首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human‐altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral‐dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio‐temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human‐altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change.  相似文献   

2.
《Ecological Engineering》2005,24(1-2):121-133
In different habitat types of the former coal mining area of Lower Lusatia, distribution and abundance of species of various arthropod groups was studied as to the colonization dynamics and the formation of community patterns. Heteroptera, Auchenorrhyncha, different groups of Coleoptera, Araneida, and Orthoptera were included in the study. In total, about 850 species were captured by pitfall trapping and sweepnet sampling. A detailed analysis of species–environment-relations was performed by means of gradient and eigenvector analysis (DCA, CCA). It is shown that colonization of bare sand habitats, pioneer vegetation with ruderal herbs, short grass prairie with Corynephorus and xerophytic herbs, tall grass prairie with Calamagrostis, and shrubs takes place rather quickly. In all the analysed habitats an adequate degree of the colonization was attained by the studied groups. Both the formation of patterns of species assemblages and population dynamics in upper layers of vegetation mainly depend on the patterns of plant communities and vegetation architecture. In lower layers micro-climatic conditions as well as abiotic soil parameters were shown to be of special importance. Differences of community patterns between predators and mainly phytophagous arthropod groups were discussed.  相似文献   

3.
Indicator classifications help us to focus on the most relevant groups of species in monitoring the effects of land use changes on biodiversity. We studied changes in distribution area of 74 butterfly species preferring one of the three common habitats of boreal agricultural landscapes: semi-natural grasslands (35 species), arable field margins (7) and forest edges (32). Using extensive atlas data from four time periods during the last 50 years in Finland, we quantified trends in the occupancy of the species in 10 km grid squares, and classified them into four classes: declining (23), stable (17), increasing (27) and fluctuating (7) species. Trends among the species favouring three habitats were different: 60% of the species of semi-natural grasslands had declined, whereas 86% of the species typical of open field margins had increased. An increase also predominated in species associated with forest edges. Declining and increasing species differed in three ecological characteristics: increasing species were more mobile, utilized a wider range of habitats and, based on their larval host plants, lived in more eutrophic habitats than declining species. Species overwintering as adults showed more positive trends in occupancy than species overwintering as eggs, larvae or pupae. Observed trends in occupancy are in good agreement with long-term changes in land use and habitat availability in Finland: a long-continued decrease in the area of semi-natural grasslands and an increased amount of open forest edges and clearings due to modern forestry during the past 50 years.  相似文献   

4.
Anthropogenic landscapes are associated with biodiversity loss and large shifts in species composition and traits. These changes predict the identities of winners and losers of future global change, and also reveal which environmental variables drive a taxon's response to land use change. We explored how the biodiversity of native bee species changes across forested, agricultural, and urban landscapes. We collected bee community data from 36 sites across a 75,000 km2 region, and analyzed bee abundance, species richness, composition, and life‐history traits. Season‐long bee abundance and richness were not detectably different between natural and anthropogenic landscapes, but community phenologies differed strongly, with an early spring peak followed by decline in forests, and a more extended summer season in agricultural and urban habitats. Bee community composition differed significantly between all three land use types, as did phylogenetic composition. Anthropogenic land use had negative effects on the persistence of several life‐history strategies, including early spring flight season and brood parasitism, which may indicate adaptation to conditions in forest habitat. Overall, anthropogenic communities are not diminished subsets of contemporary natural communities. Rather, forest species do not persist in anthropogenic habitats, but are replaced by different native species and phylogenetic lineages preadapted to open habitats. Characterizing compositional and functional differences is crucial for understanding land use as a global change driver across large regional scales.  相似文献   

5.
Effects of habitat fragmentation on the insect community of stinging nettle (Urtica dioica L.) were studied, using 32 natural nettle patches of different area and degree of isolation in an agricultural landscape. Habitat fragmentation reduced the species richness of Heteroptera, Auchenorrhyncha, and Coleoptera, and the abundance of populations. Habitat isolation and area reduction did not affect all insect species equally. Monophagous herbivores had a higher probability of absence from small patches than all (monophagous and polyphagous) herbivore species, and the percentage of monophagous herbivores increased with habitat area. Abundance and population variability of species were negatively correlated and could both be used as a predictor of the percentage of occupied habitats. Species richness of herbivores correlated (positively) with habitat area, while species richness of predators correlated (negatively) with habitat isolation. In logistic regressions, the probability of absence of monophagous herbivores from habitat patches could only be explained by habitat area (in 4 out of 10 species) and predator absence probability only by habitat isolation (in 3 out of 14 species). Presumably because of the instability of higher-trophic-level populations and dispersal limitation, predators were more affected by habitat isolation than herbivores, while they did not differ from herbivore populations with respect to abundance or variability. Thus increasing habitat connectivity in the agricultural landscape should primarily promote predator populations. Received: 4 February 1998 / Accepted: 4 May 1998  相似文献   

6.
During the past 50 years development of farming practices caused tremendous changes in European agricultural landscapes and many insect species became increasingly restricted to protected areas. Yet little is known about long-term trends of insect diversity and community composition in these often small reserves. We performed a comparative study on changes in orthopteran communities of protected dry grasslands in East Germany, which had been surveyed in the 1960s. Applying the same sampling techniques, we revisited 26 of the original sites in 2008 and 2009. Nearly all sites are controlled by conservation policies and changes in vegetation composition were relatively small, although some sites showed shrub encroachment. Changes in orthopteran diversity were not significant. Community composition showed minor changes which were correlated with evidence of woody plant encroachment as derived from historical and recent aerial imagery. The frequency of some Caelifera species decreased from the 1960s to 2008/2009 with one species inhabiting bare soils (Myrmeleotettix maculatus) showing the strongest decline. Some Ensifera, especially two species inhabiting open woodland and scrub (Tettigonia viridissima, Phaneroptera falcata) showed positive trends. Nevertheless, three different regions (each belonging to a different German federal state) had shown distinct orthopteran assemblages in the 1960s, and these were equally different 40 years later. We conclude that the orthopteran fauna of Central European protected dry grasslands showed small changes in species composition, and overall diversity remained rather constant during the past 40 years, which is in accordance with the minor changes in the surrounding landscape. Consequently, the applied conservation management practises—mainly sheep grazing and trimming—are largely effective.  相似文献   

7.
Question: Which are the plant functional groups responding most clearly to agricultural disturbances? Which are the relative roles of habitat availability, landscape configuration and agricultural land use intensity in affecting the functional composition and diversity of vascular plants in agricultural landscapes? Location: 25 agricultural landscape areas in seven European countries. Methods: We examined the plant species richness and abundance in 4 km × 4 km landscape study sites. The plant functional group classification was derived from the BIOLFLOR database. Factorial decomposition of functional groups was applied. Results: Natural habitat availability and low land use intensity supported the abundance and richness of perennials, sedges, pteridophytes and high nature quality indicator species. The abundance of clonal species, C and S strategists was also correlated with habitat area. An increasing density of field edges explained a decrease in richness of high nature quality species and an increase in richness of annual graminoids. Intensive agriculture enhanced the richness of annuals and low nature quality species. Conclusions: Habitat patch availability and habitat quality are the main drivers of functional group composition and plant species richness in European agricultural landscapes. Linear elements do not compensate for the loss of habitats, as they mostly support disturbance tolerant generalist species. In order to conserve vascular plant species diversity in agricultural landscapes, the protection and enlargement of existing patches of (semi‐) natural habitats appears to be more effective than relying on the rescue effect of linear elements. This should be done in combination with appropriate agricultural management techniques to limit the effect of agrochemicals to the fields.  相似文献   

8.
The main trends in the territorial changes in winter bird communities and the environmental factors determining them were analyzed based on long-term counts in the East European and West Siberian plains. These trends are reduced to a decline in the winter avian complexes (in the number of species and individuals) in the north- and eastward directions and with a decrease in the degree of sheltering and feed reserves in the habitats associated with reduction in afforestation. The specific regional features of winter East European avian complexes are the larger number of species and individuals in the nemoral forest, forest-steppe, and steppe landscapes, and inland water bodies as compared with the West Siberian avian complexes, as well as an increased influence of the degree of development and agricultural transformation of landscapes.  相似文献   

9.
Across Western Siberia, land use has changed substantially since the collapse of the Soviet Union in 1991: large cropland areas were abandoned and livestock numbers declined. In recent years these trends have partly been reversed, and an intensification of agricultural management has been observed that is still ongoing. We evaluated the impact of land use, as well as effects of landscape patterns and vegetation structure on Orthoptera communities and discuss them as drivers of community composition, species richness and abundance. We sampled Orthoptera using a box-quadrat on ancient grassland, ex-arable grassland (both including different management types: unmanaged, grazed and mown) and cereal fields. Landscape heterogeneity and composition strongly affected species richness and abundance of Orthoptera. Both were higher in grassland than in cropland, but did not differ significantly between ex-arable and ancient grasslands or different management practices. An Indicator Species Analysis revealed differentiation of Orthoptera communities between all management types. On croplands, the number of adult individuals and nymphs was influenced by the proportion of grassland in the surrounding landscape and tillage practices. Conservation tillage is most likely the key factor allowing Orthoptera to reproduce on croplands. After up to 24 years of succession, Orthoptera communities of ex-arable grasslands can be considered as completely recovered, as differences to ancient grasslands were minimal. Besides the continuation of low-intensity management, conservation strategies for this region should consider landscape composition and support habitat heterogeneity like ecotones with hemi-boreal forests in grassland-dominated landscapes.  相似文献   

10.
Annual Finnish breeding duck surveys over the last 30 years show declining abundance among several species and greater declines on eutrophic waters than oligotrophic lakes. It has been suggested that habitat-related differences in the rate of increase in predation pressure is a potential explanation for contrasting duck population trajectories between habitats. We assessed potential duck nest predation risk and predator presence in various duck breeding habitats in Finland and Denmark by monitoring 333 artificial duck nests with wildlife cameras during 2017–2019. Predation rates differed between landscapes and habitats: nest predation rate and predator diversity were lowest in forested and highest in agricultural landscapes. Forest nests further from water bodies survived better than nests around shorelines of permanent lakes. Of the 16 different predator species detected, the most common were Eurasian magpie (Picapica), hooded crow (Corvus corone) and raccoon dog (Nyctereutes procyonoides). While predation by specific native predator species was typically associated with particular habitats and landscapes, the alien raccoon dog appeared to be a true habitat generalist, ubiquitous and common across all habitats and landscapes. Based on these results, the higher duck nest predation pressure along shorelines, especially in agricultural landscape lakes, due to increased diversity and abundance within the predator community, may contribute to the declining population trends of ducks.  相似文献   

11.
Bird populations are declining in agricultural landscapes, which is ongoing for decades now. With standardized breeding bird observation data of five years within 2001–2014 from six sites in Central Germany we investigated whether trends in bird abundance are reflected by trends in species richness and whether these trends depend on the landscape context. We further analyzed whether trends and their dependencies on the landscape context differ among species groups according to their particular traits. For most of the groups (farmland birds, large birds, resident birds, short distance migrators, insectivores, granivores and birds of prey) we found declining trends in abundance. However, these trends were not reflected by species richness. In contrast to our expectations, high amounts of semi-natural habitats in the landscape did not buffer the overall negative trends. Surprisingly, bird abundance declined most in landscapes characterized by larger ranges in altitude and initially highest bird abundance in 2001. We conclude that flat landscapes in Central Germany have been utilized with high intensity already for a long time and they simply maintained their already low bird abundance. On the other hand, a recent increase in agricultural intensity in landscapes with marked altitudinal reliefs, and presumably less usability and productivity, causes the drastic declines in bird abundances. Since these strong declines are not related to habitat loss, we assume that changes in the management of agricultural fields are responsible.  相似文献   

12.
The lesser kestrel Falco naumanni experienced a marked decline during the second half of the 20th century due to changes in land use that influenced breeding success by reducing the abundance and quality of prey. However, the factors governing spatial and temporal variation of prey abundance around lesser kestrel colonies has not yet been investigated. We sampled Orthoptera abundance in the main crop types and edge habitats surrounding six lesser kestrel colonies in southern Spain. Samplings focused on Orthoptera because they constitute the main prey during the nestling period. Only those Orthoptera species that are known to be preyed by lesser kestrels were considered in this study. We found differences in prey density among localities, and crop types. Semi-natural habitats such as grasslands, fallow land, and field margins held the highest densities. However, prey abundance showed a complex pattern that was not possible to explain solely on the basis of crop composition around colonies. Factors determining productivity in individual fields like soil type and productivity or biocide input, and mean size of agricultural fields contributed to explain this complex pattern of prey abundance. Our results highlight the key role of semi-natural and edge habitats in farmed landscapes as prey reservoirs and corridors. Higher conservation priorities for these habitats are suggested to benefit foraging lesser kestrels, but many other farmland species that also experienced steep population declines due to decreasing food supply resulting from modern agriculture.  相似文献   

13.
Agricultural landscapes include patches of cropped and non‐cropped habitats. Non‐cropped fragments are often source habitats for natural pest predators which colonise less suitable agricultural fields. The goals of the present study were: (a) to evaluate the contribution of non‐cropped fragments to agro‐ecosystems as biodiversity reservoirs and ecosystem service providers, by assessing the abundance of spider species and their diversity and (b) to quantify the spatial variation in spider communities across different non‐cropped fragments and crops. We hypothesised that non‐cropped fragments function as spider diversity reservoirs with better conditions for reproduction than crops. We collected spiders from 10 restored fragments having had no disturbance for 20 years and four field edges, along a gradient inside the crop adjacent to each fragment. Overall, we collected 3,591 spiders belonging to 49 species/morphospecies in 14 families. Non‐cropped fragments had a central role in the spider community, as estimated through species–habitat networks. We found differences in the diversity and abundance of spiders between non‐cropped and cropped fragments. However, these differences were only for immature spiders, whose abundance decreased from non‐cropped fragments towards the inside of crops. Our results highlight the importance of non‐cropped fragments in agro‐ecosystems as important source habitat patches, reservoirs of biodiversity and sites where spider reproductive success is possibly higher.  相似文献   

14.
River basins are among the most threatened ecosystems. The species diversity of several European river basins decreased seriously during the last decade due to loss of habitats and increasing land use pressure on the remaining habitats. We studied true bug assemblages in various land use types of grassland fragments and dikes as linear grassland habitats in the agricultural landscape of the lower reach of the Tisza River Basin. We tested the effects of the recorded variables of habitat quality, surrounding landscape and land use type on the abundance, species richness and composition of true bugs. Altogether, 5,389 adult Heteroptera individuals representing 149 species in 13 families were collected. The factors which influenced significantly the species richness of different trophic levels (i.e. herbivors, predators) and degrees of food specialization (i.e. generalist and specialist herbivors) were concordant. Contrary to this, the factors which influenced the abundance of the different feeding groups varied strongly. We emphasise the vegetation and land use types as primarily influential factors for insects. Excluding the grass-feeding species, the number of both generalist, specialist herbivorous and predaceous species were lower in agricultural swards, i.e. hay-meadows and pastures than in old field and dike habitats and their number increased with increasing vegetation diversity. Due to the high species richness and abundance observed in dike and old field habitats compared to agricultural swards, we emphasise their importance for conservation of insect diversity and we stress the negative effects of agricultural intensification on the remaining grasslands of the lower reach of the Tisza River Basin.  相似文献   

15.
16.
In many bird species, parents adjust their home‐ranges during chick‐rearing to the availability and distribution of food resources, balancing the benefits of energy intake against the costs of travelling. Over recent decades, European agricultural landscapes have changed radically, resulting in the degradation of habitats and reductions in food resources for farmland birds. Lower foraging success and longer foraging trip distances that result from these changes are often assumed to reduce the reproductive performance of parents, although the mechanisms are not well understood. We tested the behavioural response of chick‐rearing Little Owls Athene noctua to variation in habitat diversity in an agricultural landscape. We equipped females with GPS loggers and received adequate range‐use data for 19 individuals (6063–14 439 locations per bird). In habitats dominated by homogeneous cropland habitats, home‐ranges were over 12 ha in size, whereas in highly diverse habitats they were below 2 ha. Large home‐ranges were associated with increased flight activity (117% of that of birds in small home‐ranges) and distances travelled per night (152%), increased duration of foraging trips (169%) covering larger distances (246%), and reduced nest visiting rates (81%). The study therefore provides strong correlative evidence that Little Owls breeding in monotonous farmland habitats expend more time and energy for a lower benefit in terms of feeding rates than do birds in more heterogeneous landscapes. As nestling food supply is the main determinant of chick survival, these results suggest a strong impact of farmland characteristics on local demographic rates. We suggest that preserving and creating islands of high habitat diversity within uniform open agricultural landscapes should be a key target in the conservation of Little Owl populations.  相似文献   

17.
Farmland birds are of conservation concerns around the world. In China, conservation management has focused primarily on natural habitats, whereas little attention has been given to agricultural landscapes. Although agricultural land use is intensive in China, environmental heterogeneity can be highly variable in some regions due to variations in crop and noncrop elements within a landscape. We examined how noncrop heterogeneity, crop heterogeneity, and noncrop features (noncrop vegetation and water body such as open water) influenced species richness and abundance of all birds as well as three functional groups (woodland species, agricultural land species, and agricultural wetland species) in the paddy‐dominated landscapes of Erhai water basin situated in northwest Yunnan, China. Birds, crop, and noncrop vegetation surveys in twenty 1 km × 1 km landscape plots were conducted during the winter season (from 2014 to 2015). The results revealed that bird community compositions were best explained by amounts of noncrop vegetation and compositional heterogeneity of noncrop habitat (Shannon–Wiener index). Both variables also had a positive effect on richness and abundance of woodland species. Richness of agricultural wetland species increased with increasing areas of water bodies within the landscape plot. Richness of total species was also greater in the landscapes characterized by larger areas of water bodies, high proportion of noncrop vegetation, high compositional heterogeneity of noncrop habitat, or small field patches (high crop configurational heterogeneity). Crop compositional heterogeneity did not show significant effects neither on the whole community (all birds) nor on any of the three functional groups considered. These findings suggest that total bird diversity and some functional groups, especially woodland species, would benefit from increases in the proportion of noncrop features such as woody vegetation and water bodies as well as compositional heterogeneity of noncrop features within landscape.  相似文献   

18.
Aim Urbanization and deforestation are important drivers of biodiversity change. However, long‐term changes in faunal communities within urbanizing regions are poorly understood. We investigated how well observed community changes in both space and time agree with expectations based on current paradigms in urban ecology. Location Greater Brisbane region, Australia. Methods We compared bird assemblages in two time‐periods 15 years apart, at multiple sites in remnant forest and residential suburbs across an urbanizing landscape. Differences in assemblage composition, species abundances and functional groupings were assessed within and between habitats. Results Compared with forest, suburbs in both time‐periods had over twice the total bird abundance, a different species composition, greater between‐site community similarity, a greater proportion of non‐native species and greater dominance by large‐bodied species. These differences corresponded with changes in sites whose habitat was converted from forest to suburb. Between time‐periods, abundances of 58% of suburban species changed significantly compared with those of 11% in forest. Increaser species outnumbered decreasers in suburbs, with the reverse in forest. Abundance of small‐bodied birds decreased 70% in suburbs and 20% in forest. Broad‐spectrum competitors and nest predators were common among suburban increasers. Among invasive species, the number of increasers was counterbalanced by decreasers. Both site‐scale species richness and between‐site community similarity increased to a small extent in both habitats. Main conclusions Species composition and ecological function of suburban bird communities were very dynamic. Suburban assemblages were neither a subset of forest species nor an increasingly non‐native compilation. Communities in large forest patches were comparatively stable. The notion of habitat‐specific species turnover better characterizes the nature of most changes than either species decline or homogenization, even though both of these were evident. There is considerable scope for careful urban planning, focused on both among‐ and within‐habitat variety, to sustain bird diversity in urbanizing landscapes.  相似文献   

19.

Questions

What are the most important drivers of plant species richness (gamma‐diversity) and species turnover (beta‐diversity) in the field layer of a forest edge? Does the tree and shrub species richness structure and complexity affect the richness of forest and grassland specialist species?

Location

Southeast Sweden.

Methods

We sampled 50 forest edges with different levels of structural complexity in agricultural landscapes. In each border we recorded trees, shrubs and herb layer species in a 50‐m transect parallel with the forest. We investigated species composition and species turnover in relation to the proportions of gaps in the border and the diversity of trees and shrubs.

Results

Total plant species richness in the field layer was mainly explained by the proportion of gaps to areas with full canopy cover and tree diversity. Increasing number of gaps promoted higher diversity of grassland specialist species within the field layer, resulting in open forest borders with the highest overall species richness. Gaps did however have a negative impact on forest species richness. Conversely, increasing forest species richness was positively related to tree diversity, but the number of grassland specialist species was negatively affected by tree diversity.

Conclusions

Managing forest borders, and therefore increasing the area of semi‐open habitats in fragmented agricultural landscapes, provides future opportunities to create a network of suitable habitats for both grassland and deciduous forest specialist species. Such measures therefore have the potential to increase functional connectivity and support dispersal of species in homogeneous forest/agricultural landscapes.  相似文献   

20.
The continuous decline of biodiversity is determined by the complex and joint effects of multiple environmental drivers. Still, a large part of past global change studies reporting and explaining biodiversity trends have focused on a single driver. Therefore, we are often unable to attribute biodiversity changes to different drivers, since a multivariable design is required to disentangle joint effects and interactions. In this work, we used a meta‐regression within a Bayesian framework to analyze 843 time series of population abundance from 17 European amphibian and reptile species over the last 45 years. We investigated the relative effects of climate change, alien species, habitat availability, and habitat change in driving trends of population abundance over time, and evaluated how the importance of these factors differs across species. A large number of populations (54%) declined, but differences between species were strong, with some species showing positive trends. Populations declined more often in areas with a high number of alien species, and in areas where climate change has caused loss of suitability. Habitat features showed small variation over the last 25 years, with an average loss of suitable habitat of 0.1%/year per population. Still, a strong interaction between habitat availability and the richness of alien species indicated that the negative impact of alien species was particularly strong for populations living in landscapes with less suitable habitat. Furthermore, when excluding the two commonest species, habitat loss was the main correlate of negative population trends for the remaining species. By analyzing trends for multiple species across a broad spatial scale, we identify alien species, climate change, and habitat changes as the major drivers of European amphibian and reptile decline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号