首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The subsequent human migrations that dispersed out of Africa, both prehistoric and historic and colonization of India by modern humans is unanimous, and phylogeny of major mitochondrial DNA haplogroups have played a key role in assessing the genetic origin of people of India. To address more such events, complete mitogenomes of 113 Melakudiya tribe of Southern India were sequenced and 46 individuals showed the presence of west Eurasian autochthonous haplogroups HV14 and U7. Phylogenetic analysis revealed two novel subclades HV14a1b and HV14a1b1 and sequences representing haplogroup U7 were included under previously described subclade U7a3a1a2* specific to India. Moreover, the present analysis on complete mtDNA reveals addition information of the spread and distribution of west Eurasian haplogroups in southern India, in tracing an unexplored genetic link between Melakudiya tribe with the people of Iranian Plateau, South Caucasus, and Central Asia. Coalescence ages of HV14 and U7a3a1a2* trees in the present study dates?~?16.1?±?4.3 and ~?13.4?±?5.6 kya respectively.  相似文献   

2.
Xinjiang is at the crossroads between East and West Eurasia, and it harbors a relatively complex genetic history. In order to better understand the population movements and interactions in this region, mitochondrial and Y chromosome analyses on 40 ancient human remains from the Tianshanbeilu site in eastern Xinjiang were performed. Twenty‐nine samples were successfully assigned to specific mtDNA haplogroups, including the west Eurasian maternal lineages of U and W and the east Eurasian maternal lineages of A, C, D, F, G, Z, M7, and M10. In the male samples, two Y chromosome haplogroups, C* and N1 (xN1a, N1c), were successfully assigned. Our mitochondrial and Y‐chromosomal DNA analyses combined with the archaeological studies revealed that the Di‐qiang populations from the Hexi Corridor had migrated to eastern Xinjiang and admixed with the Eurasian steppe populations in the early Bronze Age. Am J Phys Anthropol 157:71–80, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (∼2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type “diluted” by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300–3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.  相似文献   

4.
Y-chromosomal haplogroups composition and frequencies were analyzed in Northern and Southern Altaians. In the gene pool of Altaians a total of 18 Y-chromosomal haplogroups were identified, including C3xM77, C3c, DxM15, E, F*, J2, I1a, I1b, K*, N*, N2, N3a, O3, P*, Q*, R1*, R1a1, and R1b3. The structured nature of the Altaic gene pool is determined by the presence of the Caucasoid and Mongoloid components, along with the ancient genetic substratum, marked by the corresponding Western and Eastern Eurasian haplogroups. Haplogroup R1a1 prevailed in both ethnic groups, accounting for about 53 and 38% of paternal lineages in Southern and Northern Altaians, respectively. This haplogroup is thought to be associated with the eastward expansion of early Indo-Europeans, and marks Caucasoid element in the gene pools of South Siberian populations. Similarly to haplogroup K*, the second frequent haplogroup Q* represents paleo-Asiatic marker, probably associated with the Ket and Samoyedic contributions to the Altaic gene pool. The presence of lineages N2 and N3a can be explained as the contribution of Finno--Ugric tribes, assimilated by ancient Turks. The presence of haplogroups C3xM77, C3c, N*, and 03 reflects the contribution of Central Asian Mongoloid groups. These haplogroups, probably, mark the latest movements of Mongolian migrants from the territory of contemporary Tuva and Mongolia. The data of factor analysis, variance analysis, cluster analysis, and phylogenetic analysis point to substantial genetic differentiation of Northern and Southern Altaians. The differences between Northern and Southern Altaians in the haplogroup composition, as well as in the internal haplotype structure were demonstrated.  相似文献   

5.
To obtain more knowledge of the origin and genetic diversity of domestic horses in China, this study provides a comprehensive analysis of mitochondrial DNA (mtDNA) D-loop sequence diversity from nine horse breeds in China in conjunction with ancient DNA data and evidence from archaeological and historical records. A 247-bp mitochondrial D-loop sequence from 182 modern samples revealed a total of 70 haplotypes with a high level of genetic diversity. Seven major mtDNA haplogroups (A–G) and 16 clusters were identified for the 182 Chinese modern horses. In the present study, nine 247-bp mitochondrial D-loop sequences of ancient remains of Bronze Age horse from the Chifeng region of Inner Mongolia in China ( c. 4000–2000a bp ) were used to explore the origin and diversity of Chinese modern horses and the phylogenetic relationship between ancient and modern horses. The nine ancient horses carried seven haplotypes with rich genetic diversity, which were clustered together with modern individuals among haplogroups A, E and F. Modern domestic horse and ancient horse data support the multiple origins of domestic horses in China. This study supports the argument that multiple successful events of horse domestication, including separate introductions of wild mares into the domestic herds, may have occurred in antiquity, and that China cannot be excluded from these events. Indeed, the association of Far Eastern mtDNA types to haplogroup F was highly significant using Fisher's exact test of independence ( P  = 0.00002), lending support for Chinese domestication of this haplogroup. High diversity and all seven mtDNA haplogroups (A–G) with 16 clusters also suggest that further work is necessary to shed more light on horse domestication in China.  相似文献   

6.
Ancient DNA recovered from 16 Jomon skeletons excavated from Funadomari site, Hokkaido, Japan was analyzed to elucidate the genealogy of the early settlers of the Japanese archipelago. Both the control and coding regions of their mitochondrial DNA were analyzed in detail, and we could securely assign 14 mtDNAs to relevant haplogroups. Haplogroups D1a, M7a, and N9b were observed in these individuals, and N9b was by far the most predominant. The fact that haplogroups N9b and M7a were observed in Hokkaido Jomons bore out the hypothesis that these haplogroups are the (pre-) Jomon contribution to the modern Japanese mtDNA pool. Moreover, the fact that Hokkaido Jomons shared haplogroup D1 with Native Americans validates the hypothesized genetic affinity of the Jomon people to Native Americans, providing direct evidence for the genetic relationships between these populations. However, probably due to the small sample size or close consanguinity among the members of the site, the frequencies of the haplogroups in Funadomari skeletons were quite different from any modern populations, including Hokkaido Ainu, who have been regarded as the direct descendant of the Hokkaido Jomon people. It appears that the genetic study of ancient populations in northern part of Japan brings important information to the understanding of human migration in northeast Asia and America.  相似文献   

7.
To clarify the colonizing process of East/Northeast Asia as well as the peopling of the Americas, identifying the genetic characteristics of Paleolithic Siberians is indispensable. However, no genetic information on the Paleolithic Siberians has hitherto been reported. In the present study, we analyzed ancient DNA recovered from Jomon skeletons excavated from the northernmost island of Japan, Hokkaido, which was connected with southern Siberia in the Paleolithic period. Both the control and coding regions of their mitochondrial DNA (mtDNA) were analyzed in detail, and we confidently assigned 54 mtDNAs to relevant haplogroups. Haplogroups N9b, D4h2, G1b, and M7a were observed in these individuals, with N9b being the predominant one. The fact that all these haplogroups, except M7a, were observed with relatively high frequencies in the southeastern Siberians, but were absent in southeastern Asian populations, implies that most of the Hokkaido Jomon people were direct descendants of Paleolithic Siberians. The coalescence time of N9b (ca. 22,000 years) was before or during the last glacial maximum, implying that the initial trigger for the Jomon migration in Hokkaido was increased glaciations during this period. Interestingly, Hokkaido Jomons lack specific haplogroups that are prevailing in present-day native Siberians, implying that diffusion of these haplogroups in Siberia might have been after the beginning of the Jomon era, about 15,000 years before present.  相似文献   

8.
Analysis of DNA from human archaeological remains is a powerful tool for reconstructing ancient events in human history. To help understand the origin of the inhabitants of Kublai Khan's Upper Capital in Inner Mongolia, we analyzed mitochondrial DNA (mtDNA) polymorphisms in 21 ancient individuals buried in the Zhenzishan cemetery of the Upper Capital. MtDNA coding and noncoding region polymorphisms identified in the ancient individuals were characteristic of the Asian mtDNA haplogroups A, B, N9a, C, D, Z, M7b, and M. Phylogenetic analysis of the ancient mtDNA sequences, and comparison with extant reference populations, revealed that the maternal lineages of the population buried in the Zhenzishan cemetery are of Asian origin and typical of present-day Han Chinese, despite the presence of typical European morphological features in several of the skeletons.  相似文献   

9.
The Hungarian language belongs to the Finno-Ugric branch of the Uralic family, but Hungarian speakers have been living in Central Europe for more than 1000 years, surrounded by speakers of unrelated Indo-European languages. In order to study the continuity in maternal lineage between ancient and modern Hungarian populations, polymorphisms in the HVSI and protein coding regions of mitochondrial DNA sequences of 27 ancient samples (10th-11th centuries), 101 modern Hungarian, and 76 modern Hungarian-speaking Sekler samples from Transylvania were analyzed. The data were compared with sequences derived from 57 European and Asian populations, including Finno-Ugric populations, and statistical analyses were performed to investigate their genetic relationships. Only 2 of 27 ancient Hungarian samples are unambiguously Asian: the rest belong to one of the western Eurasian haplogroups, but some Asian affinities, and the genetic effect of populations who came into contact with ancient Hungarians during their migrations are seen. Strong differences appear when the ancient Hungarian samples are analyzed according to apparent social status, as judged by grave goods. Commoners show a predominance of mtDNA haplotypes and haplogroups (H, R, T), common in west Eurasia, while high-status individuals, presumably conquering Hungarians, show a more heterogeneous haplogroup distribution, with haplogroups (N1a, X) which are present at very low frequencies in modern worldwide populations and are absent in recent Hungarian and Sekler populations. Modern Hungarian-speaking populations seem to be specifically European. Our findings demonstrate that significant genetic differences exist between the ancient and recent Hungarian-speaking populations, and no genetic continuity is seen.  相似文献   

10.
To resolve the phylogeny of certain mitochondrial DNA (mtDNA) haplogroups in eastern Europe and estimate their evolutionary age, a total of 73 samples representing mitochondrial haplogroups U4, HV*, and R1 were selected for complete mitochondrial genome sequencing from a collection of about 2,000 control region sequences sampled in eastern (Russians, Belorussians, and Ukrainians) and western (Poles, Czechs, and Slovaks) Slavs. On the basis of whole-genome resolution, we fully characterized a number of haplogroups (HV3, HV4, U4a1, U4a2, U4a3, U4b, U4c, U4d, and R1a) that were previously described only partially. Our findings demonstrate that haplogroups HV3, HV4, and U4a1 could be traced back to the pre-Neolithic times ( approximately 12,000-19,000 years before present [YBP]) in eastern Europe. In addition, an ancient connection between the Caucasus/Europe and India has been revealed by analysis of haplogroup R1 diversity, with a split between the Indian and Caucasus/European R1a lineages occurring about 16,500 years ago. Meanwhile, some mtDNA subgroups detected in Slavs (such as U4a2a, U4a2*, HV3a, and R1a1) are definitely younger being dated between 6,400 and 8,200 YBP. However, robust age estimations appear to be problematic due to the high ratios of nonsynonymous to synonymous substitutions found in young mtDNA subclusters.  相似文献   

11.
The Neolithic transition has been widely debated particularly regarding the extent to which this revolution implied a demographic expansion from the Near East. We attempted to shed some light on this process in northeastern Iberia by combining ancient DNA (aDNA) data from Early Neolithic settlers and published DNA data from Middle Neolithic and modern samples from the same region. We successfully extracted and amplified mitochondrial DNA from 13 human specimens, found at three archaeological sites dated back to the Cardial culture in the Early Neolithic (Can Sadurní and Chaves) and to the Late Early Neolithic (Sant Pau del Camp). We found that haplogroups with a low frequency in modern populations-N* and X1-are found at higher frequencies in our Early Neolithic population (~31%). Genetic differentiation between Early and Middle Neolithic populations was significant (F(ST) ~0.13, P<10(-5)), suggesting that genetic drift played an important role at this time. To improve our understanding of the Neolithic demographic processes, we used a Bayesian coalescence-based simulation approach to identify the most likely of three demographic scenarios that might explain the genetic data. The three scenarios were chosen to reflect archaeological knowledge and previous genetic studies using similar inferential approaches. We found that models that ignore population structure, as previously used in aDNA studies, are unlikely to explain the data. Our results are compatible with a pioneer colonization of northeastern Iberia at the Early Neolithic characterized by the arrival of small genetically distinctive groups, showing cultural and genetic connections with the Near East.  相似文献   

12.
The compositions and frequencies of Y-chromosome haplogroups identified by genotyping 23 biallelic loci of its nonrecombining region (YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, M124, M130, M170, M172, M174, M173, M178, M201, M207, M242, M269, P21, P25, and P37) have been determined in a sample of 68 Belarussians. Eleven haplogroups have been found in the Belarussian gene pool (E, F*, G, I, I1b, J2, N3a*, Q*, R1*, R1a1, and R1b3). Haplogroup R1a1 is the most frequent; it includes 46% of all Y chromosomes in this sample. The frequencies of haplogroups I1b and I are 17.6 and 7.3%, respectively. Haplogroup N3a* is the next in frequency. The frequencies of haplogroups E, J2, and R1b3 are 4.4% each; that of R1* is 3%; and those of F*, G, and Q* are 1.5% each.  相似文献   

13.
Polymorphism of mtDNA was examined in five ethnic populations that belong to the Turkic language group and inhabit the territory of the Altai-Sayan upland (N = 1007). Most of the haplogroups identified in the examined populations belonged to East Eurasian lineages. In all five populations, only three haplogroups, C, D, and F, were prevailing. The frequencies of the other six haplogroups (A, B, G, M, Y, and Z) varied in the range from 1.1 to 6.5%. Among West Eurasian haplogrous, the most common were haplogroups H, J, T, and U. An analysis of Y-chromosome haplogroups in 407 individuals showed that only two haplogroups, N* and R1a1, were present in all five populations examined. Moreover, in different ethnic groups, the highest frequencies were observed for C-M130, N-P43, and N-Tat haplogroups. The differences in the distribution patterns of ancient West Eurasian and East Eurasian haplotypes from Gorny Altai in the present-day populations from the northern part of Eurasia revealed can be explained in terms of the multistage expansion of humans across these territories. The ubiquity of haplotypes from haplogroup H and cluster U across the wide territory from the Yenisei River basin to the Atlantic Ocean can indicate directional human expansion, which most likely occurred out of Central Asia as early as in the Paleolithic era, and took place in several waves with the glacier retreat.  相似文献   

14.
Sheep were among the first domesticated animals to appear in Estonia in the late Neolithic and became one of the most widespread livestock species in the region from the Late Bronze Age onwards. However, the origin and historical expansion of local sheep populations in Estonia remain poorly understood. Here, we analysed fragments of the hypervariable D‐loop of mitochondrial DNA (mtDNA; 213 bp) and the Y‐chromosome SRY gene (130 bp) extracted from 31 archaeological sheep bones dated from approximately 800 BC to 1700 AD. The ancient DNA data of sheep from Estonia were compared with ancient sheep from Finland as well as a set of contemporary sheep breeds from across Eurasia in order to place them in a wider phylogeographical context. The analysis shows that: (i) 24 successfully amplified and analysed mtDNA sequences of ancient sheep cluster into two haplogroups, A and B, of which B is predominant; (ii) four of the ancient mtDNA haplotypes are novel; (iii) higher mtDNA haplotype diversity occurred during the Middle Ages as compared to other periods, a fact concordant with the historical context of expanding international trade during the Middle Ages; (iv) the proportion of rarer haplotypes declined during the expansion of sheep from the Near Eastern domestication centre to the northern European region; (v) three male samples showed the presence of the characteristic northern European haplotype, SNP G‐oY1 of the Y‐chromosome, and represent the earliest occurrence of this haplotype. Our results provide the first insight into the genetic diversity and phylogeographical background of ancient sheep in Estonia and provide basis for further studies on the temporal fluctuations of ancient sheep populations.  相似文献   

15.
The compositions and frequencies of Y-chromosome haplogroups identified by genotyping 23 biallelic loci of its nonrecombining region (YAP, 92R7, DYF155S2, 12f2, Tat, M9, M17, M25, M89, M124, M130, M170, M172, M174, M173, M178, M201, M207, M242, M269, P21, P25, and P37) have been determined in a sample of 68 Belarussians. Eleven haplogroups have been found in the Belarussian gene pool (E, F*, G, I, I1b, J2, N3a*, Q*, R1*, R1a1, and R1b3). Haplogroup R1a1 is the most frequent; it includes 46% of all Y chromosomes in this sample. The frequencies of haplogroups I1b and I are 17.6 and 7.3%, respectively. Haplogroup N3a* is the next in frequency. The frequencies of haplogroups E, J2, and R1b3 are 4.4% each; that of R1* is 3%; and those of F*, G, and Q* are 1.5% each.__________Translated from Genetika, Vol. 41, No. 8, 2005, pp. 1132–1136.Original Russian Text Copyright © 2005 by Kharkov, Stepanov, Feshchenko, Borinskaya, Yankovsky, Puzyrev.  相似文献   

16.
The mtDNA polymorphism in representatives of various archaeological cultures of the Developed Bronze Age, Early Scythian, and Hunnish-Sarmatian periods was analyzed (N = 34). It detected the dominance of Western-Eurasian haplotypes (70.6%) in mtDNA samples from the representatives of the ancient population of the Early Bronze Age–Iron Age on the territory of Altai Mountains. Since the 8th to the 7th centuries BC, a sharp increase was revealed in the Eastern Eurasian haplogroups A, D, C, and Z (43.75%) as compared to previous cultures (16.7%). The presence of haplotype 223-242-290-319 of haplogroup A8 in Dolgans, Itelmens, Evens, Koryaks, and Yakuts indicates the possible long-term presence of its carriers in areas inhabited by these populations. The prevalence of western Eurasian haplotypes is observed not only in the Altai Mountains but also in Central Asia (Kazakhstan) and the south of the Krasnoyarsk Krai. All of the three studied samples from the Western Eurasian haplogroups were revealed to contain U, H, T, and HV. The ubiquitous presence of haplotypes of haplogroup H and some haplogroups of cluster U (U5a1, U4, U2e, and K) in the vast territory from the Yenisei River basin to the Atlantic Ocean may indicate the direction of human settlement, which most likely occurred in the Paleolithic Period from Central Asia.  相似文献   

17.
We sampled teeth from 53 ancient Sardinian (Nuragic) individuals who lived in the Late Bronze Age and Iron Age, between 3,430 and 2,700 years ago. After eliminating the samples that, in preliminary biochemical tests, did not show a high probability to yield reproducible results, we obtained 23 sequences of the mitochondrial DNA control region, which were associated to haplogroups by comparison with a dataset of modern sequences. The Nuragic samples show a remarkably low genetic diversity, comparable to that observed in ancient Iberians, but much lower than among the Etruscans. Most of these sequences have exact matches in two modern Sardinian populations, supporting a clear genealogical continuity from the Late Bronze Age up to current times. The Nuragic populations appear to be part of a large and geographically unstructured cluster of modern European populations, thus making it difficult to infer their evolutionary relationships. However, the low levels of genetic diversity, both within and among ancient samples, as opposed to the sharp differences among modern Sardinian samples, support the hypothesis of the expansion of a small group of maternally related individuals, and of comparatively recent differentiation of the Sardinian gene pools. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The gene pool structure of Teleuts was examined and Y-chromosomal haplogroups composition and frequencies were determined. In the gene pool of Teleuts, five haplogroups, C3×M77, N3a, R1b*, R1b3, and R1a1, were identified. Evaluation of the genetic differentiation of the samples examined using analysis of molecular variance (AMOVA) with two marker systems (frequencies of haplogroups and Y-chromosomal microsatellite haplotypes) showed that Bachat Teleuts were equally distant from Southern and Northern Altaians. In Siberian populations, the frequencies and molecular phylogeny of the YSTR haplotypes within Y-chromosomal haplogroup R1a1 were examined. It was demonstrated that Teleuts and Southern Altaians had very close and overlapping profiles of R1a1 haplotypes. Population cluster analysis of the R1a1 YSTR haplotypes showed that Teleuts and Southern Altaians were closer to one another than to all remaining Siberian ethnic groups. Phylogenetic analysis of N3a haplotypes suggested specificity of Teleut haplotypes and their closeness to those of Tomsk Tatars. Teleuts were characterized by extremely high frequency of haplogroup R1b*, distinguished for highly specific profile of YSTR haplotypes and high haplotype diversity. The results of the comparative analysis suggested that the gene pool of Bachat Teleuts was formed on the basis of at least two heterogeneous genetic components, probably associated with ancient Turkic and Samoyedic ethnic components.  相似文献   

19.
Han Chinese is the largest ethnic group in the world. During its development, it gradually integrated with many neighboring populations. To uncover the origin of the Han Chinese, ancient DNA analysis was performed on the remains of 46 humans (~1700 to 1900 years ago) excavated from the Taojiazhai site in Qinghai province, northwest of China, where the Di‐Qiang populations had previously lived. In this study, eight mtDNA haplogroups (A, B, D, F, M*, M10, N9a, and Z) and one Y‐chromosome haplogroup (O3) were identified. All analyses show that the Taojiazhai population presents close genetic affinity to Tibeto‐Burman populations (descendants of Di‐Qiang populations) and Han Chinese, suggesting that the Di‐Qiang populations may have contributed to the Han Chinese genetic pool. Am J Phys Anthropol, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ~19-12 thousand years (ka) ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号