首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Plants produce species-specific herbivore-induced plant volatiles (HIPVs) after damage. We tested the hypothesis that herbivore-specific HIPVs prime neighboring plants to induce defenses specific to the priming herbivore. Since Manduca sexta (specialist) and Heliothis virescens (generalist) herbivory induced unique HIPV profiles in Nicotiana benthamiana, we used these HIPVs to prime receiver plants for defense responses to simulated herbivory (mechanical wounding and herbivore regurgitant application). Jasmonic acid (JA) accumulations and emitted volatile profiles were monitored as representative defense responses since JA is the major plant hormone involved in wound and defense signaling and HIPVs have been implicated as signals in tritrophic interactions. Herbivore species-specific HIPVs primed neighboring plants, which produced 2 to 4 times more volatiles and JA after simulated herbivory when compared to similarly treated constitutive volatile-exposed plants. However, HIPV-exposed plants accumulated similar amounts of volatiles and JA independent of the combination of priming or challenging herbivore. Furthermore, volatile profiles emitted by primed plants depended only on the challenging herbivore species but not on the species-specific HIPV profile of damaged emitter plants. This suggests that feeding by either herbivore species primed neighboring plants for increased HIPV emissions specific to the subsequently attacking herbivore and is probably controlled by JA.  相似文献   

2.
Abstract After herbivore attack, many plants emit herbivore‐induced plant volatiles (HIPVs). HIPVs can attract carnivores and/or repel herbivores, thereby mediating tritrophic plant–herbivore–carnivore interactions. HIPVs act as chemical information between organisms; hence, their variability and stability are vital. In the present study, variations in the volatile emissions, from the tea plant Camellia sinensis (O. Ktze) damaged by the tea weevil Myllocerinus aurolineatus (Voss) (Coleoptera: Curculionidae), with weevil densities, photoperiod and infestation duration, were investigated. The volatiles induced by high‐density weevils were more abundant in composition and amount than those induced by low‐density weevils, whether at noon, night or after weevil removal. The induced volatile emissions were similar on the second and third day after infestation, and the emissions of the major induced compounds displayed diurnal cycles. Linalool, (E,E)‐α‐farnesene, and benzyl nitrile were emitted mainly at noon, whereas 1,3,8‐p‐menthatriene and (E)‐β‐ocimene were maximally emitted at night. Given the different emission dynamics, significant differences were found between noon‐ and night‐induced volatiles. In summary, tea plants damaged by different weevil densities emitted a relatively stable signal at a particular time. This stability could be attributed to the similarities under the two densities of the main induced volatile compounds, their relative ratios and the emission dynamics of the induced volatiles.  相似文献   

3.
4.
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore‐induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up‐regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.  相似文献   

5.
Volatile organic compounds (VOCs) mediate communication between plants and insects. Plants under insect herbivore attack release VOCs either at the site of attack or systemically, indicating within‐plant communication. Some of these VOCs, which may be induced only upon herbivore attack, recruit parasitoids and predatory insects to feed on the attacking insects. Moreover, some plants are able to ‘eavesdrop’ on herbivore‐induced plant volatiles (HIPVs) to prime themselves against impending attack; such eavesdropping exemplifies plant–plant communication. In apple orchards, the beetle Melolontha melolontha L. (Coleoptera: Scarabaeidae) is an important insect pest whose larvae live and feed on roots for about 4 years. In this study, we investigated whether the feeding activity of M. melolontha larvae (1) alters the volatile profile of apple roots, (2) induces the release of HIPVs systemically in the leaves, and (3) whether infested plants communicate to neighbouring non‐infested conspecifics through HIPVs. To answer these questions, we collected constitutive VOCs from intact M9 roots as well as M. melolontha larvae‐damaged roots using a newly designed ‘rhizobox’, to collect root‐released volatiles in situ, without damaging the plant root system. We also collected VOCs from the leaf‐bearing shoots of M9 whose roots were under attack by M. melolontha larvae and from shoots of neighbouring non‐infested conspecifics. Gas chromatography‐mass spectrometry analysis showed that feeding activity of M. melolontha larvae induces the release of specific HIPVs; for instance, camphor was found in the roots only after larvae caused root damage. Melolontha melolontha also induced the systemic release of methyl salicylate and (E,E)‐α‐farnesene from the leaf‐bearing shoots. Methyl salicylate and (E,E)‐α‐farnesene were also released by the shoots of non‐infested neighbouring conspecifics. These phenomena indicate the induction of specific VOCs below‐ and above‐ground upon M. melolontha larvae feeding on apple roots as well as plant–plant communication in apple plants.  相似文献   

6.
1. Parasitoids are known to utilise learning of herbivore‐induced plant volatiles (HIPVs) when foraging for their herbivorous host. In natural situations these hosts share food plants with other, non‐suitable herbivores (non‐hosts). Simultaneous infestation of plants by hosts and non‐hosts has been found to result in induction of HIPVs that differ from host‐infested plants. Each non‐host herbivore may have different effects on HIPVs when sharing the food plant with hosts, and thus parasitoids may learn that plants with a specific non‐host herbivore also contain the host. 2. This study investigated the adaptive nature of learning by a foraging parasitoid that had acquired oviposition experience on a plant infested with both hosts and different non‐hosts in the laboratory and in semi‐field experiments. 3. In two‐choice preference tests, the parasitoid Cotesia glomerata shifted its preference towards HIPVs of a plant–host–non‐host complex previously associated with an oviposition experience. It could, indeed, learn that the presence of its host is associated with HIPVs induced by simultaneous feeding of its host Pieris brassicae and either the non‐host caterpillar Mamestra brassicae or the non‐host aphid Myzus persicae. However, the learned preference found in the laboratory did not translate into parasitisation preferences for hosts accompanying non‐host caterpillars or aphids in a semi‐field situation. 4. This paper discusses the importance of learning in parasitoid foraging, and debates why observed learned preferences for HIPVs in the laboratory may cancel out under some field experimental conditions.  相似文献   

7.
Parasitoids use herbivore‐induced plant volatiles (HIPVs) to locate their hosts. However, there are few studies in soybean showing the mechanisms involved in the attraction of natural enemies to their hosts and prey. The objective of this study was to evaluate the influence of volatile organic compounds (VOCs) of soybean, Glycine max (L.) Merr. (Fabaceae) (cv. Dowling), that were induced after injury caused by Euschistus heros (Fabricius) (Hemiptera: Pentatomidae), on the searching behavior of the egg parasitoid Telenomus podisi Ashmead (Hymenoptera: Scelionidae). Four HIPVs from soybean, (E,E)‐α‐farnesene, methyl salicylate, (Z)‐3‐hexenyl acetate, and (E)‐2‐octen‐1‐ol, were selected, prepared from standards at various concentrations (10?6 to 10?1 m ), and tested individually and in combinations using a two‐choice olfactometer (type Y). Telenomus podisi displayed a preference only for (E,E)‐α‐farnesene at 10?5 m when tested individually and compared to hexane, but they did not respond to the other compounds tested individually at any concentration or when combinations of these compounds were tested. However, the parasitoids stayed longer in the olfactometer arm with the mixture of (E,E)‐α‐farnesene + methyl salicylate at 10?5 m than in the arm containing hexane. The results suggest that (E,E)‐α‐farnesene and methyl salicylate might help T. podisi to determine the presence of stink bugs on a plant. In addition, bioassays were conducted to compare (E,E)‐α‐farnesene vs. the volatiles emitted by undamaged and E. heros‐damaged plants, to evaluate whether (E,E)‐α‐farnesene was the main cue used by T. podisi or whether other minor compounds from the plants and/or the background might also be used to locate its host. The results suggest that minor volatile compounds from soybean plants or from its surroundings are involved in the host‐searching behavior of T. podisi.  相似文献   

8.
It is well known that parasitoids are attracted to volatiles emitted by host‐damaged plants; however, this tritrophic interaction may change if plants are attacked by more than one herbivore species. The larval parasitoid Cotesia flavipesCameron (Hymenoptera: Braconidae) has been used intensively in Brazil to control the sugarcane borer, Diatraea saccharalisFabricius (Lepidoptera: Pyralidae) in sugarcane crops, where Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae), a non‐stemborer lepidopteran, is also a pest. Here, we investigated the ability of C. flavipes to discriminate between an unsuitable host (S. frugiperda) and a suitable host (D. saccharalis) based on herbivore‐induced plant volatiles (HIPVs) emitted by sugarcane, and whether multiple herbivory (D. saccharalis feeding on stalk + S. frugiperda feeding on leaves) in sugarcane affected the attractiveness of HIPVs to C. flavipes. Olfactometer assays indicated that volatiles of host and non‐host‐damaged plants were attractive to C. flavipes. Even though host‐ and non‐host‐damaged plants emitted considerably different volatile blends, neither naïve nor experienced wasps discriminated suitable and unsuitable hosts by means of HIPVs emitted by sugarcane. With regard to multiple herbivory, wasps innately preferred the odor blend emitted by sugarcane upon non‐host + host herbivory over host‐only damaged plants. Multiple herbivory caused a suppression of some volatiles relative to non‐host‐damaged sugarcane that may have resulted from the unaltered levels of jasmonic acid in host‐damaged plants, or from reduced palatability of host‐damaged plants to S. frugiperda. In conclusion, our study showed that C. flavipes responds to a wide range of plant volatile blends, and does not discriminate host from non‐host and non‐stemborer caterpillars based on HIPVs emitted from sugarcane. Moreover, we showed that multiple herbivory by the sugarcane borer and fall armyworm increases the attractiveness of sugarcane plants to the parasitoids.  相似文献   

9.
Foraging strategies of birds can influence trophic plant–insect networks with impacts on primary plant production. Recent experiments show that some forest insectivorous birds can use herbivore‐induced plant volatiles (HIPVs) to locate herbivore‐infested trees, but it is unclear how birds combine or prioritize visual and olfactory information when making foraging decisions. Here, we investigated attraction of ground‐foraging birds to HIPVs and visible prey in short vegetation on farmland in a series of foraging choice experiments. Birds showed an initial preference for HIPVs when visual information was the same for all choice options (i.e., one experimental setup had all options with visible prey, another setup with hidden prey). However, if the alternatives within an experimental setup included visible prey (without HIPV) in competition with HIPV‐only, then birds preferred the visual option over HIPVs. Our results show that olfactory cues can play an important role in birds’ foraging choices when visual information contains little variation; however, visual cues are preferred when variation is present. This suggests certain aspects of bird foraging decisions in agricultural habitats are mediated by olfactory interaction mechanisms between birds and plants. We also found that birds from variety of dietary food guilds were attracted to HIPVs; hence, the ability of birds to use plant cues is probably more general than previously thought, and may influence the biological pest control potential of birds on farmland.  相似文献   

10.
The plant circadian clock regulates the rhythms of plant metabolism. Many herbivore-induced plant volatiles(HIPVs) fluctuate, diurnally, but the role of the circadian clock in the emission of HIPVs and their ecological consequences remains largely unknown.Here, we show that the timing of herbivore attack can alter the outcome of tri-trophic interactions, and this is mediated by the circadian clock, under both field and glasshouse conditions. Although most HIPV emissions did not have a circadian rhythm, the circadian clock modulated HIPV emissions in a time-dependent manner. HIPVs mediate tri-trophic interactions, and the circadian clock may affect these interactions by modulating HIPV emission in nature.  相似文献   

11.
Many lizards are olfactory foragers and prey upon herbivorous arthropods, yet their responses to common herbivore‐associated plant volatiles remain unknown. As such, their role in mediating plant indirect defenses also remains largely obscured. In this paper, we use a cotton‐swab odor presentation assay to ask whether lizards respond to two arthropod‐associated plant‐derived volatile compounds: 2‐(E)‐hexenal and hexanoic acid. We studied the response of two lizard species, Sceloporus virgatusand Aspidoscelis exsanguis, because they differ substantially in their foraging behavior. We found that the actively foraging A. exsanguisresponded strongly to hexanoic acid, whereas the ambush foraging S. virgatus responded to 2‐(E)‐hexenal—an herbivore‐associated plant volatile involved in indirect defense against herbivores. These findings indicate that S. virgatus may contribute to plant indirect defense and that a species' response to specific odorants is linked with foraging mode. Future studies can elucidate how lizards use various compounds to locate prey and how these responses impact plant‐herbivore interactions.  相似文献   

12.
As studies demonstrating attraction of natural enemies to synthetic herbivore‐induced plant volatiles (HIPVs) accumulate, it is becoming increasingly important to investigate how deployment of these compounds influences arthropod behavior and distribution in the field. There is currently an unexplained dichotomy in the literature regarding the distance over which HIPVs are thought to be effective. It is assumed that these compounds increase recruitment of natural enemies into fields, whereas experiments have found the effects of attraction to dissipate as little as 1.5 m from lures. Through the use of the common HIPV phenylethyl alcohol in soybean [Glycine max (L.) Merr (Fabaceae)] fields, we used replicated mini plots to test the spatial scale and consequences of attraction by analyzing the response of a complex arthropod community to HIPVs along a distance gradient from the HIPV source. Although repellent effects were more common than attractive ones, we found that insect responses to HIPVs are generally consistent out to a range of 8 m, corroborating the idea that volatiles can influence a wide area and are capable of increasing arthropod recruitment at a field scale. Evidence of redistribution (i.e., depletion of patches surrounding HIPV‐augmented plots) was found for a single taxon, braconid wasps, for which augmentation occurred around the lure, but with a reciprocal decline in abundance at greater distances from the emission site. These results are both encouraging and cautionary. Although broad‐scale diffusion of HIPVs appears to be common, redistribution of key predators and/or parasitoids may complicate natural enemy management on a landscape scale by aggravating pest outbreaks in areas robbed of their normal carnivore assemblage.  相似文献   

13.
Herbivore-induced plant volatiles (HIPVs) are commonly emitted from plants after herbivore attack1,2. These HIPVs are mainly regulated by the defensive plant hormone jasmonic acid (JA) and its volatile derivative methyl jasmonate (MeJA)3,4,5. Over the past 3 decades researchers have documented that HIPVs can repel or attract herbivores, attract the natural enemies of herbivores, and in some cases they can induce or prime plant defenses prior to herbivore attack. In a recent paper6, I reported that feeding by gypsy moth caterpillars, exogenous MeJA application, and mechanical damage induce the emissions of volatiles from blueberry plants, albeit differently. In addition, blueberry branches respond to HIPVs emitted from neighboring branches of the same plant by increasing the levels of JA and resistance to herbivores (i.e., direct plant defenses), and by priming volatile emissions (i.e., indirect plant defenses). Similar findings have been reported recently for sagebrush7, poplar8, and lima beans9..Here, I describe a push-pull method for collecting blueberry volatiles induced by herbivore (gypsy moth) feeding, exogenous MeJA application, and mechanical damage. The volatile collection unit consists of a 4 L volatile collection chamber, a 2-piece guillotine, an air delivery system that purifies incoming air, and a vacuum system connected to a trap filled with Super-Q adsorbent to collect volatiles5,6,10. Volatiles collected in Super-Q traps are eluted with dichloromethane and then separated and quantified using Gas Chromatography (GC). This volatile collection method was used n my study6 to investigate the volatile response of undamaged branches to exposure to volatiles from herbivore-damaged branches within blueberry plants. These methods are described here. Briefly, undamaged blueberry branches are exposed to HIPVs from neighboring branches within the same plant. Using the same techniques described above, volatiles emitted from branches after exposure to HIPVs are collected and analyzed.  相似文献   

14.
Plants release volatiles in response to caterpillar feeding that attracts natural enemies of the herbivores, a tritrophic interaction which has been considered to be an indirect plant defence against herbivores. On the other hand, the caterpillar‐induced plant volatiles have been reported to either repel or attract conspecific adult herbivores. This work was undertaken to investigate the response of both herbivores and natural enemies to caterpillar‐induced plant volatiles in apple orchards. We sampled volatile compounds emitted from uninfested apple trees, and apple trees infested with generalist herbivore the pandemis leafroller moth, Pandemis pyrusana (Lepidoptera, Tortricidae) larvae using headspace collection and analysed by gas chromatography/mass spectrometry. Infested apple trees uniquely release six compounds (benzyl alcohol, phenylacetonitrile, phenylacetaldehyde, 2‐phenylethanol, indole and (E)‐nerolidol). These compounds were tested on two species of herbivores and one predator in apple orchards. Binary blends of phenylacetonitrile + acetic acid or 2‐phenylethanol + acetic acid attracted a large number of conspecific male and female adult herbivores. The response of pandemis leafroller to herbivore‐induced plant volatiles (HIPVs) was so pronounced that over one thousand and seven hundred conspecific male and female adult herbivores were caught in traps baited with HIPVs in three‐day trapping period. In addition, significantly higher number of male and female obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera, Tortricidae), was caught in traps baited a binary blend of 2‐phenylethanol + acetic acid, or a ternary blend contains 2‐phenylethanol and phenylacetonitrile + acetic acid. This result challenges the current paradigm hypothesized that HIPVs repel herbivores and question the indirect defensive function proposed for these compounds. On the other hand, a ternary blend of phenylacetonitrile and 2‐phenylethanol + acetic acid attracted the largest numbers of the general predator, the common green lacewing, Chrysoperla plorabunda. To our knowledge, this is the first record of the direct attraction of conspecific adult herbivores as well as a predator to the caterpillar‐induced plant volatiles in the field.  相似文献   

15.
Earlier studies have suggested that insectivorous birds, similar to invertebrate predators and parasitoids, may be guided by herbivore-induced plant volatiles (HIPVs) to damaged, herbivore-rich trees. Recent studies have also shown that birds use olfaction more than previously thought, underlying the potential for HIPVs to be sensed by insectivorous birds and utilised during foraging for prey. The HIPV production in plants is mediated, at least partly, by the jasmonic acid signalling pathway, and similar HIPVs to those induced by herbivores can often be induced by exposing plants to methyl jasmonate (MeJa). We studied the effects of MeJa on volatile emission and bird attraction using mature mountain birches (Betula pubescens ssp. czerepanovii) under natural conditions in northern Finland. Experimental trees were assigned to four treatment groups: herbivore-damaged [autumnal moth (Epirrita autumnata)], higher dose of MeJa (30 mM), lower dose of MeJa (15 mM) and control. All trees had three branches covered with mesh bags, but there were larvae inside the bags only of the herbivore-damage treatment. Bird predation rate was monitored with artificial plasticine larvae which were checked daily for peck marks. Birds most often pecked the larvae in the herbivore-damaged trees, but the attractiveness of MeJa-treated trees did not differ from the control. High within-treatment variation in systemic HIPV emissions probably masked MeJa treatment effects. The bird predation rate was high in birches that emitted large amounts of α-pinene. Thus, α-pinene may be one cue used by birds to find herbivore-rich birches.  相似文献   

16.
It has been shown that many natural enemies of herbivorous arthropods use herbivore induced plant volatiles (HIPVs) to locate their prey. Herbivores can also exploit cues emitted by plants infested with heterospecifics or conspecifics. A study was conducted to test whether green bean HIPVs as well as odours emitted directly by spider mites influenced the orientation behaviour of the predatory mirid bug, Macrolophus caliginosus and its prey, Tetranychus urticae in a Y-tube olfactometer. Our results show that both spider mites and M. caliginosus preferred spider mite infested green bean plants to uninfested plants. For M. caliginosus this response was mediated by HIPVs whereas for T. urticae it was mediated through a composite response to both HIPVs and odours emitted directly by the conspecifics (and their associated products). The results may be of use in practical biocontrol situations, through e.g., plant breeding for improved HIPV production, conditioning of mass-reared predators to appropriate cues, and employment of “push–pull-strategies” by using HIPVs.  相似文献   

17.
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, major regulatory genes and the signals that modulate these defense metabolites are vastly understudied, especially in important agro‐economic monocot species. Here we show that products and signals derived from a single Zea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbivory. We provide genetic evidence that two 13‐LOXs, ZmLOX10 and ZmLOX8, specialize in providing substrate for the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the specialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indicating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression of JA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10‐derived signaling is required for LOX8‐mediated JA. The possible role of GLVs in JA signaling is supported by their ability to partially restore wound‐induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produce GLVs and JA led to dramatic reductions in herbivore‐induced plant volatiles (HIPVs) and attractiveness to parasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic link to the diurnal regulation of GLVs and HIPVs. GLV‐, JA‐ and HIPV‐deficient lox10 mutants display compromised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence that LOX10‐dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene to agro‐ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.  相似文献   

18.
We used tomato genotypes deficient in the jasmonic acid (JA) pathway to study the interaction between the production of herbivore‐induced plant volatiles (HIPVs) that serve as information cues for herbivores as well as natural enemies of herbivores, and the production of foliar trichomes as defence barriers. We found that jasmonic acid‐insensitive1 (jai1) mutant plants with both reduced HIPVs and trichome production received higher oviposition of adult leafminers, which were more likely to be parasitized by the leafminer parasitoids than JA biosynthesis spr2 mutant plants deficient in HIPVs but not trichomes. We also showed that the preference and acceptance of leafminers and parasitoids to trichome‐removed plants from either spr2 or wild‐type (WT) genotypes over trichome‐intact genotypes can be ascribed to the reduced trichomes on treated plants, but not to altered direct and indirect defence traits such as JA, proteinase inhibitor (PI)‐II and HIPVs levels. Although the HIPVs of WT plants were more attractive to adult insects, the insects preferred trichome‐free jai1 plants for oviposition and also had greater reproductive success on these plants. Our results provide strong evidence that antagonism between HIPV emission and trichome production affects tritrophic interactions. The interactions among defence traits are discussed.  相似文献   

19.
Indirect plant defence mechanisms enhance the effectiveness of natural enemies of herbivores. Herbivore‐induced plant volatiles (HIPVs) attract the parasitoids of insect herbivores as shown both in numerous choice tests conducted under laboratory conditions and in relatively few common‐garden setups in agro‐ecosystems. However, the importance of this indirect defence trait at higher levels of biological organization has yet to be investigated through natural field experiments. Here, we report a field experiment of larval parasitism of two cyclic geometrid defoliators in herbivore‐damaged and fairly intact mountain birch Betula pubescens ssp. czerepanovii under natural conditions. Parasitism rates in larvae of the autumnal (Epirrita autumnata) and winter moth (Operophtera brumata) exposed for 30 h on defoliated trees were more than twice as high as those on control trees. This finding indicates that hymenopteran parasitoids were attracted to previously defoliated trees by some cues from the host plants, HIPVs being the most likely candidates. The third trophic level should thus be considered in natural plant herbivore interactions. Furthermore, parasitoids and food resources are key factors in the population regulation of forest insect pests, and indirect plant defences could be important in their interactions. Our research also emphasizes the quality of control treatments in field experiments, since immediate plant responses easily obscure the results as soon as control trees become infested by herbivorous insects.  相似文献   

20.
Cotesia kariyai Watanabe (Hymenoptera: Braconidae) is a specialist larval parasitoid of Mythimna separata Walker (Lepidoptera: Noctuidae). Cotesia kariyai wasps use herbivore‐induced plant volatiles (HIPVs) to locate hosts. However, complex natural habitats are full of volatiles released by both herbivorous host‐ and non‐host‐infested plants at various levels of intensity. Therefore, the presence of non‐hosts may affect parasitoid decisions while foraging. Here, the host‐finding efficiency of naive C. kariyai from HIPVs influenced by host‐ and non‐host‐infested maize [Zea mays L. (Poaceae)] plants was investigated with a four‐arm olfactometer. Ostrinia furnacalis Guenée (Lepidoptera: Crambidae) was selected as a non‐host species. One unit (1 U) of host‐ or non‐host‐infested plant was prepared by infesting a potted plant with five host or seven non‐host larvae. In two‐choice bioassays, host‐infested plants fed upon by different numbers of larvae, and various units of host‐ and non‐host‐infested plants (infestation units; 1 U, 2 U, and 3 U) were arranged to examine the effects of differences in volatile quantity and quality on the olfactory responses of C. kariyai with the assumption that volatile quantity and quality changes with differences in numbers of insects and plants. Cotesia kariyai was found to perceive quantitative differences in volatiles from host‐infested plants, preferring larger quantities of volatiles from larger numbers of larvae or plants. Also, the parasitoids discriminated between healthy plants, host‐infested plants, and non‐host‐infested plants by recognising volatiles released from those plants. Cotesia kariyai showed a reduced preference for host‐induced volatiles, when larger numbers of non‐host‐infested plants were present. Therefore, quantitative and qualitative differences in volatiles from host‐ and non‐host‐infested plants appear to affect the decision of C. kariyai during host‐habitat searching in multiple tritrophic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号