首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
Hypocotyls of dark-grown seedlings of Ara bidosis thaliana exhibit a strong negative gravitropism, which is reduced by red and also by long-wavelength, far-red light treatments. Light treatments using phytochrome A (phyA)- and phytochrome B (phyB)-deficient mutants showed that this response is controlled by phyB in a red/far-red reversible way, and by phyA in a non-reversible, very-low-fluence response. Crosses of the previously analyzed phyB-1 allele (in the ecotype Landsberg erecta background) to the ecotype Nossen wild-type (WT) background resulted in a WT-like negative gravitropism in darkness, indicating that the previously described gravitropic randomization observed with phyB-1 in the dark is likely due to a second mutation independent of that in the PHYB gene.Abbreviations FR long-wavelength far-red light - phyA phytochrome A (holoprotein) - phyB phytochrome B (holoprotein) - Pr red-absorbing form of phytochrome - WT wild type We thank Dr. A. Nagatani (RIKEN Institute, Wako-City, Japan) and Dr. M. Furuya (Hitachi, Hatoyama, Japan) for the phyA-201/phyB-5 double mutant. The work was supported by Deutsche Forschungsgemeinschaft and Human Frontier Science Program grants to E.S.  相似文献   

2.
The family of phytochrome photoreceptors plays an essential role in regulating plant growth and development in response to the light environment. An antisense PHYB transgene has been introduced into wild-type Arabidopsis and shown to inhibit expression of the PHYB sense mRNA and the phyB phytochrome protein 4- to 5-fold. This inhibition is specific to phyB in that the levels of the four other phytochromes, notably the closely related phyD and phyE phytochromes, are unaffected in the antisense lines. Antisense-induced reduction in phyB causes alterations of red light effects on seedling hypocotyl elongation, rosette leaf morphology, and chlorophyll content, similar to the phenotypic changes caused by phyB null mutations. However, unlike the phyB mutants, the antisense lines do not flower early compared to the wild type. Furthermore, unlike the phyB mutants, the antisense lines do not show a reduction in phyC level compared to the wild type, making it possible to unequivocally associate several of the photomorphogenic effects seen in phyB mutants with phytochrome B alone. These results indicate that an antisense transgene approach can be used to specifically inhibit the expression and activity of a single member of the phytochrome family and to alter aspects of shade avoidance responses in a targeted manner.  相似文献   

3.
A major function of phytochromes in light-grown plants involves the perception of changes in the relative amounts of red and far-red light (R:FR ratio) and the initiation of the shade-avoidance response. In Arabidopsis thaliana, this response is typified by increased elongation growth of petioles and accelerated flowering and can be fully induced by end-of-day far-red light (EOD FR) treatments. Phytochrome B-deficient (phyB) mutants, which have a constitutive elongated-petiole and early-flowering phenotype, do not display a petiole elongation growth response to EOD FR, but they do respond to EOD FR by earlier flowering. Seedlings deficient in both phytochrome A and phytochrome B (phyA phyB), have a greatly reduced stature compared with wild-type or either monogenic mutant. The phyA phyB double null mutants also respond to EOD FR treatments by flowering early, suggesting the operation of novel phytochromes. Contrary to the behaviour of wild-type or monogenic phyA or phyB seedlings, petiole elongation in phyA phyB seedlings is reduced in response to EOD FR treatments. This reduction in petiole elongation is accompanied by the appearance of elongated internodes such that under these conditions the plants no longer display a rosette habit.  相似文献   

4.
In order to test the interaction of different phytochromes and blue-light receptors, etiolated seedlings of wild-type Arabidopsis thaliana (L.) Heynh., a phytochrome (phy) B-overexpressor line (ABO), and the photoreceptor mutants phyA-201, phyB-5, hy4-2.23n, fha-1, phyA-201/phyB-5, and phyA-201/hy4-2.23n were exposed to red and far-red light pulses after various preirradiations. The responsiveness to the inductive red pulses is primarily mediated by phyB which is rather stable in its far-red-absorbing form as demonstrated by a very slow loss of reversibility. Without preirradiation the red pulses had an impact on hypocotyl elongation only in PHYA mutants but not in the wild type. This indicates a suppression of phyB function by the presence of phyA. Preirradiation with either far-red or blue light resulted in an inhibition of hypocotyl elongation by red pulses in the wild type. Responsiveness amplification by far-red light is mediated by phyA and disappears slowly in the dark. The extent of responsiveness amplification by blue light was identical in the wild type and in the absence of phyA, or the cryptochromes cryl (hy4-2.23n) or cry2 (fha-1). Therefore, we conclude that stimulation of phyB by blue light preirradiation is either mediated by an additional still-unidentified blue-light-absorbing pigment or that phyA, cry1 and cry2 substitute for each other completely. Both blue and red preirradiation established responsiveness to red pulses in phyA-201/phyB-5 double mutants. These results demonstrate that inhibition of hypocotyl elongation by red pulses is not only mediated by phyB but also by a phytochrome(s) other than phyA and phyB. Received: 21 July 1998 / Accepted: 7 December 1998  相似文献   

5.
6.

Background

PhyC levels have been observed to be markedly lower in phyB mutants than in Arabidopsis or rice wild type etiolated seedlings, but the mechanism of this phenomenon has not been fully elucidated.

Results

In the present study, we investigated the mechanism by which phyB affects the protein concentration and photo-sensing abilities of phyC and demonstrated that rice phyC exists predominantly as phyB/phyC heterodimers in etiolated seedlings. PHYC-GFP protein was detected when expressed in phyA phyC mutants, but not in phyA phyB mutants, suggesting that phyC requires phyB for its photo-sensing abilities. Interestingly, when a mutant PHYB gene that has no chromophore binding site, PHYB(C364A), was introduced into phyB mutants, the phyC level was restored. Moreover, when PHYB(C364A) was introduced into phyA phyB mutants, the seedlings exhibited de-etiolation under both far-red light (FR) and red light (R) conditions, while the phyA phyB mutants were blind to both FR and R. These results are the first direct evidence that phyC is responsible for regulating seedling de-etiolation under both FR and R. These findings also suggest that phyB is indispensable for the expression and function of phyC, which depends on the formation of phyB/phyC heterodimers.

Significance

The present report clearly demonstrates the similarities and differences in the properties of phyC between Arabidopsis and rice and will advance our understanding of phytochrome functions in monocots and dicots.  相似文献   

7.
Due to the preeminence of reductionist approaches, understanding of plant responses to combined stresses is limited. We speculated that light‐quality signals of neighbouring vegetation might increase susceptibility to heat shocks because shade reduces tissue temperature and hence the likeness of heat shocks. In contrast, plants of Arabidopsis thaliana grown under low‐red/far‐red ratios typical of shade were less damaged by heat stress than plants grown under simulated sunlight. Neighbour signals reduce the activity of phytochrome B (phyB), increasing the abundance of PHYTOCHROME‐INTERACTING FACTORS (PIFs). The phyB mutant showed high tolerance to heat stress even under simulated sunlight, and a pif multiple mutant showed low tolerance under simulated shade. phyB and red/far‐red ratio had no effects on seedlings acclimated with nonstressful warm temperatures before the heat shock. The phyB mutant showed reduced expression of several fatty acid desaturase (FAD) genes and less proportion of fully unsaturated fatty acids and electrolyte leakage of membranes exposed to heat shocks. Red‐light‐activated phyB also reduced thermotolerance of dark‐grown seedlings but not via changes in FADs expression and membrane stability. We propose that the reduced photosynthetic capacity linked to thermotolerant membranes would be less costly under shade, where the light input limits photosynthesis.  相似文献   

8.
Type II phytochromes (phy) in Arabidopsis form homodimers and heterodimers, resulting in a diverse collection of light‐stable red/far‐red (R/FR) sensing photoreceptors. We describe an in vivo protein engineering system and its use in characterizing the activities of these molecules. Using a phyB null mutant background, singly and doubly transgenic plants were generated that express fusion proteins containing the phyB–phyE N–terminal photosensory regions (NB–NE PSRs), a nuclear localization sequence, and small yeast protein domains that mediate either homodimerization or heterodimerization. Activity of NB/NB homodimers but not monomeric NB subunits in control of seedling and adult plant responses to R light is demonstrated. Heterodimers of the NB sequence with the chromophoreless NBC357S sequence, which mimic phyB Pfr/Pr photo‐heterodimers, mediate R sensitivity in leaves and petioles but not hypocotyls. Homodimerization of the NC, ND and NE sequences and directed heterodimerization of these photosensory regions with the NB region reveal form‐specific R‐induced activities for different type II phy dimers. The experimental approach developed here of directed assembly of defined protein dimer combinations in vivo may be applicable to other systems.  相似文献   

9.
In several species, seed germination is regulated by light in a way that restricts seedling emergence to the environmental conditions that are likely to be favourable for the success of the new individual, and therefore, this behaviour is recognized to have adaptive value. The phytochromes are one of the most relevant photoreceptors involved in light perception by plants. We explored the redundancy and diversity functions of the phytochrome family in the control of seed responsiveness to light and gibberellins (GA) by using a set of phytochrome mutants of Arabidopsis. Our data show that, in addition to the well‐known role of phyB in the promotion of germination in response to high red to far‐red ratios (R/FR), phyE and phyD stimulate germination at very low R/FR ratios, probably by promoting the action of phyA. Further, we show that phyC regulates negatively the seed responsiveness to light, unravelling unexpected functions for phyC in seed germination. Finally, we find that seed responsiveness to GA is mainly controlled by phyB, with phyC, phyD and phyE having relevant roles when acting in a phyB‐deficient background. Our results indicate that phytochromes have multiple and complex roles during germination depending on the active photoreceptor background.  相似文献   

10.
We report that phytochrome B (phyB) mutants exhibit improved drought tolerance compared to wild type (WT) rice (Oryza sativa L. cv. Nipponbare). To understand the underlying mechanism by which phyB regulates drought tolerance, we analyzed root growth and water loss from the leaves of phyB mutants. The root system showed no significant difference between the phyB mutants and WT, suggesting that improved drought tolerance has little relation to root growth. However, phyB mutants exhibited reduced total leaf area per plant, which was probably due to a reduction in the total number of cells per leaf caused by enhanced expression of Orysa;KRP1 and Orysa;KRP4 (encoding inhibitors of cyclin-dependent kinase complex activity) in the phyB mutants. In addition, the developed leaves of phyB mutants displayed larger epidermal cells than WT leaves, resulting in reduced stomatal density. phyB deficiency promoted the expression of both putative ERECTA family genes and EXPANSIN family genes involved in cell expansion in leaves, thus causing greater epidermal cell expansion in the phyB mutants. Reduced stomatal density resulted in reduced transpiration per unit leaf area in the phyB mutants. Considering all these findings, we propose that phyB deficiency causes both reduced total leaf area and reduced transpiration per unit leaf area, which explains the reduced water loss and improved drought tolerance of phyB mutants.  相似文献   

11.
During seedling establishment, blue and red light suppress hypocotyl growth through the cryptochrome 1 (cry1) and phytochrome B (phyB) photosensory pathways, respectively. How these photosensory pathways integrate with growth control mechanisms to achieve the appropriate degree of stem elongation was investigated by combining cry1 and phyB photoreceptor mutations with genetic manipulations of a multidrug resistance‐like membrane protein known as ABCB19 that influenced auxin distribution within the plant, as evidenced by a combination of reporter gene assays and direct auxin measurements. Auxin signaling and ABCB19 protein levels, hypocotyl growth rates, and apical hook opening were measured in mutant and wild‐type seedlings exposed to a range of red and blue light conditions. Ectopic/overexpression of ABCB19 (B19OE) greatly increased auxin in the hypocotyl, which reduced the sensitivity of hypocotyl growth specifically to blue light in long‐term assays and red light in high‐resolution, short‐term assays. Loss of ABCB19 partially suppressed the cry1 hypocotyl growth phenotype in blue light. Hypocotyl growth of B19OE seedlings in red light was very similar to phyB mutants. Altered auxin distribution in B19OE seedlings also affected the opening of the apical hook. The cry1 and phyB photoreceptor mutations both increased ABCB19 protein levels at the plasma membrane, as measured by confocal microscopy. The B19OE plant proved to be a useful tool for determining aspects of the mechanism by which light, acting through cry1 or phyB, influences the auxin transport process to control hypocotyl growth during de‐etiolation.  相似文献   

12.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

13.
Boron (B) is an essential microelement for vascular plant development, but its toxicity is a major problem affecting crop yields in arid and semi‐arid areas of the world. In the literature, several genes involved in abscisic acid (ABA) signalling and responses are upregulated in Arabidopsis roots after treatment with excess B. It is known that the AtNCED3 gene, which encodes a crucial enzyme for ABA biosynthesis, plays a key role in the plant response to drought stress. In this study, root AtNCED3 expression and shoot ABA content were rapidly increased in wild‐type plants upon B‐toxicity treatment. The Arabidopsis ABA‐deficient nced3‐2 mutant had higher transpiration rate, stomatal conductance and accumulated more B in their shoots than wild‐type plants, facts that were associated with the lower levels of ABA in this mutant. However, in wild‐type plants, B toxicity caused a significant reduction in stomatal conductance, resulting in a decreased transpiration rate. This response could be a mechanism to limit the transport of excess B from the roots to the leaves under B toxicity. In agreement with the higher transpiration rate of the nced3‐2 mutant, this genotype showed an increased leaf B concentration and damage upon exposure to 5 mM B. Under B toxicity, ABA application decreased B accumulation in wild‐type and nced3‐2 plants. In summary, this work shows that excess B applied to the roots leads to rapid changes in AtNCED3 expression and gas exchange parameters that would contribute to restrain the B entry into the leaves, this effect being mediated by ABA.  相似文献   

14.
The roles of phytochrome A (phyA), phytochrome B (phyB) and a putative blue-light (BL) photoreceptor (HY4) in the control of hypocotyl growth by natural radiation were investigated using phyA, phyB and hy4 mutants of Arabidopsis thaliana. Full sunlight inhibited hypocotyl growth to a larger extent in wild-type (WT) than in phyA, phyB and, particularly, hy4 seedlings. In WT seedlings, hypocotyl growth was promoted by selectively lowering BL irradiance, lowering red-light (R) plus far-red-light (FR) irradiance or lowering the R/FR ratio (which was achieved either by increasing FR or by reducing R). The effects of lowering BL were reduced in hy4 and exaggerated in phyA seedlings. The effects of lowering R+FR were reduced in phyA and exaggerated in hy4 seedlings. Neither phyB nor hy4 mutants responded to low R/FR ratios. Neighbouring plants reflecting FR without shading caused subtle reductions of the R/FR ratio. This signal promoted hypocotyl growth in WT but not in phyA, phyB or hy4 seedlings. Intermediate canopy shade produced similar effects in all genotypes. Under deep shade, de-etiolation was severely impaired in phyA seedlings, which died prematurely. Thus, the FR ‘high-irradiance reaction’ mediated by phyA could be important for seedling survival under dense canopies.  相似文献   

15.
The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild‐type, a full‐deficient mutant and four under‐producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well‐watered plants; and withholding irrigation on pot‐grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA‐deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild‐type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl.  相似文献   

16.
Dual effect of phytochrome A on hypocotyl growth under continuous red light   总被引:5,自引:1,他引:4  
The role of phytochrome A in the control of hypocotyl growth under continuous red light (Rc) was investigated using phyA and phyB mutants of Arabidopsis thaliana, which lack phytochrome A (phyA) or phytochrome B (phyB), respectively, and transgenic seedlings of Nicotiana tabacum overexpressing Avena phyA, compared to the corresponding wild type (WT). In WT seedlings of A. thaliana, hypocotyl growth inhibition showed a biphasic response to the fluence rate of Rc, with a brake at 10?2μmol m?2 s?1. At equal total fluence rate, hourly pulses of red light caused slightly more inhibition than Rc. The response to very low fluences of continuous or pulsed red light was absent in the phyA and phyA phyB mutants and present in the phyB mutant. The second part of the response was steeper in the phyA mutant than in the WT but was absent in the phyB mutant. In WT tobacco the response to Rc was biphasic. Overexpression of Avena phyA enhanced the response only at very low fluence rates of Rc (< 10?2μmol m?2 s?1). In both species, the effect of hourly pulses of far-red light was similar to the maximum inhibition observed in the first phase of the response to Rc. Using reciprocity failure (i.e. higher inhibition under continuous than pulsed light) as the operational criterion, a ‘true’ high-irradiance reaction occurred under continuous far-red light but not under Rc or red plus far-red light mixtures. Native and overexpressed phyA are proposed to mediate very low fluence responses under Rc. In WT A. thaliana, this effect is counteracted by a negative action of phyA on phyB-mediated low-fluence responses.  相似文献   

17.
18.
19.
Etiolated seedlings of wild‐type wheat and a transgenic line overexpressing an oat PHYA gene were investigated by the use of in situ low‐temperature fluorescence spectroscopy. The red‐absorbing phytochrome form, Pr, was characterized by (1) fluorescence emission spectrum; (2) total phytochrome content, and (3) by the extent of the Pr → lumi‐R photoconversion at low temperature (γ1), and of the Pr → Pfr photoconversion at ambient temperature (γ2) as derived from emission data. All the characteristics were shown to be variable and to depend on (1) organ and tissue used; (2) seedling age; (3) transgenic wheat modification, and (4) continuous far‐red irradiation of seedlings during their growth. These variations were interpreted in terms of the existence in wheat seedlings of the two phenomenological Pr types: (a), Pr′– major longer wavelength (687/673 nm, emission/absorption maxima) variable and light‐labile with γ1 ≈ 0·5; and (b), Pr′′– minor, shorter wavelength (682/668 nm), relatively constant with its concentration not changing significantly with the increase of total phytochrome content in tissues and light‐stable with γ1 ≤ 0·05–0·1. Overexpression of oat phyA increases primarily the content of Pr′ suggesting that it is comprised of phyA (phyA′) whereas Pr′′ is believed to consist of the minor phyA fraction (phyA′′) and phyB. The transgenic wheat line has been demonstrated to have a modified phenotype – the appearance of the far‐red high irradiance reaction (FR‐HIR) (Shlumukov et al. Plant, Cell and Environment 24, 703–712). The increased content of phyA′ in the transgenic line, whereas the total [phyA′′ + phyB] remains the same as in the wild type, indicates that the phyA′ pool is primarily responsible for the observed modification of the phenotype and suggests that even in wild‐type plants the phyA′ component of the phyA pool may mediate the FR‐HIR.  相似文献   

20.
Underground roots normally reside in darkness. However, they are often exposed to ambient light that penetrates through cracks in the soil layers which can occur due to wind, heavy rain or temperature extremes. In response to light exposure, roots produce reactive oxygen species (ROS) which promote root growth. It is known that ROS‐induced growth promotion facilitates rapid escape of the roots from non‐natural light. Meanwhile, long‐term exposure of the roots to light elicits a ROS burst, which causes oxidative damage to cellular components, necessitating that cellular levels of ROS should be tightly regulated in the roots. Here we demonstrate that the red/far‐red light photoreceptor phytochrome B (phyB) stimulates the biosynthesis of abscisic acid (ABA) in the shoots, and notably the shoot‐derived ABA signals induce a peroxidase‐mediated ROS detoxification reaction in the roots. Accordingly, while ROS accumulate in the roots of the phyb mutant that exhibits reduced primary root growth in the light, such an accumulation of ROS did not occur in the dark‐grown phyb roots that exhibited normal growth. These observations indicate that mobile shoot‐to‐root ABA signaling links shoot phyB‐mediated light perception with root ROS homeostasis to help roots adapt to unfavorable light exposure. We propose that ABA‐mediated shoot‐to‐root phyB signaling contributes to the synchronization of shoot and root growth for optimal propagation and performance in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号