首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Understanding the mechanisms by which phenotypic divergence occurs is central to speciation research. These mechanisms can be revealed by measuring differences in traits that are subject to different selection pressures; greater influence of different types of selection can be inferred from greater divergence in associated traits. Here, we address the potential roles of natural and sexual selection in promoting phenotypic divergence between species of snubnose darters by comparing differences in body shape, an ecologically relevant trait, and male color, a sexual signal. Body shape was measured using geometric morphometrics, and male color was measured using digital photography and visual system‐dependent color values. Differences in male color are larger than differences in body shape across eight allopatric, phylogenetically independent species pairs. While this does not exclude the action of divergent natural selection, our results suggest a relatively more important role for sexual selection in promoting recent divergence in darters. Variation in the relative differences between male color and body shape across species pairs reflects the continuous nature of speciation mechanisms, ranging from ecological speciation to speciation by sexual selection alone.  相似文献   

2.
Sexual selection drives rapid divergence in bowerbird display traits   总被引:12,自引:0,他引:12  
Abstract.— Sexual selection driving display trait divergence has been suggested as a cause of rapid speciation, but there is limited supporting evidence for this from natural populations. Where speciation by sexual selection has occurred in newly diverged populations, we expect that there will be significant differences in female preferences and corresponding male display traits in the absence of substantial genetic and other morphological differentiation. Two allopatric populations of the Vogelkop bowerbird, Amblyornis inornatus , show large, qualitative differences in a suite of display traits including bower structure and decorations. We experimentally demonstrate distinct male decoration color preferences within each population, provide direct evidence of female preferences for divergent decoration and bower traits in the population with more elaborate display, and show that there is minimal genetic differentiation between these populations. These results support the speciation by sexual selection hypothesis and are most consistent with the hypothesis that changes in male display have been driven by divergent female choice.  相似文献   

3.
Evolution of sexual dimorphism in ecologically relevant traits, for example, via resource competition between the sexes, is traditionally envisioned to stall the progress of adaptive radiation. An alternative view is that evolution of ecological sexual dimorphism could in fact play an important positive role by facilitating sex‐specific adaptation. How competition‐driven disruptive selection, ecological sexual dimorphism, and speciation interact during real adaptive radiations is thus a critical and open empirical question. Here, we examine the relationships between these three processes in a clade of salamanders that has recently radiated into divergent niches associated with an aquatic life cycle. We find that morphological divergence between the sexes has occurred in a combination of head shape traits that are under disruptive natural selection within breeding ponds, while divergence among species means has occurred independently of this disruptive selection. Further, we find that adaptation to aquatic life is associated with increased sexual dimorphism across taxa, consistent with the hypothesis of clade‐wide character displacement between the sexes. Our results suggest the evolution of ecological sexual dimorphism may play a key role in niche divergence among nascent species and demonstrate that ecological sexual dimorphism and ecological speciation can and do evolve concurrently in the early stages of adaptive radiation.  相似文献   

4.
Ecological speciation can be driven by divergent natural and/or sexual selection. The relative contribution of these processes to species divergence, however, is unknown. Here, we investigate how sexual selection in the form of male and female mate preferences contributes to divergence of body size. This trait is known be under divergent natural selection and also contributes to sexual isolation in species pairs of threespine sticklebacks (Gasterosteus aculeatus). We show that neither female nor male size preferences contribute to body size divergence in this species pair, suggesting that size-based sexual isolation arises primarily through natural selection.  相似文献   

5.
The origin of species remains a central question, and recent research focuses on the role of ecological differences in promoting speciation. Ecological differences create opportunities for divergent selection (i.e. ‘ecological’ speciation), a Darwinian hypothesis that hardly requires justification. In contrast, ‘mutation‐order’ speciation proposes that, instead of adapting to different environments, populations find different ways to adapt to similar environments, implying that speciation does not require ecological differences. This distinction is critical as it provides an alternative hypothesis to the prevailing view that ecological differences drive speciation. Speciation by sexual selection lies at the centre of debates about the importance of ecological differences in promoting speciation; here, we present verbal and mathematical models of mutation‐order divergence by sexual selection. We develop three general cases and provide a two‐locus population genetic model for each. Results indicate that alternative secondary sexual traits can fix in populations that initially experience similar natural and sexual selection and that divergent traits and preferences can remain stable in the face of low gene flow. This stable divergence can facilitate subsequent divergence that completes or reinforces speciation. We argue that a mutation‐order process could explain widespread diversity in secondary sexual traits among closely related, allopatric species.  相似文献   

6.
Sexual selection and ecological differences are important drivers of speciation. Much research has focused on female choice, yet the role of male competition in ecological speciation has been understudied. Here, we test how mating habitats impact sexual selection and speciation through male competition. Using limnetic and benthic species of threespine stickleback fish, we find that different mating habitats select differently on male traits through male competition. In mixed habitat with both vegetated and open areas, selection favours two trait combinations of male body size and nuptial colour: large with little colour and small with lots of colour. This matches what we see in reproductively isolated stickleback species, suggesting male competition could promote trait divergence and reproductive isolation. In contrast, when only open habitat exists, selection favours one trait combination, large with lots of colour, which would hinder trait divergence and reproductive isolation. Other behavioural mechanisms in male competition that might promote divergence, such as avoiding aggression with heterospecifics, are insufficient to maintain separate species. This work highlights the importance of mating habitats in male competition for both sexual selection and speciation.  相似文献   

7.
The plausibility of trait divergence under divergent natural selection in the presence of gene flow in natural populations is a contentious issue in evolutionary research. Its importance lies in the fact that this process is thought to be one of the key triggers in ecological speciation in which a species splits into ecologically distinct forms when separate niches are occupied. In this study we demonstrate strong genetic divergence at the IDH1 locus between pond- and canal-inhabiting individuals of the salt marsh beetle Pogonus chalceus from the Guérande salt fields. Moreover, wing size, a trait that has a heritable basis in this species, was significantly larger in the pond populations, which is in concordance with the unstable nature of this habitat. The relationship between IDH1 allele frequencies and wing size variation was consistent with patterns seen across western European populations. By means of neutral allozymes and microsatellites we detected a small but significant degree of sexual isolation between ecotypes. We conclude that speciation is ongoing and that divergence reflects a balance between selection and gene flow.  相似文献   

8.
Internally fertilizing animals show a remarkable diversity in male genital morphology that is associated with sexual selection, and these traits are thought to be evolving particularly rapidly. Male fish in some internally fertilizing species have “gonopodia,” highly modified anal fins that are putatively important for sexual selection. However, our understanding of the evolution of genital diversity remains incomplete. Contrary to the prediction that male genital traits evolve more rapidly than other traits, here we show that gonopodial traits and other nongonopodial traits exhibit similar evolutionary rates of trait change and also follow similar evolutionary models in an iconic genus of poeciliid fish (Xiphophorus spp.). Furthermore, we find that both mating and nonmating natural selection mechanisms are unlikely to be driving the diverse Xiphophorus gonopodial morphology. Putative holdfast features of the male genital organ do not appear to be influenced by water flow, a candidate selective force in aquatic habitats. Additionally, interspecific divergence in gonopodial morphology is not significantly higher between sympatric species, than between allopatric species, suggesting that male genitals have not undergone reproductive character displacement. Slower rates of evolution in gonopodial traits compared with a subset of putatively sexually selected nongenital traits suggest that different selection mechanisms may be acting on the different trait types. Further investigations of this elaborate trait are imperative to determine whether it is ultimately an important driver of speciation.  相似文献   

9.
Adaptive evolutionary change is contingent on variation and selection; thus, understanding adaptive divergence and ultimately speciation requires information on both the genetic basis of adaptive traits as well as an understanding of the role of divergent natural selection on those traits. The lake whitefish (Coregonus clupeaformis) consists of several sympatric "dwarf" (limnetic) and normal (benthic) species pairs that co-inhabit northern postglacial lakes. These young species pairs have evolved independently and display parallelism in life history, behavioral, and morphological divergence associated with the use of distinct trophic resources. We identified phenotype-environment associations and determined the genetic architecture and the role of selection modulating population genetic divergence in sympatric dwarf and normal lake whitefish. The genetic architecture of 9 adaptive traits was analyzed in 2 hybrid backcrosses individually phenotyped throughout their life history. Significant quantitative trait loci (QTL) were associated with swimming behavior (habitat selection and predator avoidance), growth rate, morphology (condition factor and gill rakers), and life history (onset of maturity and fecundity). Genome scans among 4 natural sympatric pairs, using loci segregating in the map, revealed a signature of selection for 24 loci. Loci exhibiting a signature of selection were associated with QTL relative to other regions of the genome more often than expected by chance alone. Two parallel QTL outliers for growth and condition factor exhibited segregation distortion in both mapping families, supporting the hypothesis that adaptive divergence contributing to parallel reductions of gene flow among natural populations may cause genetic incompatibilities. Overall, these findings offer evidence that the genetic architecture of ecological speciation is associated with signatures of selection in nature, providing strong support for the hypothesis that divergent natural selection is currently maintaining adaptive differentiation and promoting ecological speciation in lake whitefish species pairs.  相似文献   

10.
Sexual selection is proposed to be an important driver of diversification in animal systems, yet previous tests of this hypothesis have produced mixed results and the mechanisms involved remain unclear. Here, we use a novel phylogenetic approach to assess the influence of sexual selection on patterns of evolutionary change during 84 recent speciation events across 23 passerine bird families. We show that elevated levels of sexual selection are associated with more rapid phenotypic divergence between related lineages, and that this effect is restricted to male plumage traits proposed to function in mate choice and species recognition. Conversely, we found no evidence that sexual selection promoted divergence in female plumage traits, or in male traits related to foraging and locomotion. These results provide strong evidence that female choice and male–male competition are dominant mechanisms driving divergence during speciation in birds, potentially linking sexual selection to the accelerated evolution of pre-mating reproductive isolation.  相似文献   

11.
Understanding the patterns of diversification in sexual traits and the selection underlying such diversification represents a major unresolved question in evolutionary biology. We examined the phylogenetic diversification for courtship and external genitalic characters across ten species of Timema walking‐sticks, to infer the tempos and modes of character change in these sexual traits and to draw inferences regarding the selective pressures underlying speciation and diversification in this clade. Rates of inferred change in male courtship behaviours were proportional to speciation events, but male external genitalic structures showed a pattern of continuous change across evolutionary time, with divergence proportional to branch lengths. These findings suggest that diversification of courtship behaviour is mediated by processes that occur in association with speciation, whereas diversification of genitalia occurs more or less continuously, most likely driven by forces of sexual selection.  相似文献   

12.
Evolutionary biologists have often suggested that ecology is important in speciation, in that natural selection may drive adaptive divergence between lineages that inhabit different environments. I suggest that it is the tendency of lineages to maintain their ancestral ecological niche (phylogenetic niche conservatism) and their failure to adapt to new environments which frequently isolates incipient species and begins the process of speciation. Niche conservatism may be an important and widespread component of allopatric speciation but is largely unstudied. The perspective outlined here suggests roles for key microevolutionary processes (i.e., natural selection, adaptation) that are strikingly different from those proposed in previous literature on ecology and speciation. Yet, this perspective is complementary to the traditional view because it focuses on a different temporal stage of the speciation process.  相似文献   

13.
Sexual selection plays a key role in the diversification of numerous animal clades and may accelerate trait divergence during speciation. However, much of our understanding of this process comes from phylogenetic comparative studies, which rely on surrogate measures such as dimorphism that may not represent selection in wild populations. In this study, we assess sexual selection pressures for multiple male visual signals across four barn swallow (Hirundo rustica) populations. Our sample encompassed 2400 linear km and two described subspecies: European H. r. rustica (in the Czech Republic and Romania) and eastern Mediterranean H. r. transitiva (in Israel), as well as a potential area of contact (in Turkey). We demonstrate significant phenotypic differentiation in four sexual signalling axes, despite very low‐level genomic divergence and no comparable divergence in an ecological trait. Moreover, the direction of phenotypic divergence is consistent with differences in sexual selection pressures among subspecies. Thus, H. r. transitiva, which have the darkest ventral plumage of any population, experience directional selection for darker plumage. Similarly, H. r. rustica, which have the longest tail feathers of any population, experience directional selection for elongated tail feathers and disruptive selection for ventral plumage saturation. These results suggest that sexual selection is the primary driver of phenotypic differentiation in this species. Our findings add to growing evidence of phenotypic divergence with gene flow. However, to our knowledge, this is the first study to relate direct measures of the strength and targets of sexual selection to phenotypic divergence among closely related wild populations.  相似文献   

14.
The evolution of sexual display traits or preferences for them in response to divergent natural selection will alter sexual selection within populations, yet the role of sexual selection in ecological speciation has received little empirical attention. We evolved 12 populations of Drosophila serrata in a two‐way factorial design to investigate the roles of natural and sexual selection in the evolution of female mate preferences for male cuticular hydrocarbons (CHCs). Mate preferences weakened in populations evolving under natural selection alone, implying a cost in the absence of their expression. Comparison of the vectors of linear sexual selection revealed that the populations diverged in the combination of male CHCs that females found most attractive, although this was not significant using a mixed modelling approach. Changes in preference direction tended to evolve when natural and sexual selection were unconstrained, suggesting that both processes may be the key to initial stages of ecological speciation. Determining the generality of this result will require data from various species across a range of novel environments.  相似文献   

15.
Male genital morphology is remarkably diverse across internally fertilizing animals, a phenomenon largely attributed to sexual selection. Ecological differences across environments can alter the context of sexual selection, yet little research has addressed how this may influence the rapid, divergent evolution of male genitalia. Using the model system of Bahamas mosquitofish (Gambusia hubbsi) undergoing ecological speciation across blue holes, we used geometric morphometric methods to test (i) whether male genital shape (the small, approximately 1 mm long, distal tip of the sperm‐transfer organ, the gonopodium) has diverged between populations with and without predatory fish and (ii) whether any observed divergence has a genetic basis. We additionally examined the effects of genetic relatedness and employed model selection to investigate other environmental factors (i.e. interspecific competition, adult sex ratio and resource availability) that could potentially influence genital shape via changes in sexual selection. Predation regime comprised the most important factor associated with male genital divergence in this system, although sex ratio and some aspects of resource availability had suggestive effects. We found consistent, heritable differences in male genital morphology between predation regimes: Bahamas mosquitofish coexisting with predatory fish possessed more elongate genital tips with reduced soft tissue compared with counterparts inhabiting blue holes without predatory fish. We suggest this may reflect selection for greater efficiency of sperm transfer and fertilization during rapid and often forced copulations in high‐predation populations or differences in sexual conflict between predation regimes. Our study highlights the potential importance of ecological variation, particularly predation risk, in indirectly generating genital diversity.  相似文献   

16.
A key question in speciation research is how ecological and sexual divergence arise and interact. We tested the hypothesis that mate choice causes local adaptation and ecological divergence using the rationale that the performance~signal trait relationship should parallel the attractiveness~signal trait relationship. We used female fecundity as a measure of ecological performance. We used a species in the Enchenopa binotata treehopper complex, wherein speciation involves adaptation to novel environments and divergence in sexual communication. We used a full‐sibling, split‐family rearing design to estimate genetic correlations (rG) between fecundity and signal traits, and compared those relationships against population‐level mate preferences for the signal traits. Animal model estimates for rG between female fecundity and male signal traits overlapped zero—rejecting the hypothesis—but could reflect sample size limitations. The magnitude of rG correlated with the strength of the mate preferences for the corresponding signal traits, especially for signal frequency, which has the strongest mate preference and the most divergence in the complex. However, signal frequencies favored by the population‐level mate preference are not associated with high fecundity. Therefore, mate preferences do not appear to have been selected to favor high‐performance genotypes. Our findings suggest that ecological and sexual divergence may arise separately, but reinforce each other, during speciation.  相似文献   

17.
Although sexual ornamentation mediates reproductive isolation, comparative evidence does not support the hypothesis that stronger sexual selection promotes speciation. Prior analyses have neglected the possibility that decreases in ornamentation may also promote speciation, such that both increases and decreases in the strength of sexual selection and associated changes in ornamentation promote speciation. To test this hypothesis, we studied color ornamentation in one of the largest and fastest avian radiations, the estrildid finches. We show that more ornamented lineages do not speciate more, even though they tend to have faster rates of ornamental evolution, whereas changes in ornamentation (i.e., increases or decreases) are associated with speciation. This indicates that divergence in sexually selected ornamentation, rather than stronger sexual selection, promotes or is otherwise associated with speciation. We also show that gregariousness and investment in reproduction are related to the elaboration of some ornamental traits, suggesting ecological influences on speciation mediated by ornamentation. We conclude that past work focusing specifically on the strength of sexual selection may have greatly underestimated the importance of sexual ornamentation for speciation.  相似文献   

18.
Two models for speciation via selection have been proposed. In the well-known model of ‘ecological speciation’, divergent natural selection between environments drives the evolution of reproductive isolation. In a second ‘mutation-order’ model, different, incompatible mutations (alleles) fix in different populations adapting to the same selective pressure. How to demonstrate mutation-order speciation has been unclear, although it has been argued that it can be ruled out when gene flow occurs because the same, most advantageous allele will fix in all populations. However, quantitative examination of the interaction of factors influencing the likelihood of mutation-order speciation is lacking. We used simulation models to study how gene flow, hybrid incompatibility, selective advantage, timing of origination of new mutations and an initial period of allopatric differentiation affect population divergence via the mutation-order process. We find that at least some population divergence can occur under a reasonably wide range of conditions, even with moderate gene flow. However, strong divergence (e.g. fixation of different alleles in different populations) requires very low gene flow, and is promoted when (i) incompatible mutations have similar fitness advantages, (ii) less fit mutations arise slightly earlier in evolutionary time than more fit alternatives, and (iii) allopatric divergence occurs prior to secondary contact.  相似文献   

19.
Mayr's best recognized scientific contributions include the biological species concept and the theory of geographic speciation. In the latter, reproductive isolation evolves as an incidental by‐product of genetic divergence between allopatric populations. Mayr noted that divergent natural selection could accelerate speciation, but also argued that gene flow so strongly retards divergence that, even with selection, non‐allopatric speciation is unlikely. However, current theory and data demonstrate that substantial divergence, and even speciation, in the face of gene flow is possible. Here, I attempt to connect some opposing views about speciation by integrating Mayr's ideas about the roles of ecology and geography in speciation with current data and theory. My central premise is that the speciation process (i.e. divergence) is often continuous, and that the opposing processes of selection and gene flow interact to determine the degree of divergence (i.e. the degree of progress towards the completion of speciation). I first establish that, in the absence of gene flow, divergent selection often promotes speciation. I then discuss how population differentiation in the face of gene flow is common when divergent selection occurs. However, such population differentiation does not always lead to the evolution of discontinuities, strong reproductive isolation, and thus speciation per se. I therefore explore the genetic and ecological circumstances that facilitate speciation in the face of gene flow. For example, particular genetic architectures or ecological niches may tip the balance between selection and gene flow strongly in favour of selection. The circumstances allowing selection to overcome gene flow to the extent that a discontinuity develops, and how often these circumstances occur, are major remaining questions in speciation research. © 2008 The Linnean Society of London, Biological Journal of the Linnean Society, 2008, 95 , 26–46.  相似文献   

20.
The hypothesis of punctuated equilibrium proposes that most phenotypic evolution occurs in rapid bursts associated with speciation events. Several methods have been developed that can infer punctuated equilibrium from molecular phylogenies in the absence of paleontological data. These methods essentially test whether the variance in phenotypes among extant species is better explained by evolutionary time since common ancestry or by the number of estimated speciation events separating taxa. However, apparent "punctuational" trait change can be recovered on molecular phylogenies if the rate of phenotypic evolution is correlated with the rate of speciation. Strong support for punctuational models can arise even if the underlying mode of trait evolution is strictly gradual, so long as rates of speciation and trait evolution covary across the branches of phylogenetic trees, and provided that lineages vary in their rate of speciation. Species selection for accelerated rates of ecological or phenotypic divergence can potentially lead to the perception that most trait divergence occurs in association with speciation events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号