protein transport, N-methylmaleimide (NEM), brefeldin-A, and an endocytosis inhibitor, pitstop2, on the run-up. The results showing that NEM and brefeldin-A inhibited and pitstop2 facilitated the run-up suggest the involvement of intracellular protein transport. Correspondingly, in cells stably expressing the mCherry-TREK-1 fusion protein, NEM decreased and pitstop2 increased the cell surface localization of the fusion protein. Furthermore, the run-up was inhibited by the intracellular application of a peptide of the C-terminal fragment TREK335–360, corresponding to the interaction site with microtubule-associated protein 2 (Mtap2). This peptide also inhibited the co-immunoprecipitation of Mtap2 with anti-mCherry antibody. The extracellular application of an ezrin inhibitor (NSC668394) also suppressed the run-up and surface localization of the fusion protein. The co-application of these inhibitors abolished the TREK-1c current, suggesting that the additive effects of ezrin and Mtap2 enhance the surface expression of TREK-1c channels and the run-up. These findings clearly showed the involvement of intracellular transport in TREK-1c current run-up and its mechanism.  相似文献   

7.

Aims

Effective management of atrial fibrillation (AF) often remains an unmet need. Cardiac two-pore-domain K+ (K2P) channels are implicated in action potential regulation, and their inhibition has been proposed as a novel antiarrhythmic strategy. K2P2.1 (TREK-1) channels are expressed in the human heart. This study was designed to identify and functionally express porcine K2P2.1 channels. In addition, we sought to analyze cardiac expression and AF-associated K2P2.1 remodeling in a clinically relevant porcine AF model.

Main methods

Three pK2P2.1 isoforms were identified and amplified. Currents were recorded using voltage clamp electrophysiology in the Xenopus oocyte expression system. K2P2.1 remodeling was studied by quantitative real time PCR and Western blot in domestic pigs during AF induced by atrial burst pacing.

Key findings

Human and porcine K2P2.1 proteins share 99% identity. Residues involved in phosphorylation or glycosylation are conserved. Porcine K2P2.1 channels carried outwardly rectifying K+ currents similar to their human counterparts. In pigs, K2P2.1 was expressed ubiquitously in the heart with predominance in the atrial tissue. AF was associated with time-dependent reduction of K2P2.1 protein in the RA by 70% (7 days of AF) and 80% (21 days of AF) compared to control animals in sinus rhythm. K2P2.1 expression in the left atrium, AV node, and ventricles was not affected by AF.

Significance

Similarities between porcine and human K2P2.1 channels indicate that the pig may represent a valid model for mechanistic and preclinical studies. AF-related atrial K2P2.1 remodeling has potential implications for arrhythmia maintenance and antiarrhythmic therapy.  相似文献   

8.
Two-pore-domain potassium (K2P) channels mediate K+ background currents that stabilize the resting membrane potential and contribute to repolarization of action potentials in excitable cells. The functional significance of K2P currents in cardiac electrophysiology remains poorly understood. Danio rerio (zebrafish) may be utilized to elucidate the role of cardiac K2P channels in vivo. The aim of this work was to identify and functionally characterize a zebrafish otholog of the human K2P10.1 channel. K2P10.1 orthologs in the D. rerio genome were identified by database analysis, and the full zK2P10.1 coding sequence was amplified from zebrafish cDNA. Human and zebrafish K2P10.1 proteins share 61% identity. High degrees of conservation were observed in protein domains relevant for structural integrity and regulation. K2P10.1 channels were heterologously expressed in Xenopus oocytes, and currents were recorded using two-electrode voltage clamp electrophysiology. Human and zebrafish channels mediated K+ selective background currents leading to membrane hyperpolarization. Arachidonic acid, an activator of hK2P10.1, induced robust activation of zK2P10.1. Activity of both channels was reduced by protein kinase C. Similar to its human counterpart, zK2P10.1 was inhibited by the antiarrhythmic drug amiodarone. In summary, zebrafish harbor K2P10.1 two-pore-domain K+ channels that exhibit structural and functional properties largely similar to human K2P10.1. We conclude that the zebrafish represents a valid model to study K2P10.1 function in vivo.  相似文献   

9.
The modulation of TREK-1 leak and Kv1.4 voltage-gated K+ channels by fatty acids and lysophospholipids was studied in bovine adrenal zona fasciculata (AZF) cells. In whole-cell patch-clamp recordings, arachidonic acid (AA) (1–20 µM) dramatically and reversibly increased the activity of bTREK-1, while inhibiting bKv1.4 current by mechanisms that occurred with distinctly different kinetics. bTREK-1 was also activated by the polyunsaturated cis fatty acid linoleic acid but not by the trans polyunsaturated fatty acid linolelaidic acid or saturated fatty acids. Eicosatetraynoic acid (ETYA), which blocks formation of active AA metabolites, failed to inhibit AA activation of bTREK-1, indicating that AA acts directly. Compared to activation of bTREK-1, inhibition of bKv1.4 by AA was rapid and accompanied by a pronounced acceleration of inactivation kinetics. Cis polyunsaturated fatty acids were much more effective than trans or saturated fatty acids at inhibiting bKv1.4. ETYA also effectively inhibited bKv1.4, but less potently than AA. bTREK-1 current was markedly increased by lysophospholipids including lysophosphatidyl choline (LPC) and lysophosphatidyl inositol (LPI). At concentrations from 1–5 µM, LPC produced a rapid, transient increase in bTREK-1 that peaked within one minute and then rapidly desensitized. The transient lysophospholipid-induced increases in bTREK-1 did not require the presence of ATP or GTP in the pipette solution. These results indicate that the activity of native leak and voltage-gated K+ channels are directly modulated in reciprocal fashion by AA and other cis unsaturated fatty acids. They also show that lysophospholipids enhance bTREK-1, but with a strikingly different temporal pattern. The modulation of native K+ channels by these agents differs from their effects on the same channels expressed in heterologous cells, highlighting the critical importance of auxiliary subunits and signaling. Finally, these results reveal that AZF cells express thousands of bTREK-1 K+ channels that lie dormant until activated by metabolites including phospholipase A2 (PLA2)-generated fatty acids and lysophospholipids. These metabolites may alter the electrical and secretory properties of AZF cells by modulating bTREK-1 and bKv1.4 K+ channels.  相似文献   

10.
目的:研究匹罗卡品癫痫模型中海马区TREK-2双孔钾离子通道的表达变化,初步探讨TREK-2在癫痫发病过程中的机制及意义。方法:选用成年雄性SD大鼠腹腔注射氯化锂-匹罗卡品(lithium-pilocarpine)构建癫痫模型,分别在癫痫持续状态(status epilepticus,SE)后不同时间点(6 h、1 d、3 d、1 w、2 w、4 w、8 w)提取海马组织,利用western-blot检测海马区TREK-2随时间表达变化。并用TREK-2 si RNA下调海马区TREK-2表达,进一步观察对大鼠癫痫状态的影响。结果:与对照组相比,TREK-2在诱导癫痫持续状态发作后的3d开始降低(P0.05),1 w,2 w,4 w明显降低(P0.01),8 w时仍维持在很低水平(P0.001)。在TREK-2表达下调后,大鼠癫痫潜伏时间(latent period)明显缩短,癫痫持续状态1 h 5级以上发作频率(seizure frequency)明显增加。结论:TREK-2在氯化锂-匹罗卡品致痫大鼠海马组织中表达的降低,且其下调加重癫痫状态的事实提示TREK-2参与了癫痫的发生发展过程。  相似文献   

11.
Recently, we have identified two astrocytic subpopulations in the cortex of GFAP-EGFP mice, in which the astrocytes are visualized by the enhanced green–fluorescent protein (EGFP) under the control of the human glial fibrillary acidic protein (GFAP) promotor. These astrocytic subpopulations, termed high response- (HR-) and low response- (LR-) astrocytes, differed in the extent of their swelling during oxygen-glucose deprivation (OGD). In the present study we focused on identifying the ion channels or transporters that might underlie the different capabilities of these two astrocytic subpopulations to regulate their volume during OGD. Using three-dimensional confocal morphometry, which enables quantification of the total astrocytic volume, the effects of selected inhibitors of K+ and Cl channels/transporters or glutamate transporters on astrocyte volume changes were determined during 20 minute-OGD in situ. The inhibition of volume regulated anion channels (VRACs) and two-pore domain potassium channels (K2P) highlighted their distinct contributions to volume regulation in HR-/LR-astrocytes. While the inhibition of VRACs or K2P channels revealed their contribution to the swelling of HR-astrocytes, in LR-astrocytes they were both involved in anion/K+ effluxes. Additionally, the inhibition of Na+-K+-Cl co-transporters in HR-astrocytes led to a reduction of cell swelling, but it had no effect on LR-astrocyte volume. Moreover, employing real-time single-cell quantitative polymerase chain reaction (PCR), we characterized the expression profiles of EGFP-positive astrocytes with a focus on those ion channels and transporters participating in astrocyte swelling and volume regulation. The PCR data revealed the existence of two astrocytic subpopulations markedly differing in their gene expression levels for inwardly rectifying K+ channels (Kir4.1), K2P channels (TREK-1 and TWIK-1) and Cl channels (ClC2). Thus, we propose that the diverse volume changes displayed by cortical astrocytes during OGD mainly result from their distinct expression patterns of ClC2 and K2P channels.  相似文献   

12.
The maintenance of pluripotency of mesenchymal stromal cells (MSCs), their proliferation and initiation of differentiation may critically depend on functional expression of ion channels. Despite such a possibility, mechanisms of electrogenesis in MSCs remain poorly understood. In particular, little is known about a variety of ion channels active in resting MSCs or activated upon MSC stimulation. Here we aimed at uncovering ion channels operating in MSCs, including those being active at rest, using the patch clamp technique and inhibitory analysis. In trying to evaluate a contribution of anion channels in MSC resting potential, we employed a number of diverse inhibitors of anion channels and transporters, including niflumic acid (NFA). Basically, NFA caused hyperpolarization of MSCs that was accompanied by a marked increase in ion conductance of their plasma membranes. The blockage of Cl? channels could not underlie such a NFA effect, given that cells dialyzed with a CsCl solution were weakly or negligibly sensitive to this blocker. This and other findings indicated that NFA affected the MSC ion permeability not by targeting Cl? channels but by stimulating K+ channels. NFA-activated K+ current was TEA and diltiazem blockable, and K+ channels involved were potentiated from outside by solution acidification and Cu2+ ions. Taken together, the data obtained implicated two-pore domain K+ channels of the TREK-2 subtype in mediating stimulatory effects of NFA on MSCs. The notable inference from our work is that TREK-2 channels should be expressed and functional virtually in every MSC, given that all cells examined by us (n > 100) similarly responded to NFA by increasing their TREK-2-like K+ conductance.  相似文献   

13.
The TREK-2 (KCNK10) K2P potassium channel can be regulated by variety of polymodal stimuli including pressure. In a recent study, we demonstrated that this mechanosensitive K+ channel responds to changes in membrane tension by undergoing a major structural change from its ‘down’ state to the more expanded ‘up’ state conformation. These changes are mostly restricted to the lower part of the protein within the bilayer, but are allosterically coupled to the primary gating mechanism located within the selectivity filter. However, any such structural changes within the filter also have the potential to alter ionic selectivity and there are reports that some K2Ps, including TREK channels, exhibit a dynamic ionic selectivity. In this addendum to our previous study we have therefore examined whether the selectivity of TREK-2 is altered by stretch activation. Our results reveal that the filter remains stable and highly selective for K+ over Na+ during stretch activation, and that permeability to a range of other cations (Rb+, Cs+ and NH4+) also does not change. The asymmetric structural changes that occur during stretch activation therefore allow the channel to respond to changes in membrane tension without a loss of K+ selectivity.  相似文献   

14.
The aim of the study was to investigate whether Kv7 channels and their ancillary β-subunits, KCNE, are functionally expressed in the human urinary bladder. Kv7 channels were examined at the molecular level and by functional studies using RT-qPCR and myography, respectively. We found mRNA expression of KCNQ1, KCNQ3-KCNQ5 and KCNE1-5 in the human urinary bladder from patients with normal bladder function (n = 7) and in patients with bladder outflow obstruction (n = 3). Interestingly, a 3.4-fold up-regulation of KCNQ1 was observed in the latter. The Kv7 channel subtype selective modulators, ML277 (activator of Kv7.1 channels, 10 μM) and ML213 (activator of Kv7.2, Kv7.4, Kv7.4/7.5 and Kv7.5 channels, 10 μM), reduced the tone of 1 μM carbachol pre-constricted bladder strips. XE991 (blocker of Kv7.1–7.5 channels, 10 μM) had opposing effects as it increased contractions achieved with 20 mM KPSS. Furthermore, we investigated if there is interplay between Kv7 channels and β-adrenoceptors. Using cumulative additions of isoprenaline (β-adrenoceptor agonist) and forskolin (adenylyl cyclase activator) in combination with the Kv7 channel activator and blocker, retigabine and XE991, we did not find interplay between Kv7 channels and β-adrenoceptors in the human urinary bladder. The performed gene expression analysis combined with the organ bath studies imply that compounds that activate Kv7 channels could be useful for treatment of overactive bladder syndrome.  相似文献   

15.
Two-pore domain potassium (K2P) channels play fundamental roles in cellular processes by enabling a constitutive leak of potassium from cells in which they are expressed, thus influencing cellular membrane potential and activity. Hence, regulation of these channels is of critical importance to cellular function. A key regulatory mechanism of K2P channels is the control of their cell surface expression. Membrane protein delivery to and retrieval from the cell surface is controlled by their passage through the secretory and endocytic pathways, and post-translational modifications regulate their progression through these pathways. All but one of the K2P channels possess consensus N-linked glycosylation sites, and here we demonstrate that the conserved putative N-glycosylation site in K2P3.1 and K2P9.1 is a glycan acceptor site. Patch clamp analysis revealed that disruption of channel glycosylation reduced K2P3.1 current, and flow cytometry was instrumental in attributing this to a decreased number of channels on the cell surface. Similar findings were observed when cells were cultured in reduced glucose concentrations. Disruption of N-linked glycosylation has less of an effect on K2P9.1, with a small reduction in number of channels on the surface observed, but no functional implications detected. Because nonglycosylated channels appear to pass through the secretory pathway in a manner comparable with glycosylated channels, the evidence presented here suggests that the decreased number of nonglycosylated K2P3.1 channels on the cell surface may be due to their decreased stability.  相似文献   

16.
Volatile anesthetics have been shown to activate various two-pore (2P) domain K+ (K2P) channels such as TASK-1 and TREK-1 (TWIK-related acid-sensitive K+ channel), and mice deficient in these channels are resistant to halothane-induced anesthesia. Here, we investigated whether K2P channels were also potentially important targets of intravenous anesthetics. Whole cell patch-clamp techniques were used to determine the effects of the commonly used intravenous anesthetics etomidate and propofol on the acid-sensitive K+ current in rat ventricular myocytes (which strongly express TASK-1) and selected human K2P channels expressed in Xenopus laevis oocytes. In myocytes, etomidate decreased both inward rectifier K+ (Kir) current (IK1) and acid-sensitive outward K+ current at positive potentials, suggesting that this drug may inhibit TASK channels. Indeed, in addition to inhibiting guinea pig Kir2.1 expressed in oocytes, etomidate inhibited human TASK-1 (and TASK-3) in a concentration-dependent fashion. Propofol had no effect on human TASK-1 (or TASK-3) expressed in oocytes. Moreover, we showed that, similar to the known effect of halothane, sevoflurane and the purified R-(–)- and S-(+)-enantiomers of isoflurane, without stereoselectivity, activated human TASK-1. We conclude that intravenous and volatile anesthetics have dissimilar effects on K2P channels. Human TASK-1 (and TASK-3) are insensitive to propofol but are inhibited by supraclinical concentrations of etomidate. In contrast, stimulatory effects of sevoflurane and enantiomeric isoflurane on human TASK-1 can be observed at clinically relevant concentrations. volatile anesthetics; etomidate; propofol; ion channels  相似文献   

17.
TREK and TRESK K2P channels are widely expressed in the nervous system, particularly in sensory neurons, where they regulate neuronal excitability. In this study, using whole-cell patch-clamp electrophysiology, we characterise the inhibitory effect of the anticonvulsant lamotrigine and two derivatives, sipatrigine and 3,5-diamino-6-(3,5-bistrifluoromethylphenyl)-1,2,4-triazine (CEN-092) on these channels.Sipatrigine was found to be a more effective inhibitor than lamotrigine of TREK-1, TREK-2 and TRESK channels. Sipatrigine was slightly more potent on TREK-1 channels (EC50 = 16 μM) than TRESK (EC50 = 34 μM) whereas lamotrigine was equally effective on TREK-1 and TRESK. Sipatrigine was less effective on a short isoform of TREK-2, suggesting the N terminus of the channel is important for both inhibition and subsequent over-recovery. Inhibition of TREK-1 and TREK-2 channels by sipatrigine was reduced by mutation of a leucine residue associated with the norfluoxetine binding site on these channels (L289A and L320A on TREK-1 and TREK-2, respectively) but these did not affect inhibition by lamotrigine. Inhibition of TRESK by sipatrigine and lamotrigine was attenuated by mutation of bulky phenylalanine residues (F145A and F352A) in the inner pore helix. However, phosphorylation mutations did not alter the effect of sipatrigine. CEN-092 was a more effective inhibitor of TRESK channels than TREK-1 channels.It is concluded that lamotrigine, sipatrigine and CEN-092 are all inhibitors of TREK and TRESK channels but do not greatly discriminate between them. The actions of these compounds may contribute to their current and potential use in the treatment of pain and depression.  相似文献   

18.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) regulates activities of numerous ion channels including inwardly rectifying potassium (Kir) channels, KCNQ, TRP, and voltage-gated calcium channels. Several studies suggest that voltage-gated potassium (KV) channels might be regulated by PI(4,5)P2. Wide expression of KV channels in different cells suggests that such regulation could have broad physiological consequences. To study regulation of KV channels by PI(4,5)P2, we have coexpressed several of them in tsA-201 cells with a G protein–coupled receptor (M1R), a voltage-sensitive lipid 5-phosphatase (Dr-VSP), or an engineered fusion protein carrying both lipid 4-phosphatase and 5-phosphatase activity (pseudojanin). These tools deplete PI(4,5)P2 with application of muscarinic agonists, depolarization, or rapamycin, respectively. PI(4,5)P2 at the plasma membrane was monitored by Förster resonance energy transfer (FRET) from PH probes of PLCδ1 simultaneously with whole-cell recordings. Activation of Dr-VSP or recruitment of pseudojanin inhibited KV7.1, KV7.2/7.3, and Kir2.1 channel current by 90–95%. Activation of M1R inhibited KV7.2/7.3 current similarly. With these tools, we tested for potential PI(4,5)P2 regulation of activity of KV1.1/KVβ1.1, KV1.3, KV1.4, and KV1.5/KVβ1.3, KV2.1, KV3.4, KV4.2, KV4.3 (with different KChIPs and DPP6-s), and hERG/KCNE2. Interestingly, we found a substantial removal of inactivation for KV1.1/KVβ1.1 and KV3.4, resulting in up-regulation of current density upon activation of M1R but no changes in activity upon activating only VSP or pseudojanin. The other channels tested except possibly hERG showed no alteration in activity in any of the assays we used. In conclusion, a depletion of PI(4,5)P2 at the plasma membrane by enzymes does not seem to influence activity of most tested KV channels, whereas it does strongly inhibit members of the KV7 and Kir families.  相似文献   

19.
This letter describes the chemical optimization of a new series of M1 positive allosteric modulators (PAMs) based on a novel benzomorpholine core, developed via iterative parallel synthesis, and culminating in the highly utilized rodent in vivo tool compound, VU0486846 (7), devoid of adverse effect liability. This is the first report of the optimization campaign (SAR and DMPK profiling) that led to the discovery of VU0486846 and details all of the challenges faced in allosteric modulator programs (both steep and flat SAR, as well as subtle structural changes affecting CNS penetration and overall physiochemical and DMPK properties).  相似文献   

20.
《Biophysical journal》2022,121(12):2380-2388
Members of the TREK family of two-pore domain potassium channels are highly sensitive to regulation by membrane lipids, including phosphatidylinositol-4,5-bisphosphate (PIP2). Previous studies have demonstrated that PIP2 increases TREK-1 channel activity; however, the mechanistic understanding of the conformational transitions induced by PIP2 remain unclear. Here, we used coarse-grained molecular dynamics and atomistic molecular dynamics simulations to model the PIP2-binding site on both the up and down state conformations of TREK-1. We also calculated the free energy of PIP2 binding relative to other anionic phospholipids in both conformational states using potential of mean force and free-energy-perturbation calculations. Our results identify state-dependent binding of PIP2 to sites involving the proximal C-terminus, and we show that PIP2 promotes a conformational transition from a down state toward an intermediate that resembles the up state. These results are consistent with functional data for PIP2 regulation, and together provide evidence for a structural mechanism of TREK-1 channel activation by phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号