首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potency of antisense oligonucleotide (ASO) drugs has significantly improved in the clinic after exploiting asialoglycoprotein receptor (ASGR) mediated delivery to hepatocytes. To further this technology, we evaluated the structure–activity relationships of oligonucleotide chemistry on in vivo potency of GalNAc-conjugated Gapmer ASOs. GalNAc conjugation improved potency of ASOs containing 2′-O-methyl (2′-O-Me), 3′-fluoro hexitol nucleic acid (FHNA), locked nucleic acid (LNA), and constrained ethyl bicyclo nucleic acid (cEt BNA) 10–20-fold compared to unconjugated ASOs. We further demonstrate that GalNAc conjugation improves activity of 2′-O-(2-methoxyethyl) (2′-O-MOE) and Morpholino ASOs designed to correct splicing of survival motor neuron (SMN2) pre-mRNA in liver after subcutaneous administration. GalNAc modification thus represents a viable strategy for enhancing potency of ASO with diverse nucleic acid modifications and mechanisms of action for targets expressed in hepatocytes.  相似文献   

2.
A series of antisense oligonucleotides (ASOs) containing either 2′-O-methoxyethylribose (MOE) or locked nucleic acid (LNA) modifications were designed to investigate whether LNA antisense oligonucleotides (ASOs) have the potential to improve upon MOE based ASO therapeutics. Some, but not all, LNA containing oligonucleotides increased potency for reducing target mRNA in mouse liver up to 5-fold relative to the corresponding MOE containing ASOs. However, they also showed profound hepatotoxicity as measured by serum transaminases, organ weights and body weights. This toxicity was evident for multiple sequences targeting three different biological targets, as well as in mismatch control sequences having no known mRNA targets. Histopathological evaluation of tissues from LNA treated animals confirmed the hepatocellular involvement. Toxicity was observed as early as 4 days after a single administration. In contrast, the corresponding MOE ASOs showed no evidence for toxicity while maintaining the ability to reduce target mRNA. These studies suggest that while LNA ASOs have the potential to improve potency, they impose a significant risk of hepatotoxicity.  相似文献   

3.
4.
Antisense oligonucleotides (ASOs) modified with ligands which target cell surface receptors have the potential to significantly improve potency in the target tissue. This has recently been demonstrated using triantennary N-acetyl d-galactosamine conjugated ASOs. CD22 is a cell surface receptor expressed exclusively on B cells thus presenting an attractive target for B cell specific delivery of drugs. Herein, we reported the synthesis of monovalent and trivalent ASO conjugates with biphenylcarbonyl (BPC) modified sialic acids and their study as ASO delivery agents into B cells. CD22 positive cells exhibited reduced potency when treated with ligand modified ASOs and mechanistic examination suggested reduced uptake into cells potentially as a result of sequestration of ASO by other cell-surface proteins.  相似文献   

5.
MiRNAs are non-coding RNAs that play a role in the regulation of major processes. The inhibition of miRNAs using antisense oligonucleotides (ASOs) is a unique and effective technique for the characterization and subsequent therapeutic targeting of miRNA function. Recent advances in ASO chemistry have been used to increase both the resistance to nucleases and the target affinity and specificity of these ASOs. Peptide nucleic acids (PNAs) are artificial oligonucleotides constructed on a peptide-like backbone. PNAs have a stronger affinity and greater specificity to DNA or RNA than natural nucleic acids and are resistant to nucleases, which is an essential characteristic for a miRNA inhibitor that will be exposed to serum and cellular nucleases. For increasing cell penetration, PNAs were conjugated with cell penetrating peptides (CPPs) at N-terminal. Among the tested CPPs, Tat-modified peptide-conjugated PNAs have most effective function for miRNA inhibition. PNA-based ASO was more effective miRNA inhibitor than other DNA-based ASOs and did not show cytotoxicity at concentration up to 1,000 nM. The effects of PNA-based ASOs were shown to persist for 9 days. Also, PNA-based ASOs showed considerable stability at storage temperature. These results suggest that PNA-based ASOs are more effective ASOs of miRNA than DNA-based ASOs and PNA-based ASO technology, compared with other technologies used to inhibit miRNA activity can be an effective tool for investigating miRNA functions.  相似文献   

6.
The in vivo potency of antisense oligonucleotides (ASO) has been significantly increased by reducing their length to 8–15 nucleotides and by the incorporation of high affinity RNA binders such as 2′, 4′-bridged nucleic acids (also known as locked nucleic acid or LNA, and 2′,4′-constrained ethyl [cET]). We now report the development of a novel ASO design in which such short ASO monomers to one or more targets are co-synthesized as homo- or heterodimers or multimers via phosphodiester linkers that are stable in plasma, but cleaved inside cells, releasing the active ASO monomers. Compared to current ASOs, these multimers and multi-targeting oligonucleotides (MTOs) provide increased plasma protein binding and biodistribution to liver, and increased in vivo efficacy against single or multiple targets with a single construct. In vivo, MTOs synthesized in both RNase H-activating and steric-blocking oligonucleotide designs provide ≈4–5-fold increased potency and ≈2-fold increased efficacy, suggesting broad therapeutic applications.  相似文献   

7.
Chemically modified antisense oligonucleotides (ASOs) are widely used as a tool to functionalize microRNAs (miRNAs). Reduction of miRNA level after ASO inhibition is commonly reported to show efficacy. Whether this is the most relevant endpoint for measuring miRNA inhibition has not been adequately addressed in the field although it has important implications for evaluating miRNA targeting studies. Using a novel approach to quantitate miRNA levels in the presence of excess ASO, we have discovered that the outcome of miRNA inhibition can vary depending on the chemical modification of the ASO. Although some miRNA inhibitors cause a decrease in mature miRNA levels, we have identified a novel 2′-fluoro/2′-methoxyethyl modified ASO motif with dramatically improved in vivo potency which does not. These studies show there are multiple mechanisms of miRNA inhibition by ASOs and that evaluation of secondary endpoints is crucial for interpreting miRNA inhibition studies.  相似文献   

8.
Improved targeting of miRNA with antisense oligonucleotides   总被引:10,自引:1,他引:9       下载免费PDF全文
  相似文献   

9.
10.
11.
Friedreich's ataxia (FRDA) is an incurable neurodegenerative disorder caused by reduced expression of the mitochondrial protein frataxin (FXN). The genetic cause of the disease is an expanded GAA repeat within the FXN gene. Agents that increase expression of FXN protein are a potential approach to therapy. We previously described anti-trinucleotide GAA duplex RNAs (dsRNAs) and antisense oligonucleotides (ASOs) that activate FXN protein expression in multiple patient derived cell lines. Here we test two distinct series of compounds for their ability to increase FXN expression. ASOs with butane linkers showed low potency, which is consistent with the low Tm values and suggesting that flexible conformation impairs activity. By contrast, single-stranded siRNAs (ss-siRNAs) that combine the strengths of dsRNA and ASO approaches had nanomolar potencies. ss-siRNAs provide an additional option for developing nucleic acid therapeutics to treat FRDA.  相似文献   

12.
The anticancer nucleoside 5-fluoro 2′-deoxyuridine-5′-phosphate (5-FdU-P) was attached via an amide chain linker to a triantennary GalNAc cluster as a means to deliver the drug to hepatic cells that recognize the amino sugar units.  相似文献   

13.
14.
Angiopoietin-like 4 (ANGPTL4) is an important regulator of plasma triglyceride (TG) levels and an attractive pharmacological target for lowering plasma lipids and reducing cardiovascular risk. Here, we aimed to study the efficacy and safety of silencing ANGPTL4 in the livers of mice using hepatocyte-targeting GalNAc-conjugated antisense oligonucleotides (ASOs). Compared with injections with negative control ASO, four injections of two different doses of ANGPTL4 ASO over 2 weeks markedly downregulated ANGPTL4 levels in liver and adipose tissue, which was associated with significantly higher adipose LPL activity and lower plasma TGs in fed and fasted mice, as well as lower plasma glucose levels in fed mice. In separate experiments, injection of two different doses of ANGPTL4 ASO over 20 weeks of high-fat feeding reduced hepatic and adipose ANGPTL4 levels but did not trigger mesenteric lymphadenopathy, an acute phase response, chylous ascites, or any other pathological phenotypes. Compared with mice injected with negative control ASO, mice injected with ANGPTL4 ASO showed reduced food intake, reduced weight gain, and improved glucose tolerance. In addition, they exhibited lower plasma TGs, total cholesterol, LDL-C, glucose, serum amyloid A, and liver TG levels. By contrast, no significant difference in plasma alanine aminotransferase activity was observed. Overall, these data suggest that ASOs targeting ANGPTL4 effectively reduce plasma TG levels in mice without raising major safety concerns.  相似文献   

15.
Peptide nucleic acid (PNA), a synthetic DNA mimic that is devoid of the (deoxy)ribose-phosphate backbone yet still perfectly retains the ability to recognize natural nucleic acids in a sequence-specific fashion, can be employed as a tool to modulate gene expressions via several different mechanisms. The unique strength of PNA compared to other oligonucleotide analogs is its ability to bind to nucleic acid targets with secondary structures such as double-stranded and quadruplex DNA as well as RNA. This digest aims to introduce general readers to the advancement in the area of modulation of DNA/RNA functions by PNA, its current status and future research opportunities, with emphasis on recent progress in new targeting modes of structured DNA/RNA by PNA and PNA-mediated gene editing.  相似文献   

16.
功能核酸DNA水凝胶是一种以DNA为构建单元通过化学反应或物理缠结自组装而成的新型柔性材料,其构建单元中包含1种或多种能够形成功能核酸的特定序列。功能核酸是通过碱基修饰和DNA分子之间的相互作用力组合的一类特定核酸结构,包括核酸适配体、DNA核酶、G-四联体(G-quadruplex,G4)和i-motif结构等。传统上,高浓度的长DNA链是制备DNA水凝胶的必要条件,而核酸扩增方法的引入为DNA水凝胶的组装方式提供了新的可能。因此,对常用于制备DNA水凝胶的多种功能核酸以及核酸的提取、合成和扩增手段进行了详细的介绍。在此基础上,综述了通过化学或物理交联方式组装功能核酸DNA水凝胶的制备方法。最后,提出了DNA纳米材料的组装所面临的挑战和潜在的发展方向,以期为开发高效组装的功能核酸DNA水凝胶提供参考。  相似文献   

17.
18.
Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号