首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ros  G. H.  van Rotterdam  A. M. D.  Bussink  D. W.  Bindraban  P. S. 《Plant and Soil》2016,398(1-2):99-110

Background and aims

Although numerous studies have quantified the effects of land-use changes on soil organic carbon (SOC) stocks, few have examined simultaneously the weight of carbon (C) inputs vs. outputs in shaping these changes. We quantified the relative importance of soil C inputs and outputs in determining SOC changes following the conversion of natural ecosystems to pastures or tree plantations, and evaluated them in light of variations in biomass production, its quality (C:N) and above/belowground allocation patterns.

Methods

We sampled soils up to one-meter depth under native grasslands or forests and compared them to adjacent sites with pastures or plantations to estimate the proportion of new SOC (SOCnew) retained in the soil and the decomposition rates of old SOC (k SOC-old ) based on δ 13C shifts. We also analyzed these changes in the particulate organic matter fraction (POM) and estimated above and belowground net primary production (ANPP and BNPP) from satellite images, as well as changes in vegetation and soil’s C:N ratios.

Results

The conversion of grasslands to tree plantations decreased total SOC contents while the conversion of forests to pastures increased SOC contents in the topsoil but decreased them in deep layers, maintaining similar soil stocks up to 1 m. Changes in POM were less important and occurred only in the topsoil after cultivating pastures, following SOC changes. Surprisingly, both land-use trajectories showed similar decomposition rates in the topsoil and therefore overall SOC changes were not correlated with C outputs (k SOC-old ) but were significantly correlated with C inputs and their stabilization as SOCnew (similar results were obtained for the POM fraction). Pastures although decreased ANPP (as compared to forest) they increased belowground allocation and C:N ratios of their inputs to the soil, probably favoring the retention and stabilization of their new C inputs. In contrast, tree plantations increased ANPP but decreased BNPP (as compared to grasslands) and scarcely accumulated SOCnew probably as a result of the high C retention in standing biomass.

Conclusions

Our results suggest that SOC changes are mainly controlled by the quantity and quality of C inputs and their retention in the soil, rather than by C outputs in these perennial subtropical ecosystems.
  相似文献   

2.
The effects of swidden cultivation on carbon storage and soil quality are outlined and compared to the effects of the intensified production systems that swidden systems of Southeast Asia transform into. Time-averaged aboveground carbon stocks decline by about 90% if the long fallow periods of traditional swidden cultivation are reduced to 4 years and by about 60% if swidden cultivation is converted to oil palm plantations. Stocks of soil organic carbon (SOC) in tree plantations are 0–40% lower than stocks in swidden cultivation, with the largest losses found in mechanically established oil palm plantations. Impacts of tree plantations on soil quality are to a large extent determined by management. Conversion of swiddening to continuous annual cropping systems brings about substantial losses of time-averaged aboveground carbon stocks, reductions of SOC stocks and generally leads to declining soil quality. Knowledge of carbon storage in belowground biomass of tree based systems of the tropics is sparse but failure to include this pool in carbon inventories may significantly underestimate the total biomass of the systems. Moreover, studies that consider the ecological reasons behind farmers’ land use decisions as well as spatial variability in biogeophysical and edaphological parameters are needed to evaluate the effects of the ongoing land use transitions in Southeast Asia.  相似文献   

3.
Cropland afforestation has been widely found to increase soil organic carbon (SOC) and soil total nitrogen (STN); however, the magnitudes of SOC and STN accumulation and regulating factors are less studied in dry, marginal lands, and therein the interaction between soil carbon and nitrogen is not well understood. We examined the changes in SOC and STN in younger (5–9-year-old) and older (25–30-year-old) black locust (Robinia pseudoacacia L., an N-fixing species) plantations that were established on former cropland along a precipitation gradient (380 to 650 mm) in the semi-arid Loess Plateau of China. The SOC and STN stocks of cropland and plantations increased linearly with precipitation increase, respectively, accompanying an increase in the plantation net primary productivity and the soil clay content along the increasing precipitation gradient. The SOC stock of cropland decreased in younger plantations and increased in older plantations after afforestation, and the amount of the initial loss of SOC during the younger plantations’ establishment increased with precipitation increasing. By contrast, the STN stock of cropland showed no decrease in the initial afforestation while tending to increase with plantation age, and the changes in STN were not related to precipitation. The changes in STN and SOC showed correlated and were precipitation-dependent following afforestation, displaying a higher relative gain of SOC to STN as precipitation decreased. Our results suggest that the afforestation of marginal cropland in Loess Plateau can have a significant effect on the accumulation of SOC and STN, and that precipitation has a significant effect on SOC accumulation but little effect on STN retention. The limitation effect of soil nitrogen on soil carbon accumulation is more limited in the drier area rather than in the wetter sites.  相似文献   

4.
Tropical montane forests in the Andes are subjected to deforestation and subsequent transformation into pastures. Abandoned pastures are frequently reforested by planting monoculture timber plantations, resulting in reduced aboveground diversity and changes in soil characteristics compared to primary forests. In this study, we evaluated differences in soil properties (litter layer thickness, pH, water content, and C-to-N ratio) between degraded primary montane forest and monoculture pine (Pinus patula) and alder (Alnus acuminata) plantations and their effects on density, diversity, and community structure of litter and soil-living mesofauna, with focus on oribatid mites (Acariformes). The study was performed in a montane region in the southern Ecuadorian Andes (2,000–2,600 m a.s.l.). C-to-N ratios in the litter and upper 5 cm soil layer were higher in pine plantations, while other soil characteristics were similar between vegetation types. Surprisingly, microbial biomass and density of soil mesofauna in the litter layer did not differ between vegetation types, while density and species richness of oribatid mites were higher in pine plantations. Community structure of oribatid mites differed between vegetation types with only a few species overlapping. The results indicate that quality and diversity of litter were not the major factors regulating the mesofauna community. Instead, soil animals benefited from increased habitat structure in thicker litter layers and potentially increased availability of root-derived resources. Overall, the results suggest that from a soil animal perspective, monoculture plantations are less detrimental than commonly assumed and enrichment of abandoned plantations with native tree species may help to restore tropical montane forests.  相似文献   

5.
The establishment of either forest or grassland on degraded cropland has been proposed as an effective method for climate change mitigation because these land use types can increase soil carbon (C) stocks. This paper synthesized 135 recent publications (844 observations at 181 sites) focused on the conversion from cropland to grassland, shrubland or forest in China, better known as the ‘Grain‐for‐Green’ Program to determine which factors were driving changes to soil organic carbon (SOC). The results strongly indicate a positive impact of cropland conversion on soil C stocks. The temporal pattern for soil C stock changes in the 0–100 cm soil layer showed an initial decrease in soil C during the early stage (<5 years), and then an increase to net C gains (>5 years) coincident with vegetation restoration. The rates of soil C change were higher in the surface profile (0–20 cm) than in deeper soil (20–100 cm). Cropland converted to forest (arbor) had the additional benefit of a slower but more persistent C sequestration capacity than shrubland or grassland. Tree species played a significant role in determining the rate of change in soil C stocks (conifer < broadleaf, evergreen < deciduous forests). Restoration age was the main factor, not temperature and precipitation, affecting soil C stock change after cropland conversion with higher initial soil C stock sites having a negative effect on soil C accumulation. Soil C sequestration significantly increased with restoration age over the long‐term, and therefore, the large scale of land‐use change under the ‘Grain‐for‐Green’ Program will significantly increase China's C stocks.  相似文献   

6.
The impact of deforestation on soil organic carbon (SOC) stocks is important in the context of climate change and agricultural soil use. Trends of SOC stock changes after agroecosystem establishment vary according to the spatial scale considered, and factors explaining these trends may differ sometimes according to meta‐analyses. We have reviewed the knowledge about changes in SOC stocks in Amazonia after the establishment of pasture or cropland, sought relationships between observed changes and soil, climatic variables and management practices, and synthesized the δ13C measured in pastures. Our dataset consisted of 21 studies mostly synchronic, across 52 sites (Brazil, Colombia, French Guiana, Suriname), totalling 70 forest–agroecosystem comparisons. We found that pastures (n = 52, mean age = 17.6 years) had slightly higher SOC stocks than forest (+6.8 ± 3.1 %), whereas croplands (n = 18, mean age = 8.7 years) had lower SOC stocks than forest (?8.5 ± 2.9 %). Annual precipitation and SOC stocks under forest had no effect on the SOC changes in the agroecosystems. For croplands, we found a lower SOC loss than other meta‐analyses, but the short time period after deforestation here could have reduced this loss. There was no clear effect of tillage on the SOC response. Management of pastures, whether they were degraded/nominal/improved, had no significant effect on SOC response. δ13C measurements on 16 pasture chronosequences showed that decay of forest‐derived SOC was variable, whereas pasture‐derived SOC was less so and was characterized by an accumulation plateau of 20 Mg SOC ha?1 after 20 years. The large uncertainties in SOC response observed could be derived from the chronosequence approach, sensitive to natural soil variability and to human management practices. This study emphasizes the need for diachronic and long‐term studies, associated with better knowledge of agroecosystem management.  相似文献   

7.
Northeastern Costa Rica is a mosaic of primary and secondary forests, tree plantations, pastures, and cash crops. Many studies have quantified the effects of one type of land-use transition (for example, deforestation or reforestation) on soil properties such as organic carbon (C) storage, but few have compared different land-use transitions simultaneously. We can best understand the effects of land-use change on regional and global ecosystem processes by considering all of the land-use transitions that occur in a landscape. In this study, I examined the changes in total soil C and nitrogen (N) pools (to 0.3 m) that have accompanied different land-use transitions in a 140,000-ha region in northeastern Costa Rica. I paired sites that had similar topography and soils but differed in recent land-use history. The following land-use transitions were represented: 12 conversions of primary forests to banana plantations, 15 conversions of pastures to cash crops, and four conversions of pastures to Vochysia guatemalensis tree plantations. The conversion of forests to bananas decreased soil C concentrations and inventories (Mg C ha–1) in the surface soil by 37% and 16.5%, respectively. The conversion of pastures to cash crops reduced soil C concentrations and inventories to the same extent that forest-to-banana cropping did. Furthermore, young Vochysia plantations do not appear to increase soil C storage, at least over the 1st decade. When data from all land-use transitions were pooled, the difference in root biomass and leaf litter pools between land-use pairs explained 50% of the differences in soil C concentrations and 36% of the differences in soil C inventories. Thus, reduced productivity or C inputs to the soil is one mechanism that could explain the losses in soil C pools with land-use change. In this landscape, losses of soil C due to cultivation are rapid, whereas re- accumulation rates are slow. Total soil N pools (0–10 cm) were also reduced after the conversion of forests to banana plantations or the conversion of pastures to crops, despite fertilization of the cropped soils. This suggests that the added N fertilizer is not retained but instead is exported via produce, N gas emissions, and hydrologic processes.  相似文献   

8.
Soil carbon stocks and land use change: a meta analysis   总被引:71,自引:0,他引:71  
The effects of land use change on soil carbon stocks are of concern in the context of international policy agendas on greenhouse gas emissions mitigation. This paper reviews the literature for the influence of land use changes on soil C stocks and reports the results of a meta analysis of these data from 74 publications. The meta analysis indicates that soil C stocks decline after land use changes from pasture to plantation (?10%), native forest to plantation (?13%), native forest to crop (?42%), and pasture to crop (?59%). Soil C stocks increase after land use changes from native forest to pasture (+ 8%), crop to pasture (+ 19%), crop to plantation (+ 18%), and crop to secondary forest (+ 53%). Wherever one of the land use changes decreased soil C, the reverse process usually increased soil carbon and vice versa. As the quantity of available data is not large and the methodologies used are diverse, the conclusions drawn must be regarded as working hypotheses from which to design future targeted investigations that broaden the database. Within some land use changes there were, however, sufficient examples to explore the role of other factors contributing to the above conclusions. One outcome of the meta analysis, especially worthy of further investigation in the context of carbon sink strategies for greenhouse gas mitigation, is that broadleaf tree plantations placed onto prior native forest or pastures did not affect soil C stocks whereas pine plantations reduced soil C stocks by 12–15%.  相似文献   

9.
The objectives of this study were to estimate changes of tree carbon (C) and soil organic carbon (SOC) stock following a conversion in land use, an issue that has been only insufficiently addressed. For this study, we examined a chronosequence of 2 to 54-year-old Pinus kesiya var. langbianensis plantations that replaced the original secondary coniferous forest (SCF) in Southwest China due to clearing. C stocks considered here consisted of tree, understory, litter, and SOC (0–1 m). The results showed that tree C stocks ranged from 0.02±0.001 Mg C ha-1 to 141.43±5.29 Mg C ha-1, and increased gradually with the stand age. Accumulation of tree C stocks occurred in 20 years after reforestaion and C stock level recoverd to SCF. The maximum of understory C stock was found in a 5-year-old stand (6.74±0.7 Mg C ha-1) with 5.8 times that of SCF, thereafter, understory C stock decreased with the growth of plantation. Litter C stock had no difference excluding effects of prescribed burning. Tree C stock exhibited a significant decline in the 2, 5-year-old stand following the conversion to plantation, but later, increased until a steady state-level in the 20, 26-year-old stand. The SOC stocks ranged from 81.08±10.13 Mg C ha-1 to 160.38±17.96 Mg C ha-1. Reforestation significantly decreased SOC stocks of plantation in the 2-year-old stand which lost 42.29 Mg C ha-1 in the 1 m soil depth compared with SCF by reason of soil disturbance from sites preparation, but then subsequently recovered to SCF level. SOC stocks of SCF had no significant difference with other plantation. The surface profile (0–0.1 m) contained s higher SOC stocks than deeper soil depth. C stock associated with tree biomass represented a higher proportion than SOC stocks as stand development proceeded.  相似文献   

10.
More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.  相似文献   

11.
Vegetation changes, particularly those involving transitions between tree‐ and grass‐dominated covers, often modify evaporative water losses as a result of plant‐mediated shifts in moisture access and demand. Massive afforestation of native grasslands, particularly important in the Southern Hemisphere, may have strong yet poorly quantified effects on the hydrological cycle. We explored water use patterns in Eucalyptus grandis plantations and the native humid grasslands that they replace in Central Argentina. In order to uncover the interactive effects that land cover type, soil texture and climate variability may have on evaporative water losses and water use efficiency, we estimated daily evapotranspiration (ET) in 117 tree plantations and grasslands plots across a soil textural gradient (clay‐textured Vertisols to sandy‐textured Entisols) using radiometric information from seven Landsat scenes, existing timber productions records, and 13C measurements in tree stems. Tree plantations had cooler surface temperatures (?5°C on average) and evaporated more water (+80% on average) than grasslands at all times and across all sites. Absolute ET differences between grasslands and plantations ranged from ~0.6 to 2 mm day?1 and annual up‐scaling suggested values of ~630 and ~1150 mm yr?1 for each vegetation type, respectively. The temporal variability of ET was significantly lower in plantations compared with grasslands (coefficient of variation 36% vs. 49%). Daily ET increased as the water balance became more positive (accumulated balance for previous 18 days) with a saturation response in grassland vs. a continuous linear increase in plantations, suggesting lower ecophysiological limits to water loss in tree canopies compared with the native vegetation. Plantation ET was more strongly affected by soil texture than grassland ET and peaked in coarse textured sites followed by medium and fine textured sites. Timber productivity as well as 13C concentration in stems peaked in medium textured sites, indicating lower water use efficiency on extreme textures and suggesting that water limitation was not responsible for productivity declines towards finer and coarser soils. Our study highlighted the key role that vegetation type plays on evapotranspiration and, therefore, in the hydrological cycle. Considering that tree plantations may continue their expansion over grasslands, problematic changes in water management and, perhaps, in local climate can develop from the higher evaporative water losses of tree plantations.  相似文献   

12.
The effects of forest-to-pasture conversion on soil carbon (C) stocks depend on a combination of climatic and management factors, but factors that relate to grazing intensity are perhaps the least understood. To understand the long-term impact of grazing in converted pastures, methods are needed that accurately measure the impact of grazing on recent plant inputs to soil C in a variety of pasture management and climate settings. Here, we present an analysis from Hawai'i of changes in vegetation structure and soil organic carbon (SOC) along gradients of grazing intensity and elevation in pastures converted from dry tropical forest 100 years ago. We used hyperspectral remote sensing of photosynthetic vegetation, nonphotosynthetic vegetation (NPV) and exposed substrate to understand the effects of grazing on plant litter cover, thus, estimating recent plant inputs to soils (the NPV component). Forest-to-pasture conversion caused a shift from C3 to C4 plant physiology, thus the δ 13C method was used in soil cores to measure the fraction of SOC accumulated from pasture vegetation sources following land conversion. SOC decreased in pasture by 5–9 kg C m−2, depending upon grazing intensity. SOC derived from C3 (forest) sources was constant across the grazing gradient, indicating that the observed variation in SOC was attributable to changes in C inputs following deforestation. Soil C stocks were also reduced in pastures relative to forest soils. We found that long-term grazing lowers SOC following Hawaiian forest-to-pasture conversion, and that these changes are larger in magnitude that those occurring with elevation (climate). Further we demonstrate a relationship between remotely sensed measurements of surface litter and field SOC measurements, allowing for regional analysis of pasture condition and C storage where limited field data are available.  相似文献   

13.
Subtropical China has more than 60% of the total plantation area in China and over 70% of these subtropical plantations are composed of pure coniferous species. In view of low ecosystem services and ecological instability of pure coniferous plantations, indigenous broadleaf plantations are being advocated as a prospective silvicultural management for substituting in place of large coniferous plantations in subtropical China. However, little information is known about the effects of tree species conversion on stock and stability of soil organic carbon (SOC). The four adjacent monospecific plantations were selected to examine the effects of tree species on the stock and chemical composition of SOC using elemental analysis and solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. One coniferous plantation was composed of Pinus massoniana (PM), and the three broadleaf plantations were Castanopsis hystrix (CH), Michelia macclurei (MM), and Mytilaria laosensis (ML). We found that SOC stock differed significantly among the four plantations in the upper (0–10 cm) layer, but not in the underneath (10–30 cm) layer. SOC stocks in the upper (0–10 cm) layer were 11, 19, and 18% higher in the CH, MM, and ML plantations than in the PM plantation. The differences in SOC stock among the four plantations were largely attributed to fine root rather than aboveground litterfall input. However, the soils in the broadleaf plantations contained more decomposable C proportion, indicated by lower percentage of alkyl C, higher percentage of O-alkyl C and lower alkyl C/O-alkyl C ratio compared to those in the PM plantation. Our findings highlight that future strategy of tree species selection for substituting in place of large coniferous plantations in subtropical China needs to consider the potential effects of tree species on the chemical composition in addition to the quantity of SOC stock.  相似文献   

14.
Plantations of exotic fast‐growing tree species have been widely used for maintaining or restoring ecosystem functions. Despite this, in tropical countries with high biodiversity, these plantations have been the subject of heated debate. We evaluated the long‐term effect of coniferous tree plantations (Cupressus lusitanica, Pinus patula, Pinus elliottii) on the ecological rehabilitation of the Andean highlands in Colombia. To determine degree of rehabilitation, we assessed whether there were differences in the structure or density of native understory vegetation or soil ecological properties between plots established within tree plantations and plots established within other vegetation cover types (secondary forests, ferns, pastures, and abandoned mining areas). Measured variables were combined to create an index of ecological rehabilitation (ERI). We found significant differences in the ERI values among vegetation cover types: secondary forest (11.78) > conifer plantations (P. elliottii: 6.23, P. patula: 5.33, C. lusitanica: 5.24) > ferns (4.16) > pasture (2.50) > abandoned mining areas (0.43). The results obtained showed that, from the structure of native understory vegetation and soil ecological properties, conifer plantations favored the rehabilitation process. However, among them, it was highlighted that the P. elliotii plantations showed significant differences in the density of native understory species, their values being 1.7 and 2.1 times higher than those corresponding to P. patula and C. lusitanica, respectively. Thus, unlike these plantations that could represent an ecological barrier over time, P. elliottii plantations have enabled the advancement of natural succession, showing a high diversity of native species.  相似文献   

15.
Carbon accumulation in agricultural soils after afforestation: a meta-analysis   总被引:11,自引:0,他引:11  
Deforestation usually results in significant losses of soil organic carbon (SOC). The rate and factors determining the recovery of this C pool with afforestation are still poorly understood. This paper provides a review of the influence of afforestation on SOC stocks based on a meta-analysis of 33 recent publications (totaling 120 sites and 189 observations), with the aim of determining the factors responsible for the restoration of SOC following afforestation. Based on a mixed linear model, the meta-analysis indicates that the main factors that contribute to restoring SOC stocks after afforestation are: previous land use, tree species planted, soil clay content, preplanting disturbance and, to a lesser extent, climatic zone. Specifically, this meta-analysis (1) indicates that the positive impact of afforestation on SOC stocks is more pronounced in cropland soils than in pastures or natural grasslands; (2) suggests that broadleaf tree species have a greater capacity to accumulate SOC than coniferous species; (3) underscores that afforestation using pine species does not result in a net loss of the whole soil-profile carbon stocks compared with initial values (agricultural soil) when the surface organic layer is included in the accounting; (4) demonstrates that clay-rich soils (> 33%) have a greater capacity to accumulate SOC than soils with a lower clay content (< 33%); (5) indicates that minimizing preplanting disturbances may increase the rate at which SOC stocks are replenished; and (6) suggests that afforestation carried out in the boreal climate zone results in small SOC losses compared with other climate zones, probably because trees grow more slowly under these conditions, although this does not rule out gains over time after the conversion. This study also highlights the importance of the methodological approach used when developing the sampling design, especially the inclusion of the organic layer in the accounting.  相似文献   

16.
Land‐use change can have significant impacts on soil and aboveground carbon (C) stocks and there is a clear need to identify sustainable land uses which maximize C mitigation potential. Land‐use transitions from agricultural to bioenergy crops are increasingly common in Europe with one option being Short Rotation Forestry (SRF). Research on the impact on C stocks of the establishment of SRF is limited, but given the potential for this bioenergy crop in temperate climates, there is an evident knowledge gap. Here, we examine changes in soil C stock following the establishment of SRF using combined short (30 cm depth) and deep (1 m depth) soil cores at 11 sites representing 29 transitions from agriculture to SRF. We compare the effects of tree species including 9 coniferous, 16 broadleaved and 4 Eucalyptus transitions. SRF aboveground and root biomass were also estimated in 15 of the transitions using tree mensuration data allowing assessments of changes in total ecosystem C stock. Planting coniferous SRF, compared to broadleaved and Eucalyptus SRF, resulted in greater accumulation of litter and overall increased soil C stock relative to agricultural controls. Though broadleaved SRF had no overall effect on soil C stock, it showed the most variable response suggesting species‐specific effects and interactions with soil types. While Eucalyptus transitions induced a reduction in soil C stocks, this was not significant unless considered on a soil mass basis. Given the relatively young age and limited number of Eucalyptus plantations, it is not possible to say whether this reduction will persist in older stands. Combining estimates of C stocks from different ecosystem components (e.g., soil, aboveground biomass) reinforced the accumulation of C under coniferous SRF, and indicates generally positive effects of SRF on whole‐ecosystem C. These results fill an important knowledge gap and provide data for modelling of future scenarios of LUC.  相似文献   

17.
Tropical forest conversion to agricultural land leads to a strong decrease of soil organic carbon (SOC) stocks. While the decrease of the soil C sequestration function is easy to measure, the impacts of SOC losses on soil fertility remain unclear. Especially the assessment of the sensitivity of other fertility indicators as related to ecosystem services suffers from a lack of clear methodology. We developed a new approach to assess the sensitivity of soil fertility indicators and tested it on biological and chemical soil properties affected by rainforest conversion to plantations. The approach is based on (non-)linear regressions between SOC losses and fertility indicators normalized to their level in a natural ecosystem. Biotic indicators (basal respiration, microbial biomass, acid phosphatase), labile SOC pools (dissolved organic carbon and light fraction) and nutrients (total N and available P) were measured in Ah horizons from rainforests, jungle rubber, rubber (Hevea brasiliensis) and oil palm (Elaeis guineensis) plantations located on Sumatra. The negative impact of land-use changes on all measured indicators increased in the following sequence: forest < jungle rubber < rubber < oil palm. The basal respiration, microbial biomass and nutrients were resistant to SOC losses, whereas the light fraction was lost stronger than SOC. Microbial C use efficiency was independent on land use. The resistance of C availability for microorganisms to SOC losses suggests that a decrease of SOC quality was partly compensated by litter input and a relative enrichment by nutrients. However, the relationship between the basal respiration and SOC was non-linear; i.e. negative impact on microbial activity strongly increased with SOC losses. Therefore, a small decrease of C content under oil palm compared to rubber plantations yielded a strong drop in microbial activity. Consequently, management practices mitigating SOC losses in oil palm plantations would strongly increase soil fertility and ecosystem stability. We conclude that the new approach enables quantitatively assessing the sensitivity and resistance of diverse soil functions to land-use changes and can thus be used to assess resilience of agroecosystems with various use intensities.  相似文献   

18.
As oil palm has been considered one of the most favorable oilseeds for biodiesel production in Brazil, it is important to understand how cultivation of this perennial crop will affect the dynamics of soil organic carbon (SOC) in the long term. The aim of this study was to evaluate the changes in soil C stocks after the conversion of forest and pasture into oil palm production in the Amazon Region. Soil samples were collected in March 2008 and September 2009 in five areas: native forest (NARF), pasture cultivated for 55 years (PAST), and oil palm cultivated for 4 (OP‐4), 8 (OP‐8) and 25 years (OP‐25), respectively. Soils were sampled in March 2008 to evaluate the spatial variability of SOC and nitrogen (N) contents in relation to the spacing between trees. In September 2009, soils were sampled to evaluate the soil C stocks in the avenues (inter rows) and frond piles, and to compare the total C stocks with natural forest and pasture system. Soil C contents were 22–38% higher in the area nearest the oil palm base (0.6 m) than the average across the inter row (0–4.5 m from the tree), indicating that the increment in soil organic matter (SOM) must have been largely derived from root material. The soil C stocks under palm frond piles were 9–26% higher than in the inter rows, due to inputs of SOM by pruned palm fronds. The soil carbon stocks in oil palm areas, after adjustments for differences in bulk density and clay content across treatments, were 35–46% lower than pasture soil C stocks, but were 0–18% higher than the native forest soil C content. The results found here may be used to improve the life cycle assessment of biodiesel derived from palm oil.  相似文献   

19.
The demand for bioenergy has increased the interest in short‐rotation woody crops (SRWCs) in temperate zones. With increased litter input and ceased annual soil cultivation, SRWC plantations may become soil carbon sinks for climate change mitigation. A chronosequence of 26 paired plots was used to study the potential for increasing soil organic carbon (SOC) under SRWC willow and poplar after conversion from cropland (CR) on well‐drained soils. We estimated SOC stocks in SRWC stands and adjacent CR and related the difference to time since conversion, energy crop species, SOC stock of the adjacent CR (proxy for initial SOC of SRWC) and the fine soil percentage (<63 μm) (FS). Soil cores to 40 cm depth were sampled and separated by layers of fixed depths (0–5, 5–10, 10–15, 15–25 and 25–40 cm). Additionally, soils were sampled from soil pits by genetic horizons to 100 cm depth. Comparisons of SOC stocks by equivalent soil masses showed that mean SOC stocks in SRWC were 1.7 times higher than those of CR in the top 5 cm of the soil (P < 0.001). The differences between SRWC and CR remained significant for the plough layer (0–25 cm) by a factor of 1.2 (P = 0.003), while no changes were detectable for the 0–40 cm (P = 0.32), or for the entire 0–100 cm soil layer (P = 0.29). The SOC stock ratio, that is the ratio of SOC stock in SRWC relative to CR, did not change significantly with time since conversion, although there was a tendency to an increase over time for the top 40 cm (P = 0.09). The SOC stock ratio was negatively correlated to SOC in CR and FS percentage, but there was no significant difference between willow and poplar at any depth. Our results suggest that SOC stocks in the plough layer increase after conversion to SRWC.  相似文献   

20.
In this paper, we focus on the impact on soil organic carbon (SOC) of two dedicated energy crops: perennial grass Miscanthus x Giganteus (Miscanthus) and short rotation coppice (SRC)‐willow. The amount of SOC sequestered in the soil is a function of site‐specific factors including soil texture, management practices, initial SOC levels and climate; for these reasons, both losses and gains in SOC were observed in previous Miscanthus and SRC‐willow studies. The ECOSSE model was developed to simulate soil C dynamics and greenhouse gas emissions in mineral and organic soils. The performance of ECOSSE has already been tested at site level to simulate the impacts of land‐use change to short rotation forestry (SRF) on SOC. However, it has not been extensively evaluated under other bioenergy plantations, such as Miscanthus and SRC‐willow. Twenty‐nine locations in the United Kingdom, comprising 19 paired transitions to SRC‐willow and 20 paired transitions to Miscanthus, were selected to evaluate the performance of ECOSSE in predicting SOC and SOC change from conventional systems (arable and grassland) to these selected bioenergy crops. The results of the present work revealed a strong correlation between modelled and measured SOC and SOC change after transition to Miscanthus and SRC‐willow plantations, at two soil depths (0–30 and 0–100 cm), as well as the absence of significant bias in the model. Moreover, model error was within (i.e. not significantly larger than) the measurement error. The high degrees of association and coincidence with measured SOC under Miscanthus and SRC‐willow plantations in the United Kingdom, provide confidence in using this process‐based model for quantitatively predicting the impacts of future land use on SOC, at site level as well as at national level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号