首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 264 毫秒
1.
Three genetic functions have been mapped to the minute Sxr (sex-reversed) region of the mouse Y chromosome. These are Tdy, the primary testis determinant; Hya, the locus (either structural or regulatory) controlling the expression of the male-specific minor histocompatibility antigen H-Y; and Spy, a spermatogenic gene. Hya and Spy map to DNA deleted from the Sxr region in the deletion variant Sxrb (the delta Sxrb DNA). With the object of cloning Hya and Spy, we initiated chromosome walking in the delta Sxrb DNA. From three independent loci--Sx1, Zf2, and T5--we have isolated approximately 270 kb of delta Sxrb DNA lying in three contigs of 145, 60, and 65 kb, respectively. Within 17 kb of the 3' end of the Zfy-2 gene, lowcopy repeat elements were found in a region that extends for approximately 35 kb. Probes isolated from this region detect multiple Sxr loci, some of which map to the delta Sxrb DNA present in the T5 contig DNA. Three of these multicopy probes detect delta Sxrb loci not represented in our three contigs, which means that six distinct delta Sxrb loci have now been identified. Here we present a preliminary model of the molecular structure of the DNA in this unique region.  相似文献   

2.
Recently a candidate gene for the primary testis-determining factor (TDF) encoding a zinc finger protein (ZFY) has been cloned from the human Y chromosome. A highly homologous X-linked copy has also been identified. Using this human sequence it is possible to identify two Y loci, an X and an autosomal locus in the mouse (Zfy-1, Zfy-2, Zfx and Zfa, respectively). Suprisingly ZFY is more homologous to the mouse X and autosomal sequences than it is to either of the Y-linked loci. Both Zfy-1 and Zfy-2 are present in the Sxr region of the Y but Zfy-2 is absent in the Sxr deletion variant Sxrb (or Sxr") suggesting it is not necessary for male determination. Extensive backcross analyses map Zfa to mouse chromosome 10 and Zfx to a 5-cM interval between anonymous X probe MDXS120 and the tabby locus (Ta). We also show that the mouse androgen receptor locus (m-AR) believed to underlie the testicular feminization mutation (Tfm) shows complete linkage to Zfx. Comparative mapping indicates that in man these genes lie in separate conserved DNA segments.  相似文献   

3.
The Sxr (sex-reversed) region that carries a copy of the mouse Y chromosomal testis-determining gene can be attached to the distal end of either the Y or the X chromosome. During male meiosis, Sxr recombined freely between the X and Y chromosomes, with an estimated recombination frequency not significantly different from 50% in either direction. During female meiosis, Sxr recombined freely between the X chromosome to which it was attached and an X-autosome translocation. A male mouse carrying the original Sxra region on its Y chromosome, and the shorter Sxrb variant on the X, also showed 50% recombination between the sex chromosomes. Evidence of unequal crossing-over between the two Sxr regions was obtained: using five markers deleted from Sxrb, 3 variant Sxr regions were detected in 159 progeny (1.9%). Four other variants (one from the original cross and three from later generations) were presumed to have been derived from illegitimate pairing and crossing-over between Sxrb and the homologous region on the short arm of the Y chromosome. The generation of new variants throws light on the arrangement of gene loci and other markers within the short arm of the mouse Y chromosome.  相似文献   

4.
5.
6.
H-Y antigen negative XOSxrb mice, like their H-Y positive XOSxra counterparts, have testes; but, in contrast to XOSxra males, XOSxrb testes almost totally lack meiotic and postmeiotic stages of spermatogenesis. The quantitative analysis of the testes of XOSxrb males and their XY +/- Sxrb sibs, described in the present study, identified two distinct steps in this spermatogenic failure. First, there was a reduction in mitotic activity among T1 prospermatogonia, so that approximately half the normal number of T2 prospermatogonia were produced. Second, there was a dramatic decrease in the number of A3 and A4 spermatogonia and no Intermediate or B spermatogonia. These reductions were also largely due to decreased mitotic activity, there being a shortage of A1 and A2 spermatogonial divisions and no divisions among A3 or A4 spermatogonia. Mitotic activity among the T2 prospermatogonia and the undifferentiated A spermatogonia was normal. This means that the spermatogonial stem cells, which are a subset of the undifferentiated A spermatogonia, are unaffected in XOSxrb mice. Sxrb is now known to have arisen by deletion of DNA from Sxra. It is clear from the present findings that a gene (or genes) present in the deleted DNA plays a major role in the survival and proliferation of the differentiating A spermatogonia.  相似文献   

7.
H W Sheppard  G A Gutman 《Cell》1982,29(1):121-127
We have cloned DNA segments containing the Jk genes from LOUVAIN rat liver, and have determined their nucleotide sequence. Seven readily identifiable Jk-coding regions (six expressible) are evident in the rat, compared with five in the mouse (four expressible). The two additional J segments in the rat appear to be the result of two sequential gene duplications occurring since the divergence of rats and mice. The first involved a homologous but unequal crossing-over in a 14 bp region spanning the 3' end of the coding region of J1 and J2. The second involved a crossing-over following unequal pairing of the two newly duplicated regions. We propose that the probability of a second duplication was greatly increased following the first as a result of the increased target for unequal pairing (370 bp of good homology versus 27 bp in the original pairing). Comparisons of rat and mouse J genes show a surprisingly high degree of sequence conservation, both inside and outside the coding regions, similar to the pattern we reported previously for the kappa constant-region gene. This provides additional evidence that constraints exist on the nucleotide sequences of these genes independent of the function of the encoded proteins.  相似文献   

8.
Clusters of genes encoding mouse transplantation antigens   总被引:80,自引:0,他引:80  
M Steinmetz  A Winoto  K Minard  L Hood 《Cell》1982,28(3):489-498
We constructed a cosmid library from BALB/c mouse sperm DNA and isolated 64 cosmid clones with cDNA probes for transplantation antigens (class I molecules). Of these clones, 54 mapped into 13 gene clusters containing 36 distinct class I genes and encompassing 837 kilobases of DNA. One gene cluster mapped to the L region and a second cluster with seven genes to the Qa-2,3 region of the major histocompatibility complex. Restriction map and Southern blot analyses suggest that there are subgroups of class I genes. Using a 5' flanking sequence of the L gene as a hybridization probe, we show the L gene to be present in mouse strains expressing this antigen but deleted or mutated in strains failing to express it. Our data suggest that gene duplication and deletion presumably by homologous but unequal crossing-over has altered the size and organization of the class I clusters in different mouse strains and probably is an important mechanism for generating polymorphism in these genes. Analysis of the 36 class I genes with cDNA probes specific for the 5' and 3' ends shows that the exon encoding the third external domain is far more conserved than those encoding the first and second external domains of the transplantation antigen. These differences in variability have interesting functional implications.  相似文献   

9.
Zfy-1 and Zfy-2 are candidate genes for Tdy, the testis-determining gene in mice. We have analysed these genes in a line of XY female mice that have been shown to be mutated in Tdy. We have used Southern blot analysis to show that the Zfy genes have not undergone any major structural alterations, and have also demonstrated that both genes are transcribed normally from the mutant Y chromosome (Y) in both adult XYY testis and XY female embryonic gonads. The fact that these genes show a normal structure and expression pattern in mice with a Y chromosome known to carry a mutation in Tdy and that mutant embryos develop into females despite Zfy-1 expression, strongly supports other recent evidence that Zfy genes are not directly involved in primary testis determination.  相似文献   

10.
Species differences in the size or membership composition of multigene families can be attributed to lineage-specific additions of new genes via duplication, losses of genes via deletion or inactivation, and the creation of chimeric genes via domain shuffling or gene fusion. In principle, it should be possible to infer the recombinational pathways responsible for each of these different types of genomic change by conducting detailed comparative analyses of genomic sequence data. Here, we report an attempt to unravel the complex evolutionary history of the beta-globin gene family in a taxonomically diverse set of rodent species. The main objectives were: 1) to characterize the genomic structure of the beta-globin gene cluster of rodents; 2) to assign orthologous and paralogous relationships among duplicate copies of beta-like globin genes; and 3) to infer the specific recombinational pathways responsible for gene duplications, gene deletions, and the creation of chimeric fusion genes. Results of our comparative genomic analyses revealed that variation in gene family size among rodent species is mainly attributable to the differential gain and loss of later expressed beta-globin genes via unequal crossing-over. However, two distinct recombinational mechanisms were implicated in the creation of chimeric fusion genes. In muroid rodents, a chimeric gamma/epsilon fusion gene was created by unequal crossing-over between the embryonic epsilon- and gamma-globin genes. Interestingly, this gamma/epsilon fusion gene was generated in the same fashion as the "anti-Lepore" 5'-delta-(beta/delta)-beta-3' duplication mutant in humans (the reciprocal exchange product of the pathological hemoglobin Lepore deletion mutant). By contrast, in the house mouse, Mus musculus, a chimeric beta/delta fusion pseudogene was created by a beta-globin --> delta-globin gene conversion event. Although the gamma/epsilon and beta/delta fusion genes share a similar chimeric gene structure, they originated via completely different recombinational pathways.  相似文献   

11.
The genomic structure of a human glycophorin variant, Miltenberger class V-like molecule (MiV*), was examined. Southern blot analysis of total genomic DNA revealed that the 5' half of the MiV* gene derived from glycophorin A (GPA) gene whereas the 3' half derived from glycophorin B (GPB) gene. This structure is reciprocal to another glycophorin variant, Sta, which has a GPB-GPA hybrid structure. The genomic sequences around the crossing-over point were amplified by polymerase chain reaction, and the sequences were determined. Comparison of the nucleotide sequences of the GPA, GPB, and MiV* genes indicates that the crossing-over point is located in the region around the 3' end of intron 3 of the GPA gene. This place is different from the crossing-over point for Sta, which was found to be highly homologous to that for haptoglobin-related genes. However, the nucleotide sequences within the presumptive crossing-over point for the MiV* gene were found to be homologous in a reverse orientation to the crossing-over point proposed for haptoglobin-related genes. These results suggest strongly that homologous recombination through unequal crossing over can be facilitated by specific genomic elements such as those in common for formation of MiV*, Sta, and haptoglobin-related genes. The present study also localized the gene of the third glycophorin, GPE, at chromosome 4, q31.1 band, the same locus as for the GPA and GPB genes. The results indicate that GPE was not involved in generating MiV* or Sta hybrid gene despite the fact that it is localized adjacent to the GPA and GPB genes.  相似文献   

12.
Summary We report the isolation and nucleotide sequence determination of clones derived from five ZFY-related zinc-finger genes from birds and mammals. These sequences are analyzed with reference to the previously published human genes, ZFX and ZFY, and mouse genes, Zfx, Zfa, Zfy-1, and Zfy-2. The analysis indicates that ZFY-related genes are highly conserved in birds and mammals, and that the rate of nucleotide substitution in the Y-linked genes is not as high as predicted. However, the mouse Zfy-1 and Zfy-2 genes are markedly divergent members of the ZFY gene family; we suggest this relates to X-inactivation of the mouse gene Zfx.  相似文献   

13.
Human glycophorin Sta (HGpSta), one of the structural variants of erythrocyte membrane sialoglycoproteins, is encoded by a delta-alpha hybrid gene that arose from a single unequal crossover between the parent HGpB(delta) and HGpA(alpha) genes. We report here the identification of two new HGpSta genes (type A and type B) in four unrelated Sta heterozygotes from two ethnic groups. These Sta genes represent distinct genetic isoforms that differ from the previously reported Sta gene (type C) in the location of crossing-over sites. Comparison of nucleotide sequences among HGpB(delta), HGpA(alpha), and HGpSta type A genes revealed that the delta-alpha unequal crossover for the Sta type A gene occurred 110-246 base pairs downstream from pseudoexon III. In the crossing-over site of this Sta gene, an AT-rich sequence lying 3' to a nonameric palindrome was found to be highly similar to the lambda phage attachment site, att B, in inverted orientation. In the Sta type B gene, the delta-alpha crossing-over point was localized to an AG-rich sequence that is 302-490 base pairs downstream from pseudoexon III. Multiple lambda chi-like elements were identified at the crossover boundaries and within the breakpoint of this Sta gene. These results suggest strongly that recurrent and independent unequal recombination events have occurred in the formation of multiple Sta genes and that particular genomic sequences are important in defining the recombination sites for these homology-driven processes.  相似文献   

14.
N Takahashi  S Ueda  M Obata  T Nikaido  S Nakai  T Honjo 《Cell》1982,29(2):671-679
We have cloned five human immunoglobulin gamma genes from a fetal liver gene library. Four of them encode the known human immunoglobulin gamma chains gamma 1, gamma 2, gamma 3 and gamma 4. A fifth gamma gene seems to be a pseudogene. Nucleotide sequence determination demonstrates that the gamma 3 gene contains four separate hinge exons. Comparison of these hinge exons with those of the other gamma genes indicates that the first hinge exon is homologous to that of the pseudogene, and that the other three hinge exons are homologous to that of the gamma 1 gene, suggesting that the gamma 3 gene ancestor is a hybrid gene created by unequal crossing-over between the ancestral gamma 1 and psi gamma genes. Amplification of the gamma 1-type hinge exon probably followed to complete the gamma 3 gene. This hypothesis inevitably postulates the gene order 5'-gamma 1-gamma 3-psi gamma-3'. Cloning of overlapping chromosomal segments demonstrates that the gamma 2 gene is located 19 kb 5' to the gamma 4 gene. These analyses indicate that the human gamma-gene family has evolved by several types of DNA rearrangemet, including duplication of a complete gene; duplication of a hinge exon; and reassortment of exons by unequal cross-over between two adjacent genes.  相似文献   

15.
The chicken avidin gene (AVD) forms a closely clustered gene family together with several avidin-related genes (AVRs). In this study, we used fluorescence in situ hybridization on extended DNA fibers (fiber-FISH) to show that the number of the AVD and AVR genes differs between individuals. Furthermore, the gene copy-number showed wide somatic variation in white blood cells of the individuals. The molecular mechanism underlying the fluctuation is most probably unequal crossing-over and/or unequal sister chromatid exchange, as judged by the Gaussian distribution of the gene counts. By definition, an increase in gene number on one locus should be accompanied by a decrease on the other locus in unequal sequence exchange. The results suggest that copy-number lability may be more common among gene families than previously thought. The chicken avidin gene family also provides an excellent model for studying the mechanisms of recombination and gene conversion.  相似文献   

16.
Gamma thalassemia resulting from the deletion of a gamma-globin gene.   总被引:10,自引:3,他引:7       下载免费PDF全文
The first example of a deletion of one of the two gamma globin genes has been characterized through an analysis of the DNA of the heterozygous parent of a homozygous newborn, using restriction endonuclease mapping techniques. A deletion of approximately 5 kb was observed which was probably caused by an unequal crossing-over between the -G gamma- and -A gamma- genes resulting in the formation of a -G gamma A gamma- hybrid gene. Data on proportions of G gamma and A gamma chains in newborn babies assumed to be heterozygous for the hybrid and normal genes suggest that this hybrid gene may be producing its A gamma chain at levels normally seen only for the G gamma chain.  相似文献   

17.
Unequal crossing-over is involved in genetic duplication and deletion in such diverse genetic systems as Drosophila, bacteria, and animal viruses. It is proposed to be involved in the form of unequal sister chromatid exchange in gene amplification in cultured animal cells and during carcinogenesis. Studies of the process of unequal crossing-over have been hampered by the lack of genetic systems allowing specific selection for cells that have undergone such unequal crossing-over. We report here on the construction of plasmids designed to provide specific selection of unequal crossing-over. One such plasmid was studied in Escherichia coli. We show that kanamycin resistance is generated, as predicted, by the expected unequal crossover event.  相似文献   

18.
ZFY, a gene on the Y chromosome encoding a zinc finger protein, has been proposed as a candidate for the human testis determining gene. Sequences related to ZFY, called ZFX, are present on the X chromosome of a wide range of placental mammals. Unlike most mammals the mouse has four genes homologous to ZFY; two on the Y chromosome, Zfy-1 and Zfy-2, an X-linked gene, Zfx, and an autosomal gene, Zfa. We show here that Zfa has arisen recently by retroposition of one of at least three alternatively spliced mRNAs transcribed from the Zfx gene. Zfa is an unusual retroposon in that it has retained an open reading frame and is expressed, although its function may be limited or altered by the presence of a potentially inactivating mutation in the third of its zinc fingers. This mutation must have occurred at the same time or soon after the retroposition event as it is also present in the Zfa gene of Mus spretus. Interestingly the third finger of the M. musculus musculus Zfy-2 gene has also sustained a mutation suggesting that this gene family may be rapidly evolving in mice.  相似文献   

19.
Current models for the evolution of plant disease resistance (R) genes are based on mechanisms such as unequal crossing-over, gene conversion and point mutations as sources for genetic variability and the generation of new specificities. Size variation in leucine-rich repeat (LRR) domains was previously mainly attributed to unequal crossing-over or template slippage between LRR units. Our analysis of 112 R genes and R gene analogs (RGAs) from 16 different gene lineages from monocots and dicots showed that individual LRR units are mostly too divergent to allow unequal crossing-over. We found that illegitimate recombination (IR) is the major mechanism that generates quasi-random duplications within the LRR domain. These initial duplications are required as seeds for subsequent unequal crossing-over events which cause the observed rapid increase or decrease in LRR repeat numbers. Ten of the 16 gene lineages studied contained such duplications, and in four of them the duplications served as a template for subsequent repeat amplification. Our analysis of Pm3-like genes from rice and three wheat species showed that such events can be traced back more than 50 million years. Thus, IR represents a major new evolutionary mechanism that is essential for the generation of molecular diversity in evolution of RGAs.  相似文献   

20.
The molecular nature of three different types of X-linked color-vision defects, protanomaly, deuteranomaly, and protanopia, in a large 3-generation family was determined. In the protanomalous and protanopic males the normal red pigment gene was replaced by a 5' red-3' green fusion gene. The protanomalous male had more red pigment DNA in his fusion gene than did the more severely affected protanopic individual. The deuteranomalous individual had four green pigment genes and one 5' green-3' red fusion gene. These results extend those of Nathans et al., who proposed that most red-green color-vision defects arise as a result of unequal crossing-over between the red and green pigment genes. The various data suggest that differences in severity of color-vision defects associated with fusion genes are caused by differences in crossover sites between the red and green pigment genes. Currently used molecular methodology is not sufficiently sensitive to define these fusion points accurately, and the specific color-vision defect within the deutan or protan class cannot be predicted. The DNA patterns for color-vision genes of female heterozygotes have not previously been described. Patterns of heterozygotes may not be distinguishable from those of normals. However, a definite assignment of the various color pigment gene arrays could be carried out by family study. Two compound heterozygotes for color-vision defects who tested as normal by anomaloscopy were found to carry abnormal fusion genes. In addition, a normal red pigment gene was present on one chromosome and at least one normal green pigment gene was present on the other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号