首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Nucleic acid duplexes featuring a single alpha-anomeric thymidine inserted into each DNA strand via 3′-3′ and 5′-5′ phosphodiester linkages exhibit local conformational dynamics that are not adequately depicted by conventional restrained molecular dynamics (rMD) methods. We have used molecular dynamics with time-averaged NMR restraints (MDtar) to explore its applicability to describing the conformational dynamics of two α-containing duplexes – d(GCGAAT-3′-3′-αT-5′-5′-CGC)2 and d(ATGG-3′-3′-αT-5′-5′-GCTC)?r(gagcaccau). In contrast to rMD, enforcing NOE-based distance restraints over a period of time in MDtar rather than instantaneously results in better agreement with the experimental NOE and J-data. This conclusion is based on the dramatic decreases in average distance and coupling constant violations (Δd av, J rms, and ΔJ av) and improvements in sixth-root R-factors (R x). In both duplexes, the deoxyribose ring puckering behavior predicted independently by pseudorotation analysis is portrayed remarkably well using this approach compared to rMD. This indicates that the local dynamic behavior is encoded within the NOE data, although this is not obvious from the local R x values. In both systems, the backbone torsion angles comprising the 3′-3′ linkage as well as the (high S-) sugars of the α-nucleotide and preceding residue (α?1) are relatively static, while the conformations of the 5′-5′ linkage and the sugar in the neighboring β-nucleotide (α+1) show enhanced flexibility. To reduce the large ensembles generated by MDtar to more manageable clusters we utilized the PDQPRO program. The resulting PDQPRO clusters (in both cases, 13 structures and associated probabilities extracted from a pool of 300 structures) adequately represent the structural and dynamic characteristics predicted by the experimental data.  相似文献   

2.
The C-terminal trigger sequence is essential in the coiled-coil formation of GCN4-p1; its conformational properties are thus of importance for understanding this process at the atomic level. A solution NMR model structure of a peptide, GCN4p16–31, encompassing the GCN4-p1 trigger sequence was proposed a few years ago. Derived using a standard single-structure refinement protocol based on 172 nuclear Overhauser effect (NOE) distance restraints, 14 hydrogen-bond and 11 ϕ torsional-angle restraints, the resulting set of 20 NMR model structures exhibits regular α-helical structure. However, the set slightly violates some measured NOE bounds and does not reproduce all 15 measured 3J(HN-H)-coupling constants, indicating that different conformers of GCN4p16–31 might be present in solution. With the aim to resolve structures compatible with all NOE upper distance bounds and 3J-coupling constants, we executed several structure refinement protocols employing unrestrained and restrained molecular dynamics (MD) simulations with two force fields. We find that only configurational ensembles obtained by applying simultaneously time-averaged NOE distance and 3J-coupling constant restraining with either force field reproduce all the experimental data. Additionally, analyses of the simulated ensembles show that the conformational variability of GCN4p16–31 in solution admitted by the available set of 187 measured NMR data is larger than represented by the set of the NMR model structures. The conformations of GCN4p16–31 in solution differ in the orientation not only of the side-chains but also of the backbone. The inconsistencies between the NMR model structures and the measured NMR data are due to the neglect of averaging effects and the inclusion of hydrogen-bond and torsional-angle restraints that have little basis in the primary, i.e. measured NMR data.  相似文献   

3.
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom–atom distance bounds, 3JNH and 3J coupling constants, and 15N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom–atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0–1.5 ns while backbone 3JHN-coupling constants and 1H– 15N order parameters take slightly longer, 1.0–2.0 ns. As expected, side-chain 3J-coupling constants and 1H– 15N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result.  相似文献   

4.
The synthesis of two novel carbasugar analogues of α-l-iduronic acid is described in which the ring-oxygen is replaced by a methylene group. In analogy with the conformational equilibrium described for α-l-IdopA, the conformation of the carbasugars was investigated by 1H and 13C NMR spectroscopy. Hadamard transform NMR experiments were utilised for rapid acquisition of 1H,13C-HSQC spectra and efficient measurements of heteronuclear long-range coupling constants. Analysis of 1H NMR chemical shifts and JH,H coupling constants extracted by a total-lineshape fitting procedure in conjunction with JH,C coupling constants obtained by three different 2D NMR experiments, viz., 1H,13C-HSQC-HECADE, J-HMBC and IPAP-HSQC-TOCSY-HT, as well as effective proton-proton distances from 1D 1H,1H T-ROE and NOE experiments showed that the conformational equilibrium 4C1?2S5a?1C4 is shifted towards 4C1 as the predominant or exclusive conformation. These carbasugar bioisosteres of α-l-iduronic acid do not as monomers show the inherent flexibility that is anticipated to be necessary for biological activity.  相似文献   

5.
A 17 residue peptide corresponding to the C-helix of hen lysozyme (residues 86 to 102) has been investigated in detail to assess the factors that determine its conformation in both aqueous and trifluoroethanol (TFE) solutions. A thorough characterisation of the peptide by CD and NMR techniques under both conditions has been performed including the determination of complete NMR proton sequential assignments, and measurement of NOE effects,3JHNαcoupling constants, temperature coefficients and residue-specific hydrogen-exchange rates. In water, the peptide adopts a largely unstructured conformation and NMR data, particularly coupling constants and chemical shift deviations, have been shown to agree closely with predictions from a model for a random coil based on the φ,ψ distributions in a protein database. This indicates that under these conditions the intrinsic conformational preferences of the individual amino acid residues are the dominating factors that determine the population of conformers adopted. With increasing concentrations of TFE a cooperative transition to an extensively helical conformation occurs and the resultant changes in CαH chemical shifts have been shown to correlate with the changes in φ,ψ populations. Using NOE and coupling constant data for this state, an ensemble of structures has been calculated and provides a model for a helix in the absence of tertiary interactions. In this model fluctuations, which increase in amplitude towards the termini, occur about the average helical φ,ψ angles and are responsible for increasing the values of3JHNαcoupling constants above those anticipated for a static helix. The residue-specific rates of hydrogen exchange for the peptide in 50% TFE-d3are consistent with such a model, the maximum protection from exchange being observed for residues in the centre of the helix.  相似文献   

6.
As protein crystals generally possess a high water content, it is assumed that the behaviour of a protein in solution and in crystal environment is very similar. This assumption can be investigated by molecular dynamics (MD) simulation of proteins in the different environments. Two 2ns simulations of hen egg white lysozyme (HEWL) in crystal and solution environment are compared to one another and to experimental data derived from both X-ray and NMR experiments, such as crystallographic B-factors, NOE atom–atom distance bounds, 3JH N-coupling constants, and 1H-15N bond vector order parameters. Both MD simulations give very similar results. The crystal simulation reproduces X-ray and NMR data slightly better than the solution simulation.  相似文献   

7.
Experiment and computer simulation are two complementary tools to understand the dynamics and behavior of biopolymers in solution. One particular area of interest is the ensemble of conformations populated by a particular molecule in solution. For example, what fraction of a protein sample exists in its folded conformation? How often does a particular peptide form an alpha helix versus a beta hairpin? To address these questions, it is important to determine the sensitivity of a particular experiment to changes in the distribution of molecular conformations. Consequently, a general analytic formalism is proposed to determine the sensitivity of a spectroscopic observable to the underlying distribution of conformations. A particular strength of the approach is that it provides an expression for a weighted average across conformational substates that is independent of the averaging function used. The formalism is described and applied to experimental and simulated nuclear Overhauser enhancement (NOE) and 3 J-coupling data on peptides in solution.  相似文献   

8.
Methionine residues fulfill a broad range of roles in protein function related to conformational plasticity, ligand binding, and sensing/mediating the effects of oxidative stress. A high degree of internal mobility, intrinsic detection sensitivity of the methyl group, and low copy number have made methionine labeling a popular approach for NMR investigation of selectively labeled protein macromolecules. However, selective labeling approaches are subject to more limited information content. In order to optimize the information available from such studies, we have performed DFT calculations on model systems to evaluate the conformational dependence of 3 J CSCC, 3 J CSCH, and the isotropic shielding, σiso. Results have been compared with experimental data reported in the literature, as well as data obtained on [methyl-13C]methionine and on model compounds. These studies indicate that relative to oxygen, the presence of the sulfur atom in the coupling pathway results in a significantly smaller coupling constant, 3 J CSCC/3 J COCC ~ 0.7. It is further demonstrated that the 3 J CSCH coupling constant depends primarily on the subtended CSCH dihedral angle, and secondarily on the CSCC dihedral angle. Comparison of theoretical shielding calculations with the experimental shift range of the methyl group for methionine residues in proteins supports the conclusion that the intra-residue conformationally-dependent shift perturbation is the dominant determinant of δ13Cε. Analysis of calmodulin data based on these calculations indicates that several residues adopt non-standard rotamers characterized by very large ~100° χ3 values. The utility of the δ13Cε as a basis for estimating the gauche/trans ratio for χ3 is evaluated, and physical and technical factors that limit the accuracy of both the NMR and crystallographic analyses are discussed.  相似文献   

9.
10.
3 J scalar couplings report on the conformational averaging of backbone φ angles in peptides and proteins, and therefore represent a potentially powerful tool for studying the details of both structure and dynamics in solution. We have compared an extensive experimental dataset with J-couplings predicted from unrestrained molecular dynamics simulation using enhanced sampling available from accelerated molecular dynamics or using long timescale trajectories (200 ns). The dynamic fluctuations predicted to be present along the backbone, in agreement with residual dipolar coupling analysis, are compatible with the experimental 3 J scalar couplings providing a slightly better reproduction of these experimental parameters than a high-resolution static structure.  相似文献   

11.
For the understanding of cellular processes the molecular structure of biomolecules has to be accurately determined. Initial models can be significantly improved by structure refinement techniques. Here, we present the refinement methods and analysis techniques implemented in the GROMOS software for biomolecular simulation. The methodology and some implementation details of the computation of NMR NOE data, 3 J-couplings and residual dipolar couplings, X-ray scattering intensities from crystals and solutions and neutron scattering intensities used in GROMOS is described and refinement strategies and concepts are discussed using example applications. The GROMOS software allows structure refinement combining different types of experimental data with different types of restraining functions, while using a variety of methods to enhance conformational searching and sampling and the thermodynamically calibrated GROMOS force field for biomolecular simulation.  相似文献   

12.
Special features of the use of homo- and heteronuclear correlation methods of NMR in one and two dimensions for studying the spatial structure and intramolecular dynamics of modified analogues of steroid hormones (MASH) are considered. The application of these methods to the assignment of resonances in the high-field 1H NMR region and to the determination of the most stereospecifically important parameters, such as the vicinal constants of spin–spin coupling (3 J H–H) and nuclear Overhauser effects (NOE), are discussed using the example of NMR studies of some estrogens and androgens at 300 MHz and on the basis of literature data. The most efficient combination of the methods and the necessary modification of each of them may be chosen considering the spectral and relaxation parameters of MASH in liquid medium, including the anisotropy of the overall diffusive motion. The characteristics of MASH are the wide use of correlations through long-range couplings (COSY-45 and DQF-COSY), the application of the 4,5 J H–H constants for the determination of spatial structure, and the advantage of heteronuclear HSQC methods with and without 13C decoupling over the corresponding HMQC methods in both resolution and sensitivity. In the conformationally rigid MASH molecules, the anisotropy of the MASH diffusive motion in liquid adversely affects the determination of interproton distances by the calibrating processing method for the NOE difference and NOESY spectra: it results in both overestimated and underestimated distance values depending on the polar angle ratios of the reference and the determined distances. Under certain conditions, conformationally mobile MASH demonstrate the additional contribution of the scalar relaxation mechanism between the indirectly (scalarly) bound protons. This mechanism is responsible for the underestimated values of NOE and the corresponding errors in the distance determination.  相似文献   

13.
NMR studies of plastocyanin have centered on the ligands to the copper atom at the active site, particularly histidines-37 and -87. Heteronuclear (13C, 1H) J-connectivity spectroscopy has enabled cross assignment of 1H and 13C NMR resonances from the two copper-ligated histidines. In addition to providing assignments of the 13C resonances, the two-dimensional Fourier transform NMR results require the reversal of the original 1H NMR assignments to the ring protons of histidine-37. The line widths of the ring protons of histidine-87 are field-dependent leading to determination of the reduced lifetime of the proton on the Nδ atom (about 400 μs).  相似文献   

14.
3-(Trifluoromethyl)bicyclopent-[1.1.1]-1-yl glycine (CF3-Bpg) has previously been established as a useful 19F NMR label to analyse the structures of oligomeric membrane-active peptides or transmembrane segments. To systematically examine the effect of side chain volume, conformational rigidity, and hydrophobicity of CF3-Bpg in polypeptide environments the amino acid was incorporated into an established coiled-coil based screening system. A single substitution of either valine (position a16) or leucine (position d19) within the hydrophobic core of the heteromeric coiled coil has practically no effect on its structure. Despite its comparatively high hydrophobicity, however, the stiff and bulky side chain of CF3-Bpg is not so well accommodated by the hydrophobic core as it leads to a more pronounced destabilization than observed for other, more polar fluorinated amino acids which carry more flexible side chains. CF3-Bpg is therefore a useful 19F NMR label, though not for monitoring the stability of such helix–helix interactions.  相似文献   

15.
α-Synuclein is an intrinsically disordered protein of 140 residues that switches to an α-helical conformation upon binding phospholipid membranes. We characterize its residue-specific backbone structure in free solution with a novel maximum entropy procedure that integrates an extensive set of NMR data. These data include intraresidue and sequential HN–Hα and HN–HN NOEs, values for 3JHNHα, 1JHαCα, 2JCαN, and 1JCαN, as well as chemical shifts of 15N, 13Cα, and 13C′ nuclei, which are sensitive to backbone torsion angles. Distributions of these torsion angles were identified that yield best agreement to the experimental data, while using an entropy term to minimize the deviation from statistical distributions seen in a large protein coil library. Results indicate that although at the individual residue level considerable deviations from the coil library distribution are seen, on average the fitted distributions agree fairly well with this library, yielding a moderate population (20–30%) of the PPII region and a somewhat higher population of the potentially aggregation-prone β region (20–40%) than seen in the database. A generally lower population of the αR region (10–20%) is found. Analysis of 1H–1H NOE data required consideration of the considerable backbone diffusion anisotropy of a disordered protein.  相似文献   

16.
Novel ionic mixed-ligands complexes of the types cis- and trans-[Pt(pz)2(Ypy)2](NO3)2 (where Ypy is a pyridine derivative and pz = pyrazine) were synthesized and studied mainly in the solid state by IR spectroscopy and in aqueous solution by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. The trans isomers with ligands containing a methyl group in ortho position on the pyridine ring could not be synthesized. The results of the solution NMR characterization have shown that the isolated compounds are pure. In 195Pt NMR, the cis complexes containing a methyl group in ortho positions were observed at lower field (average −2337 ppm) than the other cis compounds (average −2427 ppm), which is explained by the solvent effect. The trans isomers were observed at very slightly lower fields (average −2422 ppm) than the equivalent cis complexes (average −2427 ppm). In 1H NMR, the coupling constants 3J(195Pt-1HYpy) and 3J(195Pt-1Hpz) are larger in the cis compounds (∼40 Hz) than in the trans complexes (∼31 Hz). A few 4J(195Pt-1Hpz) were observed (∼16 Hz). In 13C NMR spectroscopy, the coupling constants 3J(195Pt-13Cpz) and 3J(195Pt-13CYpy) are also larger in the cis configuration (∼30 and ∼38 Hz, respectively) than in the trans isomers (∼20 Hz). One 4J(195Pt-13Cpz) could be calculated (17 Hz). The presence of the syn and anti rotamers were observed in all the cis complexes containing a pyridine derivative with a -CH3 group in ortho position. They were observed in 195Pt, 1H and 13C NMR spectroscopy. The proportion of the two rotamers is about 55% and 45%.  相似文献   

17.
1l-1,5-Di-O-p-hydroxyphenylacetyl-chiro-inositol was isolated from the leaves of Taraxacumudum, along with seven other secondary metabolites. Identification of the inositol derivative, based on extensive spectroscopic analyses (1H, 13C and 2D NMR) in two solvents, allowed the correction of previously published data and conformational studies. This is the second report on the presence of inositol esters with p-hydroxyphenylacetic acid in plants.  相似文献   

18.
Five antiplasmodial bisabololoxide sesquiterpene diesters were isolated from an EtOAc extract of the aerial parts of Artemisia persica following an HPLC-time-based activity profiling of the extract. Structure elucidation was achieved by 1D and 2D NMR experiments. Relative configurations of cyclohexenone/cyclohexene and tetrahydropyran moieties of 15 were established on the basis of 3JH–H coupling constants and NOE difference spectra. Stereochemical correlation of the two rings, and assignment of absolute configuration of 15 were achieved by comparison of experimental ECD spectra with simulated ECD data for possible stereoisomers, by using time dependent density function theory (TDDFT). Bisaboloids 14 exhibited in vitro antimalarial activity against Plasmodium falciparum, with IC50 values ranging from 2.8 to 20.1 μM, and selectivity indices (SI) in L-6 cells of 3.7–11.9.  相似文献   

19.
Abstract

UV absorption, circular dichroïsm (CD) and 1H NMR, associated with Monte Carlo (MC) molecular structure simulations have been applied to the study of the trinucleoside diphosphate: r(ACC).

The MC study which has been conducted as a function of temperature, is based on random variations of the nucleotide conformational angles, i.e. phosphodiester chain torsional angles and sugar pucker pseudorotational angles. All of the chemical bond lengths and valence angles remained fixed during the structural simulation, except those of the sugar pucker. Six different initial structures have been selected in order to explore the molecular conformational space as completely as possible. This simulation procedure led to distinct families of equilibrium conformations at 283,298 and 318 K.

The thermodynamical parameters such as variations in entropy, enthalpy and also melting temperature (ΔS0 x, ΔH0 x and Tm) of the stacking (X) equilibrium were obtained from UV absorption and circular dichroïsm (CD) spectra recorded over a 80K temperature range. Chemical shifts (δ), vicinal coupling constants(3J k) and cross-relaxation rates (σk,l) of trimers were measured at 400.13 MHz over a range of concentrations (2–13mM) and temperatures (283–333K). Least-squares fitting of the experimental chemical shifts to simple models of association (A) and stacking equilibria allowed separation of the variations in the δ values (Δδx and ΔδA) due to either phenomenon. The three NMR data sets (Δδx, 3Jk,l and σk.l) were then evaluated for the minima conformers obtained with the MC simulations. Theoretical values of Δδx were estimated using the results of an ab initio study while the coupling constant data were simulated with Karplus-type equations. Finally, the relaxation data were simulated from the distance matrices using treatment for cases of both slow conformational exchange accompanied by rapid small-amplitude fluctuations about the minima structures.

A consistent picture of the large amplitude deformations (torsional angle variation) of these trimers has emerged from the present study. Optimized conformational blends at 283, 296 and 318K were obtained by least-squares fitting of the experimental data to the theoretical ones, while considering the populations as adjustable parameters. As it would be expected, the right-handed helical conformation (A-RNA type) is found to be the major stacked species, in the temperature range of 283 to 318K. Limited evidence for bulged structures has been obtained, whereas novel reverse-stacked and half-stacked conformers also presented theoretical data compatible with the NMR observables of aqueous r(ACC).  相似文献   

20.
From the roots of Guillonea scabra a new epoxyguaianolide, guillonein, has been isolated and its structure established by X-ray diffraction analysis. A 1H NMR spectroscopic study of this new sesquiterpene reveals a conformational difference in its seven-membered ring between the crystal and CDCl3 solution states. The implications of this conformational change with respect to the C-8 configurations previously assigned to shairidin and desangeloylshairidin are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号