首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
An epidemic of chilli leaf curl disease was recorded in 2004 in Jodhpur, a major chilli‐growing area in Rajasthan, India. Several isolates were efficiently transmitted by the whitefly (Bemisia tabaci), all of which induced severe leaf curl symptoms in chilli. A single whitefly was capable of transmitting the virus, and eight or more whiteflies per plant resulted in 100% transmission. The minimum acquisition access period (AAP) and inoculation access period (IAP) were 180 and 60 min, respectively. The virus persisted in whiteflies for up to 5 days postacquisition. Of 25 species tested, the virus infected only five (Capsicum annuum, Carica papaya, Solanum lycopersicum, Nicotiana tabacum and N. benthamiana). The virus was identified as Chilli leaf curl virus (ChiLCV), which shared the closest sequence identity (96.1%) with an isolate of ChiLCV from potato in Pakistan and showed sequence diversity up to 12.3% among the ChiLCV isolates reported from India and Pakistan. A betasatellite was identified, which resembled most closely (97.3%) that of Tomato leaf curl Bangladesh betasatellite previously reported from chilli and tomato leaf curl in India. The betasatellite was very different from that reported from chilli leaf curl in Pakistan, indicating that different betasatellites are associated with chilli leaf curl in India and Pakistan. We describe here for the first time the virus–vector relationships and host range of ChiLCV.  相似文献   

2.
The outbreak of a severe mosaic disease with a significant incidence was noticed on Jatropha curcas plants growing in Lucknow, Northern India. The causal virus was successfully transmitted by whiteflies (Bemisia tabaci) and grafting from naturally infected to healthy J. curcas plants. The association of Begomovirus with the mosaic disease of J. curcas was detected by PCR using primers specific to DNA‐A of Begomoviruses. Further, full‐length DNA‐A genome of ~2.7 kb was amplified by RCA followed by digestion with Bam HI restriction enzyme. Cloning and sequencing of obtained amplicons resulted in 2740 nucleotides of complete DNA‐A consisting of six ORFs and IR region (GenBank Accession HM230683 ). The sequence analysis revealed highest 85% similarities with Jatropha curcas mosaic virus, 77–84% with Indian cassava mosaic virus and 73–76% with Sri Lankan cassava mosaic virus isolates. Phylogenetic analysis of the Begomovirus isolate also showed a clear‐cut distinct relationship with earlier reported Begomoviruses from Jatropha curcas and other Begomoviruses. On the basis of the guidelines of the International Committee on Taxonomy of Viruses (ICTV‐2008), our virus isolate was identified as a possible strain of Indian cassava mosaic virus, and its name Jatropha mosaic India virus (JMIV) is proposed.  相似文献   

3.
A Plum pox virus (PPV) isolate detected in a Japanese plum orchard in Pocito (San Juan, Argentina) was transmitted mechanically to Prunus tomentosa and Nicotiana benthamiana. DAS‐ELISA and DASI‐ELISA indicated the virus presence and serological relationship with D‐strain isolates; IC‐RT‐PCR amplified a 1.2‐kb fragment of the virus genome encoding the CP‐3′ nc region. The analysis of the sequence showed the presence of the DAG motif at the 5′ end of the capsid protein and the Rsa I and Alu I sites at the 3′ end. The phylogenetic relationships and multiple alignment with PPV isolates from NCBI database indicated greatest (+98%) homology with the D strain and close identity with MNAT1 ( AF360579 ) USA peach isolate. The sequence analysed showed two amino acid mutations towards the 5′ N‐terminus of CP (the most variable region) with respect to a consensus of PPV D‐strain isolates. This is the first molecular characterization of 3′terminal genome region of PPV isolate to confirm D strain in a Japanese plum from Argentina.  相似文献   

4.
Infection caused by the synergistic interaction of two plant viruses is typically manifested by severe symptoms and increased accumulation of either virus. In potex–potyviral synergism, the potyviral RNA silencing suppressor helper component proteinase (HCPro) is known to enhance the pathogenicity of the potexvirus counterpart. In line with this, Potato virus X (PVX; genus Potexvirus) genomic RNA (gRNA) accumulation and gene expression from subgenomic RNA (sgRNA) are increased in Nicotiana benthamiana by Potato virus A (PVA; genus Potyvirus) HCPro expression. Recently, we have demonstrated that PVA HCPro interferes with the host cell methionine cycle by interacting with its key enzymes S‐adenosyl‐l ‐methionine synthetase (SAMS) and S‐adenosyl‐l ‐homocysteine hydrolase (SAHH). To study the involvement of methionine cycle enzymes in PVX infection, we knocked down SAMS and SAHH. Increased PVX sgRNA expression between 3 and 9 days post‐infiltration (dpi) and upregulation of (–)‐strand gRNA accumulation at 9 dpi were observed in the SAHH‐silenced background. We found that SAMS and SAHH silencing also caused a significant reduction in glutathione (GSH) concentration, specifically in PVX‐infected plants between 2 and 9 dpi. Interestingly, HCPro expression in PVX‐infected plants caused an even stronger reduction in GSH levels than did SAMS + SAHH silencing and a similar level of reduction was also achieved by knocking down GSH synthetase. PVX sgRNA expression was increased in the GSH synthetase‐silenced background. GSH is a major antioxidant of plant cells and therefore GSH shortage may explain the strong oxidative stress and severe symptoms observed during potex–potyvirus mixed infection.  相似文献   

5.
Potato mop-top virus (PMTV) was detected by ELISA in primary zoospores from four out of six isolates of Spongospora subterranea f.sp. subterranea. One virus-free isolate (N) of S. subterranea was used to acquire PMTV from potato roots and to transmit the virus to healthy plants. A mono-fungal culture of S. subterranea (isolate N) was derived by infecting tomato plant roots with a single cystosorus. The culture was used successfully to acquire PMTV from the roots of infected Nicotiana debneyi plants that had been manually inoculated with virus isolates, and subsequently to transmit the virus to healthy bait plants. These experiments confirm that S. subterranea is a vector of PMTV. Two PMTV isolates that had been maintained by manual inoculation for 19 and 21 passages were also acquired and transmitted by the fungus culture.  相似文献   

6.
Hibiscus leaf curl disease (HLCuD) occurs widely in India. Infected hibiscus plants show vein thickening, upward curling of leaves and enations on the abaxial leaf surface, reduction in leaf size and stunting. The commonly‐occurring weeds (Ageratum conyzoides, Croton bonplandianum and Euphorbia geniculata), Nicotiana benthamiana, Nicotiana glutinosa and Nicotiana tabacum (var. Samsun, Xanthi), cotton and tomato were shown to be susceptible to HLCuD. One of the four species of hibiscus (Hibiscus rosa‐sinensis) and 75 of the 101 commercial hybrids/varieties grown in the Bangalore area of southern India were also susceptible. Two virus isolates associated with HLCuD from Bangalore, South India (Ban), and Bhubaneswar, North India (Bhu), were detected serologically and by PCR‐mediated amplification of virus genomes. The isolates were characterised by sequencing a fragment of DNA‐A component (1288 nucleotides) and an associated satellite DNA molecule of 682 nucleotides. Phylogenetic analyses of these DNA‐A sequences clustered them with Old World cotton‐infecting begomoviruses and closest to Cotton leaf curl Multan virus (CLCuMV) at 95–97% DNA‐A nucleotide identities. The 682‐nucleotide satellite DNA molecules associated with the HLCuD samples Ban and Bhu shared 96.9% sequence identity with each other and maximum identity (93.1–93.9% over positions 158–682) with ~1350‐nucleotide DNA‐β satellite molecules associated with cotton leaf curl disease in Pakistan and India (accession nos AJ298903, AJ316038). HLCuD in India, therefore, appears to be associated with strains of CLCuMV, a cotton‐infecting begomovirus from Pakistan, which is transmitted in a persistent manner by Bemisia tabaci.  相似文献   

7.
X.-Q. Yu  H.-Y. Wang  Y.-F. Lan    X.-P. Zhu    X.-D. Li    Z.-F. Fan    H.-F. Li    Y.-Y. Wang 《Journal of Phytopathology》2008,156(6):346-351
The complete genomic sequence of a Chinese Potato virus X isolate FX21 (PVX‐FX21) was determined from three overlapping cDNA clones. The genome of PVX‐FX21 is 6435 nucleotides in length excluding the poly(A) tail and contains five open reading frames (ORFs). Its entire genomic sequence shares 95.2–96.3% identities with Asian and European isolates, and 77.3–77.8% with American isolates. Phylogenetic analysis of the complete genomic sequence reveals two groups: the Eurasian group and the American group. PVX‐FX21 belongs to the Eurasian group and forms a separate sub‐branch with three Asian isolates. Similar analyses of the coat protein genes of 37 PVX isolates also reveal two major groups. All PVX isolates from Asia are clustered to group I, whereas isolates from Europe and America are clustered to both groups. Nucleotide sequence diversity analyses show that there is no geographical differentiation between PVX isolates and that constraint on the ORF encoding RNA‐dependent RNA polymerase is much higher than those on the other four ORFs.  相似文献   

8.
Tests for transmission of four potato viruses through potato true seed   总被引:1,自引:0,他引:1  
The Andean potato calico strain of tobacco ringspot virus (TRSV-Ca) was detected in 2–9% of potato seedlings grown from true seed from plants of cv. Cara and clone G5998(6) infected with TRSV-Ca. Similarly, a potato isolate of the oca strain of arracacha virus B (AVB-O) was detected in 4–12% of progeny seedlings of cv. Cara and clone D42/8 infected with AVB-O. Potato virus T (PVT) passed through 33–59% of seed from PVT-infected cv. Cara, but only 0–2% infection was detected in seedlings from seed of PVT-infected clone D42/8. By contrast, no infection was detected in seedlings grown from seed from plants of G5998(6), D42/8 or cv. Cara infected with Andean potato latent virus strains Hu (APLV-Hu) or Caj (APLV-Caj), although both strains passed through seed of Nicotiana clevelandii. AVB-O, PVT and TRSV-Ca were detected in all tests of pollen from flowers of infected potato plants, but APLV-Hu and APLV-Caj were detected less frequently. AVB-O and PVT were transmitted through 2% and 8% respectively, of seed from healthy potato plants pollinated with pollen from infected plants. However, no transmission through seed was detected when pollen from TRSV-Ca infected plants was used. None of the four viruses were transmitted to healthy potato plants pollinated with pollen from infected plants. APLV-Hu caused exceptionally severe symptoms in the cv. Cara plants used for seed production, but the Bolivian strain of PVT induced only mild symptoms rather than the severe systemic necrosis previously reported for the type of strain of PVT in this cultivar. No symptoms developed in potato seedlings infected with TRSV-Ca, AVB-O or PVT through the seed.  相似文献   

9.
10.
11.
Tomato (Solanum lycopersicum) is one of the most important crops worldwide and is severely affected by geminiviruses. Tomato leaf curl Taiwan virus (ToLCTWV), belonging to the geminiviruses, was isolated in Taiwan and causes tremendous crop loss. The geminivirus‐encoded C2 proteins are crucial for a successful interaction between the virus and host plants. However, the exact functions of the viral C2 protein of ToLCTWV have not been investigated. We analyzed the molecular function(s) of the C2 protein by transient or stable expression in tomato cv. Micro‐Tom and Nicotiana benthamiana. Severe stunting of tomato and N. benthamiana plants infected with ToLCTWV was observed. Expression of ToLCTWV C2‐green fluorescent protein (GFP) fusion protein was predominately located in the nucleus and contributed to activation of a coat protein promoter. Notably, the C2‐GFP fluorescence was distributed in nuclear aggregates. Tomato and N. benthamiana plants inoculated with potato virus X (PVX)‐C2 displayed chlorotic lesions and stunted growth. PVX‐C2 elicited hypersensitive responses accompanied by production of reactive oxygen species in N. benthamiana plants, which suggests that the viral C2 was a potential recognition target to induce host‐defense responses. In tomato and N. benthamiana, ToLCTWV C2 was found to interfere with expression of genes encoding chromomethylases. N. benthamiana plants with suppressed NbCMT3–2 expression were more susceptible to ToLCTWV infection. Transgenic N. benthamiana plants expressing the C2 protein showed decreased expression of the NbCMT3–2 gene and pNbCMT3–2::GUS (β‐glucuronidase) promoter activity. C2 protein is an important pathogenicity determinant of ToLCTWV and interferes with host components involved in DNA methylation.  相似文献   

12.
13.
Peanut bud necrosis virus (PBNV), genus Tospovirus (family Bunyaviridae), is an important virus infecting peanut and other crops in South India. PBNV isolates naturally infecting groundnut, brinjal, tomato, black gram, field bean, cowpea, cotton, jute, taro and Calotropis plants were collected from different regions of South India and characterized. Infection was confirmed by direct antigen‐coating enzyme‐linked immunosorbent assay (DAC‐ELISA) using PBNV‐specific antiserum. The coat protein gene was further amplified using PBNV coat protein‐specific primers. The amplicon (830 bp) was cloned and sequenced; sequence analysis revealed that the N gene shared 93–100% and 95–100% sequence identity with PBNV at the nucleotide and amino acid levels, respectively.  相似文献   

14.
Three types of mutation were introduced into the sequence encoding the GDD motif of the putative replicase component of potato virus X (PVX). All three mutations rendered the viral genome completely noninfectious when inoculated into Nicotiana clevelandii or into protoplasts of Nicotiana tabacum (cv. Samsun NN). In order to test whether these negative mutations could inactivate the viral genome in trans, the mutant genes were expressed in transformed N.tabacum (cv. Samsun NN) under control of the 35S RNA promoter of cauliflower mosaic virus and the transformed lines were inoculated with PVX. In 10 lines tested in which the GDD motif was expressed as GAD or GED there was no effect on susceptibility to PVX. In two of four lines transformed to express the ADD form of the conserved motif, the F1 and F2 progeny plants were highly resistant to infection by PVX, although only to strains closely related to the source of the transgene. The resistance was associated with suppression of PVX accumulation in the inoculated and systemic leaves and in protoplasts of the transformed plants, although some low level viral RNA production was observed in the inoculated but not the systemic leaves when the inoculum was as high as 100 or 250 micrograms/ml PVX RNA. These results suggest for a plant virus, as reported previously for Q beta phage, that virus resistance may be engineered by expression of dominant negative mutant forms of viral genes in transformed cells.  相似文献   

15.
Summary Grapevine fanleaf nepovirus (GFLV) is responsible for the economically significant court-noué disease in vineyards. Its genome is made up of two single-stranded RNA molecules (RNA1 and RNA2) which direct the synthesis of polyproteins P1 and P2 respectively. A chimeric coat protein gene derived from the C-terminal part of P2 was constructed and subsequently introduced into a binary transformation vector. Transgenic Nicotiana benthamiana plants expressing the coat protein under the control of the CaMV 35S promoter were engineered by Agrobacterium tumefaciens-mediated transformation. Protection against infection with virions or viral RNA was tested in coat protein-expressing plants. A significant delay of systemic invasion was observed in transgenic plants inoculated with virus compared to control plants. This effect was also observed when plants were inoculated with viral RNA. No coat protein-mediated cross-protection was observed when transgenic plants were infected with arabis mosaic virus (ArMV), a closely related nepovirus also responsible for a court-noué disease.Abbreviations GFLV-F13 grapevine fanleaf virus F13 isolate - ArMV arabis mosaic virus - CP coat protein - MS Murashige and Skoog - NPTII neomycin phosphotransferase II - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - VPg genome linked viral protein - TMV tobacco mosaic virus - PVX potato virus X - PVY potato virus Y - TRV tobacco rattle virus - +CP CP expressing - -CP control plant, not expressing CP - CPMP coat protein-mediated protection - CPMCP coat crotein-mediated cross protection  相似文献   

16.
Clq was prepared from bovine serum using a simple method involving repeated dialysis at low ionic strength in the presence of chelating agents (yield c. 3 mg/100 ml serum). It was viable when stored at -18°C for up to 2 months, and at 4°C for at least 10 wk in a storage buffer containing 10% sucrose. When used in Clq ELISA this test was as sensitive as the direct double antibody sandwich form of ELISA (direct ELISA) in detecting purified potato virus Y (PVY), with a limit of detection in both methods of c. 15 ng/ml, and slightly more sensitive in detecting purified cocksfoot mild mosaic virus (CMMV), with limits of detection of c. 15 ng/ml and c. 15–60 ng/ml respectively. Using an antiserum to one strain of each virus, Clq ELISA readily detected strains of PVY, CMMV, Andean potato latent virus (APLV) and barley yellow dwarf virus (BYDV). This included detection of APLV-Hu by APLV-Caj antibodies and CMMV(G) by PMV(S) antibodies, neither of which system gives detection in direct ELISA. Clq ELISA was therefore less specific than direct ELISA in detecting serologically different virus strains. Virus detection by Clq ELISA was inhibited when sap of tobacco, Nicotiana clevelandii and Setaria italica was used at low dilution. Inhibition by N. clevelandii sap was alleviated by using increased concentrations of virus specific antibody to detect APLV and plum pox virus. Also, extracting APLV infective N. clevelandii or CMMV infective S. italica saps in a minimum of buffer, centrifuging at low speed and diluting the supernatant before testing, partially overcame the inhibition. The inhibitory substance(s) in sap may act by preventing the binding of Clq to virus-antibody aggregates. Sap of wheat, oat and barley did not appear to have an inhibitory effect and BYDV was readily detected in naturally infected field grown plants of these species.  相似文献   

17.
Electron microscopy of leaf samples displaying streak symptoms from enset (Ensete ventricosum), a banana‐like plant widely cultivated in Ethiopia, showed the presence of bacilliform shaped virions as known for badnaviruses. DNA extracts subjected to rolling circle amplification (RCA), polymerase chain reaction (PCR) and cloning and sequence analysis revealed that the virus has a circular double‐stranded DNA genome of 7,163 nucleotides encoding predicted proteins of 21.5 kDa, 14.5 kDa and 202.5 kDa, a genome organization known for badnaviruses. The virus is phylogenetically most closely related to Sugarcane bacilliform Guadeloupe D virus with a nucleotide sequence identity of 77.2% at the conserved RT/RNase‐H region and 73.6% for the whole genome. Following the current species demarcation criteria, the virus should be considered as an isolate of a new species in the genus Badnavirus for which the name Enset leaf streak virus (ELSV) is suggested. Leaf samples from enset and banana were screened using virus‐specific primers, and ELSV was detected in six of 40 enset but not found in any of 61 banana samples. On the other hand, Banana streak OL virus (BSOLV) was detected from the majority (60%) of symptomatic banana samples but not from enset samples. This paper reports the first full‐genome sequence of a putative new badnavirus species infecting plants in the genus Ensete. In addition, this is the first report of the occurrence of BSOLV in Ethiopia.  相似文献   

18.
It has been hypothesized that plants can get beneficial trade‐offs from viral infections when grown under drought conditions. However, experimental support for a positive correlation between virus‐induced drought tolerance and increased host fitness is scarce. We investigated whether increased virulence exhibited by the synergistic interaction involving Potato virus X (PVX) and Plum pox virus (PPV) improves tolerance to drought and host fitness in Nicotiana benthamiana and Arabidopsis thaliana. Infection by the pair PPV/PVX and by PPV expressing the virulence protein P25 of PVX conferred an enhanced drought‐tolerant phenotype compared with single infections with either PPV or PVX. Decreased transpiration rates in virus‐infected plants were correlated with drought tolerance in N. benthamiana but not in Arabidopsis. Metabolite and hormonal profiles of Arabidopsis plants infected with the different viruses showed a range of changes that positively correlated with a greater impact on drought tolerance. Virus infection enhanced drought tolerance in both species by increasing salicylic acid accumulation in an abscisic acid‐independent manner. Viable offspring derived from Arabidopsis plants infected with PPV increased relative to non‐infected plants, when exposed to drought. By contrast, the detrimental effect caused by the more virulent viruses overcame potential benefits associated with increased drought tolerance on host fitness.  相似文献   

19.
Potato virus X (PVX) isolated from the potato leaf and tuber samples which were collected from various fields in Damavand and Ardabil. The initial isolations of the virus were made from potato by mechanical inoculation on Gomphrena globosa L. and Chenopodium spp. that produce local lesion, and then it causes mosaic on Nicotiana spp. and Datura stramonium L. An isolate of the virus inoculated to Nicotiana glutinosa L. and it was maintained throughout the work. Sap from infected N. glutinosa was ineffective after dilution to 10-6, 10 minutes at 70 degrees and 10 weeks at room temperature. The virus was readily purified from infected leaves and the best protocol was Moreira & Jones 1980 than the other 2 methods of Fribourg 1975 and Shepard & Shalla 1972. Antisera were prepared against native, degraded proteins and micro precipitin test showed that both antisera had a 1/512 titer. Precipitin lines with D - Protein antiserum was better of the native protein antiserum in agar double diffusion test than treated with SDS. The isolate of the virus was not transmitted by none of 2 species of Cuscuta but transmitted from infected leaves to healthy plants with sap inoculation without using Carburandum. This isolate showed positive reaction with gamaglubulin in kate received from CIP centre.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号