首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different components of heritability, including genetic variance (VG), are influenced by environmental conditions. Here, we assessed phenotypic responses of life‐history traits to two different developmental conditions, temperature and food limitation. The former represents an environment that defines seasonal polyphenism in our study organism, the tropical butterfly Bicyclus anynana, whereas the latter represents a more unpredictable environment. We quantified heritabilities using restricted maximum likelihood (REML) procedures within an “Information Theoretical” framework in a full‐sib design. Whereas development time, pupal mass, and resting metabolic rate showed no genotype‐by‐environment interaction for genetic variation, for thorax ratio and fat percentage the heritability increased under the cool temperature, dry season environment. Additionally, for fat percentage heritability estimates increased under food limitation. Hence, the traits most intimately related to polyphenism in B. anynana show the most environmental‐specific heritabilities as well as some indication of cross‐environmental genetic correlations. This may reflect a footprint of natural selection and our future research is aimed to uncover the genes and processes involved in this through studying season and condition‐dependent gene expression.  相似文献   

2.
The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range‐wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal‐related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among‐population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal‐related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range‐wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations.  相似文献   

3.
1. Individual movement behaviour governs several routine processes, and may scale up to important ecological processes, including dispersal. However, movement is affected by a wealth of factors, including abiotic conditions, flight performance, and behavioural traits. Although it has been historically assumed that insect flight is in the first place ruled by physiology and morphology, researchers have only recently begun to understand the potentially important role of behavioural traits. 2. This study aims to disentangle the relative importance of thermal conditions during development, and especially flight performance (capacity), versus behaviour (intrinsic motivation) in relation to movement attributes (i.e. time until take‐off, number of positions visited) under controlled laboratory conditions in the tropical butterfly Bicyclus anynana. 3. As predicted, links were found between flight performance (forced flight) and morphological traits (body size). However, this link was less pronounced for movement and exploratory behaviour, suggesting a more pronounced role of intrinsic motivation on the actual decision to move, or not. Thus, flight performance and movement may not be intimately associated. 4. Flight behaviour was mainly determined by sexual differences, with males showing better flight performance, higher mobility, and enhanced exploration than females. 5. Lower developmental temperatures increased thorax–abdomen ratio, thorax mass, and exploratory behaviour, and decreased wing loading. This may potentially aid flight capacity under thermally challenging conditions. 6. This study adds to the growing evidence that behavioural traits should not be neglected when investigating movement and dispersal, as they may well play a crucially important role.  相似文献   

4.
Here, we aimed at estimating sex‐specific heritabilities of cell‐mediated immune response (CMI) in the blue tit nestlings (Cyanistes caeruleus). To separate genetic and environmental components of the phenotypic variance in CMI (measured using phytohaemagglutinin assay), we performed a cross‐fostering experiment. Additionally, controlled environmental variation was introduced by enlarging some broods. Our analyses revealed a significant genetic component (as approximated by the nest‐of‐origin term) of the phenotypic variance in immune response. More importantly, these genetic effects differed between sexes and experimentally manipulated brood sizes, as indicated by significant genotype‐by‐sex and genotype‐by‐environment interactions. We discuss possible causes of such sexual dimorphism in gene expression and suggest that sex‐ and environment‐specific genetic interactions may contribute to the maintenance of genetic variability in traits related to immune functions.  相似文献   

5.
We present a novel perspective on life‐history evolution that combines recent theoretical advances in fluctuating density‐dependent selection with the notion of pace‐of‐life syndromes (POLSs) in behavioural ecology. These ideas posit phenotypic co‐variation in life‐history, physiological, morphological and behavioural traits as a continuum from the highly fecund, short‐lived, bold, aggressive and highly dispersive ‘fast’ types at one end of the POLS to the less fecund, long‐lived, cautious, shy, plastic and socially responsive ‘slow’ types at the other. We propose that such variation in life histories and the associated individual differences in behaviour can be explained through their eco‐evolutionary dynamics with population density – a single and ubiquitous selective factor that is present in all biological systems. Contrasting regimes of environmental stochasticity are expected to affect population density in time and space and create differing patterns of fluctuating density‐dependent selection, which generates variation in fast versus slow life histories within and among populations. We therefore predict that a major axis of phenotypic co‐variation in life‐history, physiological, morphological and behavioural traits (i.e. the POLS) should align with these stochastic fluctuations in the multivariate fitness landscape created by variation in density‐dependent selection. Phenotypic plasticity and/or genetic (co‐)variation oriented along this major POLS axis are thus expected to facilitate rapid and adaptively integrated changes in various aspects of life histories within and among populations and/or species. The fluctuating density‐dependent selection POLS framework presented here therefore provides a series of clear testable predictions, the investigation of which should further our fundamental understanding of life‐history evolution and thus our ability to predict natural population dynamics.  相似文献   

6.
The light brown apple moth, Epiphyas postvittana (Walker) shows high intraspecific variability in morphological, physiological, demographic and behavioural characters. To gain insight into the extent of adaptation and evolutionary changes in response to environmental heterogeneity in this species, quantitative genetic analyses of life‐history variation were conducted for two natural populations under two thermal conditions (23°C and 28°C). Paternal half‐sib heritability and genetic correlation in six life‐history traits (i.e. development time, adult body weight, adult lifespan, age at first reproduction, the number of eggs laid during the first 5 days after emergence, and total fecundity) were compared. Significant heritabilities were shown consistently in development time; this is also true for adult body weight, except for the Canberra population at 23°C. However, neither population differences nor the effect of temperature were statistically detectable for any of these heritabilities, confirming the genetically determined flexibility. Positive genetic correlations between development time and adult body weight, and negative genetic correlations between the number of eggs laid during the first 5 days and adult lifespan were present for these populations at both temperatures, indicating the presence of genetic constraints. Pairwise comparisons of genetic correlations revealed the heterogeneity of the two populations and across temperatures. These results suggest that the structure of genetic covariance might have changed significantly during the divergence of natural populations and in response to the alteration of environmental conditions in E. postvittana.  相似文献   

7.
Arnaud Monty  Grégory Mahy 《Oikos》2010,119(10):1563-1570
In introduced organisms, dispersal propensity is expected to increase during range expansion. This prediction is based on the assumption that phenotypic plasticity is low compared to genetic diversity, and an increase in dispersal can be counteracted by the Allee effect. Empirical evidence in support of these hypotheses is however lacking. The present study tested for evidence of differentiation in dispersal‐related traits and the Allee effect in the wind‐dispersed invasive Senecio inaequidens (Asteraceae). We collected capitula from individuals in ten field populations, along an invasion route including the original introduction site in southern France. In addition, we conducted a common garden experiment from field‐collected seeds and obtained capitula from individuals representing the same ten field populations. We analysed phenotypic variation in dispersal traits between field and common garden environments as a function of the distance between populations and the introduction site. Our results revealed low levels of phenotypic differentiation among populations. However, significant clinal variation in dispersal traits was demonstrated in common garden plants representing the invasion route. In field populations, similar trends in dispersal‐related traits and evidence of an Allee effect were not detected. In part, our results supported expectations of increased dispersal capacity with range expansion, and emphasized the contribution of phenotypic plasticity under natural conditions.  相似文献   

8.
Understanding the genetic basis of phenotypic variation is essential for predicting the direction and rate of phenotypic evolution. We estimated heritabilities and genetic correlations of morphological (fork length, pectoral and pelvic fin ray counts, and gill arch raker counts) and life-history (egg number and individual egg weight) traits of pink salmon (Oncorhynchus gorbuscha) from Likes Creek, Alaska, in order to characterize the genetic basis of phenotypic variation in this species. Families were created from wild-caught adults, raised to the fry stage in the lab, released into the wild, and caught as returning adults and assigned to families using microsatellite loci and a growth hormone locus. Morphological traits were all moderately to highly heritable, but egg number and egg weight were not heritable, suggesting that past selection has eliminated additive genetic variation in egg number and egg weight or that there is high environmental variance in these traits. Genetic correlations were similar for nonadjacent morphological traits and adjacent traits. Genetic correlations predicted phenotypic correlations fairly accurately, but some pairs of traits with low genetic correlations had high phenotypic correlations, and vice versa, emphasizing the need to use caution when using phenotypic correlations as indices of genetic correlations. This is one of only a handful of studies to estimate heritabilities and genetic correlations for a wild population.  相似文献   

9.
Four external skeletal and three feather dimensions were measured on adult collared flycatchers (Ficedula albicollis) and their adult offspring. By using mid-offspring-midparent regressions, all traits were found to be heritable with an arithmetic mean heritability of 0.46. Heritability estimates from full-sib analyses were about 1.5 times higher (mean 0.67), indicating that variation in traits was affected by shared nest environment among full-sibs. The overall body size as measured by principal component one (PC1) was found to be heritable (h2 = 0.40). However, this multivariate measure of heritability was not significant in offspring-father comparison, while highly so in offspring-mother comparison (h2 = 0.60). Low offspring-father resemblance was evident also in univariate estimates of heritability. Possible causes of this (extra-pair copulations, maternal effects, sex-linked variance) are discussed. Genetic correlations among seven traits were estimated to be low (mean 0.22), and of similar magnitude or higher than phenotypic correlations (mean 0.18). All genetic correlations were positive. Genetic and phenotypic correlations as well as covariances were fairly similar to each other (r = 0.85 and r = 0.87, respectively). Environmental correlations did not follow the pattern of genetic correlations (r = 0.11), but were more similar to phenotypic correlations (r = 0.60). Given the low genetic correlations and moderate heritabilities, the overall conclusion is that the external morphology of collared flycatchers is largely under additive genetic control and that there is a strong potential for evolutionary change in morphology even under complex multivariate selection.  相似文献   

10.
A number of studies have shown that in several animal species females prefer dominant males as mating partners, but fewer attempts have been made to measure possible indirect benefits of this choice. One reason for this may be that, even though dominance is a widely used concept, the definition of dominance still remains controversial Furthermore, defining and measuring the heritability of social behaviors is problematic because they are not individual traits but, by definition, involve interactions between at least two individuals. In this study we estimated heritabilities and coefficients of additive genetic variances (CVA) for male traits that are closely associated with dominance and female mating preferences in bank voles (Clethrionomys glareolus). The heritability values were estimated using father-offspring regression. All heritability estimates were relatively high ranging from 0.531 (urine marking) to 0.767 (preputial glands). The CVA-values indicated high levels of additive genetic variance especially in the characters most closely related to dominance: the weight of preputial glands and urine marking behavior. All phenotypic correlations among the traits measured were significantly positive and the genetic correlations were of similar magnitude as the corresponding phenotypic counterparts. Even though heritabilities may be lower in the natural environment than under controlled laboratory conditions, our results suggest that characters closely related to dominance may be at least partly genetically determined.  相似文献   

11.
Evolutionary theory is primarily concerned with genetic processes, yet empirical testing of this theory often involves data collected on phenotypes. To make this tenable, the implicit assumption is often made that phenotypic patterns are good predictors of genetic patterns; an assumption that coined the phenotypic gambit. Although this assumption has been validated for traits with high heritability, such as morphology, its generality for traits with low heritabilities, such as life-history and behavioural traits, remains controversial. Using a large-scale cross-fostering experiment, we were able to measure genetic, common environmental and phenotypic correlations between four colour traits and two skeletal traits in a wild population of passerine birds, the blue tit (Parus caeruleus). Colour traits had little heritable variation but common environment effects were found to be important; skeletal traits showed the opposite pattern. Positive correlations because of a shared natal environment were found between all traits, obscuring negative genetic correlations between some colour and skeletal traits. Consequently, phenotypic patterns were poor surrogates for genetic patterns and we suggest that this may be common if trade-offs or substantial parental effects exist. For this group of traits, the phenotypic gambit cannot be made and we suggest caution when inferring genetic patterns from phenotypic data, especially for behavioural and life-history traits.  相似文献   

12.
T Leinonen  J M Cano  J Meril? 《Heredity》2011,106(2):218-227
Sexual dimorphism (SD) in morphological, behavioural and physiological features is common, but the genetics of SD in the wild has seldom been studied in detail. We investigated the genetic basis of SD in morphological traits of threespine stickleback (Gasterosteus aculeatus) by conducting a large breeding experiment with fish from an ancestral marine population that acts as a source of morphological variation. We also examined the patterns of SD in a set of 38 wild populations from different habitats to investigate the relationship between the genetic architecture of SD of the marine ancestral population in relation to variation within and among natural populations. The results show that genetic architecture in terms of heritabilities, additive genetic variances and covariances (as well as correlations) is very similar in the two sexes in spite of the fact that many of the traits express significant SD. Furthermore, population differences in threespine stickleback body shape and armour SD appear to have evolved despite constraints imposed by genetic architecture. This implies that constraints for the evolution of SD imposed by strong genetic correlations are not as severe and absolute as commonly thought.  相似文献   

13.
Do genetic correlations among phenotypic characters reflect developmental organization or functional coadaptation of the characters? We test these hypotheses for the wing melanin pattern of Pieris occidentalis butterflies, by comparing estimated genetic correlations among wing melanin characters with a priori predictions of the developmental organization and the functional (thermoregulatory) organization of melanin pattern. There were significant broad-sense heritabilities and significant genetic correlations for most melanin characters. Matrix correlation tests revealed significant agreement between the observed genetic correlations and both developmental and functional predictions in most cases; this occurred even when the overlap between developmental and functional predictions was eliminated. These results suggest that both developmental organization and functional coadaptation among melanin characters influence the genetic correlation structure of melanin pattern in this species. These results have two important implications for the evolution of melanin pattern in P. occidentalis and other butterflies: 1) most phenotypic variation in pattern may reflect variation among, rather than within, sets of developmentally homologous wing melanin characters; and 2) in a changing selective environment, genetic correlations may retard the disruption of functionally coupled melanin characters, thus affecting the evolutionary response to selection.  相似文献   

14.
Speciation involves divergence at genetic and phenotypic levels. Where substantial genetic differentiation exists among populations, examining variation in multiple phenotypic characters may elucidate the mechanisms by which divergence and speciation unfold. Previous work on the Australian funnel‐web spider Atrax sutherlandi Gray (2010; Records of the Australian Museum 62 , 285–392; Mygalomorphae: Hexathelidae: Atracinae) has revealed a marked genetic structure along a 110‐kilometer transect, with six genetically distinct, parapatric populations attributable to past glacial cycles. In the present study, we explore variation in three classes of phenotypic characters (metabolic rate, water loss, and morphological traits) within the context of this phylogeographic structuring. Variation in metabolic and water loss rates shows no detectable association with genetic structure; the little variation observed in these rates may be due to the spiders’ behavioral adaptations (i.e., burrowing), which buffer the effects of climatic gradients across the landscape. However, of 17 morphological traits measured, 10 show significant variation among genetic populations, in a disjunct manner that is clearly not latitudinal. Moreover, patterns of variation observed for morphological traits serving different organismic functions (e.g., prey capture, burrowing, and locomotion) are dissimilar. In contrast, a previous study of an ecologically similar sympatric spider with little genetic structure indicated a strong latitudinal response in 10 traits over the same range. The congruence of morphological variation with deep phylogeographic structure in Tallaganda's A. sutherlandi populations, as well as the inconsistent patterns of variation across separate functional traits, suggest that the spiders are likely in early stages of speciation, with parapatric populations independently responding to local selective forces.  相似文献   

15.
We examined the relationship of three aspects of development, phenotypic plasticity, genetic correlations among traits, and developmental noise, for thorax length, wing length, and number of sternopleural bristles in Drosophila melanogaster. We used 14 lines which had previously been selected on either thorax length or plasticity of thorax length in response to temperature. A half-sib mating design was used and offspring were raised at 19° C or 25° C. We found that genetic correlations were stable across temperatures despite the large levels of plasticity of these traits. Plasticities were correlated among developmentally related traits, thorax and wing length, but not among unrelated traits, lengths and bristle counts. Amount of developmental noise, measured as fluctuating asymmetry and within-environmental variation, was positively correlated with amount of plasticity only for some traits, thorax length and bristle number, and only at one temperature, 25° C.  相似文献   

16.
Describing and quantifying animal personality is now an integral part of behavioural studies because individually distinctive behaviours have ecological and evolutionary consequences. Yet, to fully understand how personality traits may respond to selection, one must understand the underlying heritability and genetic correlations between traits. Previous studies have reported a moderate degree of heritability of personality traits, but few of these studies have either been conducted in the wild or estimated the genetic correlations between personality traits. Estimating the additive genetic variance and covariance in the wild is crucial to understand the evolutionary potential of behavioural traits. Enhanced environmental variation could reduce heritability and genetic correlations, thus leading to different evolutionary predictions. We estimated the additive genetic variance and covariance of docility in the trap, sociability (mirror image stimulation), and exploration and activity in two different contexts (open‐field and mirror image simulation experiments) in a wild population of yellow‐bellied marmots (Marmota flaviventris). We estimated both heritability of behaviours and of personality traits and found nonzero additive genetic variance in these traits. We also found nonzero maternal, permanent environment and year effects. Finally, we found four phenotypic correlations between traits, and one positive genetic correlation between activity in the open‐field test and sociability. We also found permanent environment correlations between activity in both tests and docility and exploration in the MIS test. This is one of a handful of studies to adopt a quantitative genetic approach to explain variation in personality traits in the wild and, thus, provides important insights into the potential variance available for selection.  相似文献   

17.
When females mate polyandrously, male reproductive success depends both on the male's ability to attain matings and on his ability to outcompete rival males in the fertilization of ova post‐copulation. Increased investment in  ejaculate components may trade off with investment in precopulatory traits due to resource allocation. Alternatively, pre‐ and post‐copulatory traits could be positively related if individuals can afford to invest heavily in traits advantageous at both episodes of selection. There is empirical evidence for both positive and negative associations between pre‐ and post‐copulatory episodes, but little is known about the genetic basis of these correlations. In this study, we measured morphological, chemical and behavioural precopulatory male traits and investigated their relationship with measures of male fitness (male mating success, remating inhibition and offensive sperm competitiveness) across 40 isofemale lines of Drosophila melanogaster. We found significant variation among isofemale lines, indicating a genetic basis for most of the traits investigated. However, we found weak evidence for genetic correlations between precopulatory traits and our indices of male fitness. Moreover, pre‐ and post‐copulatory episodes of selection were uncorrelated, suggesting selection may act independently at the different episodes to maximize male reproductive success.  相似文献   

18.
Jatropha curcas L. (jatropha) is an undomesticated plant, which has received great attention in recent years for its potential in biofuel production and in greening and rehabilitation of wastelands. Yet the absence of improved cultivars and the lack of agronomic knowledge are limiting factors for successful jatropha cultivation. The objectives of the present study were to investigate the perspectives of a worldwide jatropha breeding program and specifically to (i) estimate variance components and heritabilities for agronomic and quality traits in the early phase of cultivation; (ii) assess phenotypic and genetic correlations among those traits; and (iii) discuss strategies for breeding high yielding jatropha cultivars. Data on various traits was collected from 375 jatropha genotypes, which were tested at seven locations during the first 3 years of growth. The accumulated seed yields and the seed yields per harvest year differed significantly among the testing locations. The estimates of genetic and genotype‐by‐environment interaction variances were significant and estimates of heritabilities were high for all yield parameters. The estimates of genetic correlations indicated a strong association among yield parameters. Oil yield was strongly correlated with seed yield and only weakly with oil content in seeds. The perspectives of a jatropha breeding program are excellent. Improved cultivars, definition of favorable environmental factors and refinement of agronomic management practices are needed to secure sustainable jatropha cultivation.  相似文献   

19.
This paper integrates genetical studies of variation in the wing patterns of Lepidoptera with experimental investigations of developmental mechanisms. Research on the tropical butterfly,Bicyclus anynana, is described. This work includes artificial selection of lines with different patterns of wing eyespots followed by grafting experiments on the lines to examine the phenotypic and genetic differences in terms of developmental mechanisms. The results are used to show how constraints on the evolution of this wing pattern may be related to the developmental organisation. The eyespot pattrn can be envisaged as a set of developmental homologues; a common developmental mechanism is associated with a quantitative genetic system involving high genetic correlations. However, individual genes which influence only subsets of the eyespots, thus uncoupling the interdependence of the eyespots, may be important in evolutionary change. The postulated evolutionary constraints are illustrated with respect to differences in wing pattern found among other species ofBicyclus.  相似文献   

20.
Knowledge of the genetic and environmental influences on a character is pivotal for understanding evolutionary changes in quantitative traits in natural populations. Dominance and aggression are ubiquitous traits that are selectively advantageous in many animal societies and have the potential to impact the evolutionary trajectory of animal populations. Here we provide age‐ and sex‐specific estimates of additive genetic and environmental components of variance for dominance rank and aggression rate in a free‐living, human‐habituated bird population subject to natural selection. We use a long‐term data set on individually marked greylag geese (Anser anser) and show that phenotypic variation in dominance‐related behaviours contains significant additive genetic variance, parental effects and permanent environment effects. The relative importance of these variance components varied between age and sex classes, whereby the most pronounced differences concerned nongenetic components. In particular, parental effects were larger in juveniles of both sexes than in adults. In paired adults, the partner's identity had a larger influence on male dominance rank and aggression rate than in females. In sex‐ and age‐specific estimates, heritabilities did not differ significantly between age and sex classes. Adult dominance rank was only weakly genetically correlated between the sexes, leading to considerably higher heritabilities in sex‐specific estimates than across sexes. We discuss these patterns in relation to selection acting on dominance rank and aggression in different life history stages and sexes and suggest that different adaptive optima could be a mechanism for maintaining genetic variation in dominance‐related traits in free‐living animal populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号