首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
BackgroundSeveral infectious diseases and therapeutic interventions cause gut microbe dysbiosis and associated pathology. We characterised the gut microbiome of children exposed to the helminth Schistosoma haematobium pre- and post-treatment with the drug praziquantel (PZQ), with the aim to compare the gut microbiome structure (abundance and diversity) in schistosome infected vs. uninfected children.MethodsStool DNA from 139 children aged six months to 13 years old; with S. haematobium infection prevalence of 27.34% was extracted at baseline. 12 weeks following antihelminthic treatment with praziqunatel, stool DNA was collected from 62 of the 139 children. The 16S rRNA genes were sequenced from the baseline and post-treatment samples and the sequence data, clustered into operational taxonomic units (OTUs). The OTU data were analysed using multivariate analyses and paired T- test.ResultsPre-treatment, the most abundant phyla were Bacteroidetes, followed by Firmicutes and Proteobacteria respectively. The relative abundance of taxa among bacterial classes showed limited variation by age group or sex and the bacterial communities had similar overall compositions. Although there were no overall differences in the microbiome structure across the whole age range, the abundance of 21 OTUs varied significantly with age (FDR<0.05). Some OTUs including Veillonella, Streptococcus, Bacteroides and Helicobacter were more abundant in children ≤ 1 year old compared to older children. Furthermore, the gut microbiome differed in schistosome infected vs. uninfected children with 27 OTU occurring in infected but not uninfected children, for 5 of these all Prevotella, the difference was statistically significant (p <0.05) with FDR <0.05. PZQ treatment did not alter the microbiome structure in infected or uninfected children from that observed at baseline.ConclusionsThere are significant differences in the gut microbiome structure of infected vs. uninfected children and the differences were refractory to PZQ treatment.  相似文献   

2.
Recent studies using germ-free, gnotobiotic microbial transplantation/conventionalization or antibiotic treatment in rodent models have highlighted the critical role of intestinal microbes on gut health and metabolic functions of the host. Genetic and environmental factors influence the abundance and type of mutualistic vs. pathogenic bacteria, each of which has preferred substrates for growth and unique products of fermentation. Whereas some fermentation products or metabolites promote gut function and health, others impair gut function, leading to compromised nutrient digestion and barrier function that adversely impact the host. Such products may also influence food intake, energy harvest and expenditure, and insulin action, thereby influencing adiposity and related metabolic outcomes. Diet composition influences gut microbiota and subsequent fermentation products that impact the host, as demonstrated by prebiotic studies using oligosaccharides or other types of indigestible fiber. Recent studies also show that dietary lipids affect specific populations of gut microbes and their metabolic end products. This review will focus on studies examining the influence of dietary fat amount and type on the gut microbiome, intestinal health and positive and negative metabolic consequences. The protective role of omega-3-rich fatty acids on intestinal inflammation will also be examined.  相似文献   

3.
The mechanisms linking the function of microbes to host health are becoming better defined but are not yet fully understood. One recently explored mechanism involves microbe-mediated alterations in the host epigenome. Consumption of specific dietary components such as fiber, glucosinolates, polyphenols, and dietary fat has a significant impact on gut microbiota composition and function. Microbial metabolism of these dietary components regulates important epigenetic functions that ultimately influences host health. Diet-mediated alterations in the gut microbiome regulate the substrates available for epigenetic modifications like DNA methylation or histone methylation and/or acetylation. In addition, generation of microbial metabolites such as butyrate inhibits the activity of core epigenetic enzymes like histone deacetylases (HDACs). Reciprocally, the host epigenome also influences gut microbial composition. Thus, complex interactions exist between these three factors. This review comprehensively examines the interplay between diet, gut microbes, and host epigenetics in modulating host health. Specifically, the dietary impact on gut microbiota structure and function that in-turn regulates host epigenetics is evaluated in terms of promoting protection from disease development.  相似文献   

4.
There is a critical opportunity to improve response to immunotherapies and overall cancer survivorship via dietary interventions targeted to modify the gut microbiome, and in turn, potentially enhance anti-cancer immunity. A promising dietary intervention is fermented foods, which may alter gut microbiome composition and, in turn, improve immunity. In this article, we summarize the state of the literature pertaining to the gut microbiome and response to immunotherapy and other cancer treatments, potential clinical implications of utilizing a fermented foods dietary approach to improve cancer treatment outcomes, and existing gaps in the literature regarding the implementation of fermented food interventions among individuals with cancer or with a history of cancer. This review synthesizes a compelling rationale across different disciplines to lay a roadmap for future fermented food dietary intervention research aimed at modulating the gut microbiome to reduce cancer burden.  相似文献   

5.
《遗传学报》2021,48(11):972-983
Understanding the micro-coevolution of the human gut microbiome with host genetics is challenging but essential in both evolutionary and medical studies. To gain insight into the interactions between host genetic variation and the gut microbiome, we analyzed both the human genome and gut microbiome collected from a cohort of 190 students in the same boarding college and representing 3 ethnic groups, Uyghur, Kazakh, and Han Chinese. We found that differences in gut microbiome were greater between genetically distinct ethnic groups than those genetically closely related ones in taxonomic composition, functional composition, enterotype stratification, and microbiome genetic differentiation. We also observed considerable correlations between host genetic variants and the abundance of a subset of gut microbial species. Notably, interactions between gut microbiome species and host genetic variants might have coordinated effects on specific human phenotypes. Bacteroides ovatus, previously reported to modulate intestinal immunity, is significantly correlated with the host genetic variant rs12899811 (meta-P = 5.55 × 10−5), which regulates the VPS33B expression in the colon, acting as a tumor suppressor of colorectal cancer. These results advance our understanding of the micro-coevolution of the human gut microbiome and their interactive effects with host genetic variation on phenotypic diversity.  相似文献   

6.

Background

Modifiable lifestyle factors (e.g. dietary intake and physical activity) are important contributors to weight gain during college. The purpose of this study was to evaluate whether associations exist between body mass index, physical activity, screen time, dietary consumption (fat, protein, carbohydrates, and fiber), and gut microbial diversity during the first year of college. Racially/ethnically diverse college students (n?=?82; 61.0% non-white) at a large Southwestern university completed self-reported physical activity and 24-h recall dietary assessments, height and weight measurements, and provided one fecal sample for gut microbiome analysis. Fecal microbial community composition was assessed with Illumina MiSeq next-generation sequencing of PCR amplified 16S rRNA genes. Post-hoc analyses compared microbial diversity by groups of high and low physical activity and fiber intake using QIIME and LEfSe bioinformatics software.

Results

No statistically significant differences were observed between body mass index and gut microbiome abundance and diversity. Median daily consumption of dietary fiber was 11.2 (7.6, 14.9) g/d, while the median self-reported moderate-to-vigorous physical activity (MVPA) was 55.7 (27.9, 79.3) min/d and screen time 195.0 (195.0, 315.0) min/d. Microbial analysis by LEfSe identified Paraprevotellaceae, Lachnospiraceae, and Lachnospira as important phylotypes in college students reporting greater MVPA, while Enterobacteriaceae and Enterobacteriales were more enriched among students reporting less MVPA (p?<?0.05). Barnesiellaceae, Alphaproteobacteria, and Ruminococcus were more abundant taxa among those consuming less than the median fiber intake (p?<?0.05). Post-hoc analyses comparing weighted UniFrac distance metrics based on combined categories of high and low MVPA and fiber revealed that clustering distances between members of the high MVPA-low fiber group were significantly smaller when compared to distances between members of all other MVPA-fiber groups (p?<?0.0001).

Conclusions

Habitual fiber consumption and MVPA behaviors help explain the differential abundance of specific microbial taxa and overall gut microbial diversity differences in first-year college students.
  相似文献   

7.
We sought to identify quantitative trait loci (QTLs) by genome‐wide linkage analysis for BMI and waist circumference (WC) exploring various strategies to address heterogeneity including covariate adjustments and complex models based on epistatic components of variance. Because cholesterol‐lowering drugs and diabetes medications may affect adiposity and risk of coronary heart disease, we excluded subjects medicated for hypercholesterolemia and hyperglycemia. The evidence of linkage increased on 2p25 (BMI: lod = 1.59 vs. 2.43, WC: lod = 1.32 vs. 2.26). Because environmental and/or genetic components could mask the effect of a specific locus, we investigated further whether a QTL could influence adiposity independently of lipid pathway and dietary habits. Strong evidence of linkage on 2p25 (BMI: lod = 4.31; WC: lod = 4.23) was found using Willet's dietary factors and lipid profile together with age and sex in adjustment. It suggests that lipid profile and dietary habits are confounding factors for detecting a 2p25 QTL for adiposity. Because evidence of linkage has been previously detected for BMI on 7q34 and 13q14 in National Heart, Lung, and Blood Institute Family Heart Study (NHLBI FHS), and for diabetes on 15q13, we investigated epistasis between chromosome 2 and these loci. Significant epistatic interactions were found between QTLs 2p25 and 7q34, 2q37 and 7q34, 2q31 and 13q14, and 2q31–q36 and 15q13. These results suggest multiple pathways and factors involving genetic and environmental effects influencing adiposity. By taking some of these known factors into account, we clarified our linkage evidence of a QTL on 2p25 influencing BMI and WC. The 2p25, 2q24–q31, and 2q36–q37 showed evidence of epistatic interaction with 7q34, 13q14, and 15q13.  相似文献   

8.
The microbiome is critical to an organism's phenotype, and its composition is shaped by, and a driver of, eco-evolutionary interactions. We investigated how host ancestry, habitat and diet shape gut microbial composition in a mammalian hybrid zone between Neotoma lepida and N. bryanti that occurs across an ecotone between distinct vegetation communities. We found that habitat is the primary determinant of diet, while host genotype is the primary determinant of the gut microbiome—a finding further supported by intermediate microbiome composition in first-generation hybrids. Despite these distinct primary drivers, microbial richness was correlated with diet richness, and individuals that maintained higher dietary richness had greater gut microbial community stability. Both relationships were stronger in the relative dietary generalist of the two parental species. Our findings show that host ancestry interacts with dietary habits to shape the microbiome, ultimately resulting in the phenotypic plasticity that host–microbial interactions allow.  相似文献   

9.
The bacterial composition of the human fecal microbiome is influenced by many lifestyle factors, notably diet. It is less clear, however, what role host genetics plays in dictating the composition of bacteria living in the gut. In this study, we examined the association of ~200K host genotypes with the relative abundance of fecal bacterial taxa in a founder population, the Hutterites, during two seasons (n = 91 summer, n = 93 winter, n = 57 individuals collected in both). These individuals live and eat communally, minimizing variation due to environmental exposures, including diet, which could potentially mask small genetic effects. Using a GWAS approach that takes into account the relatedness between subjects, we identified at least 8 bacterial taxa whose abundances were associated with single nucleotide polymorphisms in the host genome in each season (at genome-wide FDR of 20%). For example, we identified an association between a taxon known to affect obesity (genus Akkermansia) and a variant near PLD1, a gene previously associated with body mass index. Moreover, we replicate a previously reported association from a quantitative trait locus (QTL) mapping study of fecal microbiome abundance in mice (genus Lactococcus, rs3747113, P = 3.13 x 10−7). Finally, based on the significance distribution of the associated microbiome QTLs in our study with respect to chromatin accessibility profiles, we identified tissues in which host genetic variation may be acting to influence bacterial abundance in the gut.  相似文献   

10.
The gut microbiome is known to play a significant role in human health but its role in aging remains unclear. The objective of this study was to compare the gut microbiome composition between young adult and geriatric non‐human primates (marmosets) as a model of human health and disease. Stool samples were collected from geriatric (8+ years) and young adult males (2–5 years). Stool 16S ribosomal RNA V4 sequences were amplified and sequenced on the Illumina MiSeq platform. Sequences were clustered into operational taxonomic units and classified via Mothur's Bayesian classifier referenced against the Greengenes database. A total of 10 young adult and 10 geriatric marmosets were included. Geriatric marmosets had a lower mean Shannon diversity compared with young marmosets (3.15 vs. 3.46; p = 0.0191). Geriatric marmosets had a significantly higher mean abundance of Proteobacteria (0.22 vs. 0.09; p = 0.0233) and lower abundance of Firmicutes (0.15 vs. 0.19; p = 0.0032) compared with young marmosets. Geriatric marmosets had a significantly higher abundance of Succinivibrionaceae (0.16 vs. 0.01; p = 0.0191) and lower abundance of Porphyromonadaceae (0.07 vs. 0.11; p = 0.0494). In summary, geriatric marmosets had significantly altered microbiome diversity and composition compared with young adult marmosets. Further studies are needed to test microbiome‐targeted therapies to improve healthspan and lifespan.  相似文献   

11.
Inflammatory bowel diseases (IBD) have become highly prevalent in developed countries. Environmentally triggered exaggerated immune responses against the intestinal microbiome are thought to mediate the disorders. The potential dietary origins of the disease group have been implicated. However, the effects of environmental influences on prenatal developmental programming in respect to orchestrating postnatal microbiome composition and predilection towards mammalian colitis have not been examined. We tested how transient prenatal exposure to methyl donor micronutrient (MD) supplemented diets may impact predilection towards IBD in a murine dextran sulfate sodium (DSS) colitis model. Prenatal MD supplementation was sufficient to modulate colonic mucosal Ppara expression (3.2 fold increase; p=0.022) and worsen DSS colitis in young adulthood. The prenatal dietary exposure shifted the postnatal colonic mucosal and cecal content microbiomes. Transfer of the gut microbiome from prenatally MD supplemented young adult animals into germ free mice resulted in increased colitis susceptibility in the recipients compared to controls. Therefore, the prenatal dietary intervention induced the postnatal nurturing of a colitogenic microbiome. Our results show that prenatal nutritional programming can modulate the mammalian host to harbor a colitogenic microbiome. These findings may be relevant for the nutritional developmental origins of IBD.  相似文献   

12.
Obesity development during psychotropic treatments represents a major health issue in psychiatry. Melanin-concentrating hormone receptor 2 (MCHR2) is a central receptor involved in energy homeostasis. MCHR2 shares its promoter region with MCHR2-AS1, a long antisense non-coding RNA. The aim of this study was to determine whether tagging single nucleotide polymorphisms (tSNPs) of MCHR2 and MCHR2-AS1 are associated with the body mass index (BMI) in the psychiatric and in the general population. The influence of MCHR2 and MCHR2-AS1 tSNPs on BMI was firstly investigated in a discovery psychiatric sample (n1 = 474). Positive results were tested for replication in two other psychiatric samples (n2 = 164, n3 = 178) and in two population-based samples (CoLaus, n4 = 5409; GIANT, n5 = 113809). In the discovery sample, TT carriers of rs7754794C>T had 1.08 kg/m2 (p = 0.04) lower BMI as compared to C-allele carriers. This observation was replicated in an independent psychiatric sample (-2.18 kg/m2; p = 0.009). The association of rs7754794C>T and BMI seemed stronger in subjects younger than 45 years (median of age). In the population-based sample, a moderate association was observed (-0.17 kg/m2; p = 0.02) among younger individuals (<45y). Interestingly, this association was totally driven by patients meeting lifetime criteria for atypical depression, i.e. major depressive episodes characterized by symptoms such as an increased appetite. Indeed, patients with atypical depression carrying rs7754794-TT had 1.17 kg/m2 (p = 0.04) lower BMI values as compared to C-allele carriers, the effect being stronger in younger individuals (-2.50 kg/m2; p = 0.03; interaction between rs7754794 and age: p-value = 0.08). This study provides new insights on the possible influence of MCHR2 and/or MCHR2-AS1 on obesity in psychiatric patients and on the pathophysiology of atypical depression.  相似文献   

13.

Background

Few studies have examined dietary data or objective measures of physical activity (PA) and sedentary behavior among metabolically healthy overweight/obese (MHO) and metabolically unhealthy overweight/obese (MUO). Thus, the purpose is to determine whether PA, sedentary behavior and/or diet differ between MHO and MUO in a sample of young women.

Methods

Forty-six overweight/obese (BMI ≥25 kg/m2) African American and Caucasian women 19–35 years were classified by cardiometabolic risk factors, including elevated blood pressure, triglyceride, glucose and C-reactive protein, low high density lipoprotein, and insulin resistance (MUO ≥2; MHO, <2). Time (mins/day) in light, moderate, vigorous PA, and sedentary behavior were estimated using an accelerometer (≥3 days; ≥8 hrs wear time). Questionnaires were used to quantify sitting time, TV/computer use and usual daily activity. The Block Food Frequency Questionnaire assessed dietary food intake. Differences between MHO and MUO for lifestyle behaviors were tested with linear regression (continuous data) or logistic regression (categorical data) after adjusting for age, race, BMI, smoking and accelerometer wear and/or total kilocalories, as appropriate.

Results

Women were 26.7±4.7 years, with a mean BMI of 31.1±3.7 kg/m2, and 61% were African American. Compared to MUO (n = 9), MHO (n = 37; 80%) spent less mins/day in sedentary behavior (difference: -58.1±25.5, p = 0.02), more mins/day in light PA (difference: 38.2±16.1, p = 0.02), and had higher daily METs (difference: 0.21±0.09, p = 0.03). MHO had higher fiber intakes (g/day of total fiber, soluble fiber, fruit/vegetable fiber, bean fiber) and daily servings of vegetables; but lower daily dairy servings, saturated fat, monounsaturated fat and trans fats (g/day) compared to MUO.

Conclusion

Compared to MUO, MHO young women demonstrate healthier lifestyle habits with less sedentary behavior, more time in light PA, and healthier dietary quality for fat type and fiber. Future studies are needed to replicate findings with larger samples that include men and women of diverse race/ethnic groups.  相似文献   

14.
Although the critical role that our gastrointestinal microbes play in host physiology is now well established, we know little about the factors that influenced the evolution of primate gut microbiomes. To further understand current gut microbiome configurations and diet–microbe co-metabolic fingerprints in primates, from an evolutionary perspective, we characterized fecal bacterial communities and metabolomic profiles in 228 fecal samples of lowland and mountain gorillas (G. g. gorilla and G. b. beringei, respectively), our closest evolutionary relatives after chimpanzees. Our results demonstrate that the gut microbiomes and metabolomes of these two species exhibit significantly different patterns. This is supported by increased abundance of metabolites and bacterial taxa associated with fiber metabolism in mountain gorillas, and enrichment of markers associated with simple sugar, lipid and sterol turnover in the lowland species. However, longitudinal sampling shows that both species'' microbiomes and metabolomes converge when hosts face similar dietary constraints, associated with low fruit availability in their habitats. By showing differences and convergence of diet–microbe co-metabolic fingerprints in two geographically isolated primate species, under specific dietary stimuli, we suggest that dietary constraints triggered during their adaptive radiation were potential factors behind the species-specific microbiome patterns observed in primates today.  相似文献   

15.
Despite careful attention to animal nutrition and wellbeing, gastrointestinal distress remains relatively common in captive non‐human primates (NHPs), particularly dietary specialists such as folivores. These patterns may be a result of marked dietary differences between captive and wild settings and associated impacts on the gut microbiome. However, given that most existing studies target NHP dietary specialists, it is unclear if captive environments have distinct impacts on the gut microbiome of NHPs with different dietary niches. To begin to examine this question, we used 16S ribosomal RNA gene amplicon sequences to compare the gut microbiomes of five NHP genera categorized either as folivores (Alouatta, Colobus) or non‐folivores (Cercopithecus, Gorilla, Pan) sampled both in captivity and in the wild. Though captivity affected the gut microbiomes of all NHPs in this study, the effects were largest in folivorous NHPs. Shifts in gut microbial diversity and in the relative abundances of fiber‐degrading microbial taxa suggest that these findings are driven by marked dietary shifts for folivorous NHPs in captive settings. We propose that zoos and other captive care institutions consider including more natural browse in folivorous NHP diets and regularly bank fecal samples to further explore the relationship between NHP diet, the gut microbiome, and health outcomes.  相似文献   

16.
Human and animal studies strongly suggest that dietary gluten could play a causal role in the etiopathogenesis of type 1 diabetes (T1D). However, the mechanisms have not been elucidated. Recent reports indicate that the intestinal microbiome has a major influence on the incidence of T1D. Since diet is known to shape the composition of the intestinal microbiome, we investigated using non-obese diabetic (NOD) mice whether changes in the intestinal microbiome could be attributed to the pro- and anti-diabetogenic effects of gluten-containing and gluten-free diets, respectively. NOD mice were raised on gluten-containing chows (GCC) or gluten-free chows (GFC). The incidence of diabetes was determined by monitoring blood glucose levels biweekly using a glucometer. Intestinal microbiome composition was analyzed by sequencing 16S rRNA amplicons derived from fecal samples. First of all, GCC-fed NOD mice had the expected high incidence of hyperglycemia whereas NOD mice fed with a GFC had significantly reduced incidence of hyperglycemia. Secondly, when the fecal microbiomes were compared, Bifidobacterium, Tannerella, and Barnesiella species were increased (p = 0.03, 0.02, and 0.02, respectively) in the microbiome of GCC mice, where as Akkermansia species was increased (p = 0.02) in the intestinal microbiomes of NOD mice fed GFC. Thirdly, both of the gluten-free chows that were evaluated, either egg white based (EW-GFC) or casein based (C-GFC), significantly reduced the incidence of hyperglycemia. Interestingly, the gut microbiome from EW-GFC mice was similar to C-GFC mice. Finally, adding back gluten to the gluten-free diet reversed its anti-diabetogenic effect, reduced Akkermansia species and increased Bifidobacterium, Tannerella, and Barnesiella suggesting that the presence of gluten is directly responsible for the pro-diabetogenic effects of diets and it determines the gut microflora. Our novel study thus suggests that dietary gluten could modulate the incidence of T1D by changing the gut microbiome.  相似文献   

17.
Disturbances of the gut microbiome have been widely suggested to be associated with 5-fluorouracil (5-Fu) induced digestive pathologies. Furthermore, it has been elucidated that the gut microbiome may play a key role in the pathogenesis of depressive disorders via the microbiota-gut-brain axis. Despite the speculation, there exists no direct evidence proving the causality between disturbances in the gut microbiome induced by 5-Fu and depressive mood dysregulation. Herein, behavioral testing was used to evaluate depressive-like behaviors in 5-Fu treated rats. Subsequently, the gut microbiota and prefrontal cortex (PFC) metabolic were analyzed by 16S rRNA sequencing and 1H nuclear magnetic resonance (1H NMR). To clarify the association between the gut microbiota and their role on depressive-like behaviors caused by 5-Fu, a fecal microbiota transplantation (FMT) experiment was carried out. The results suggested that 5-Fu could significantly alter the diversity and abundance of the gut microbiome, and induce PFC metabolic disorders, as well as depressive behaviors in rats. Transplantation of fecal microbiota from healthy control into 5-Fu treated rats significantly alleviated the PFC metabolic disorder and depressive-like behaviors. In conclusion, this study demonstrated that the gut microbiome was actively involved in the occurrence of 5-Fu induced depressive-like behaviors, and manipulation of specific gut microbiome parameters may serve as a promising novel target for side effects of 5-Fu treatment.  相似文献   

18.
How long-term dietary intake shapes microbiota composition and stability in young children is poorly understood. Herein, the temporal variability in stool microbiota composition in relation to habitual dietary patterns of 4- to 8-year-old children (n=22) was investigated. Fecal samples were collected at baseline, 6 weeks and 6 months. Bacterial composition and volatile fatty acids were assessed by 16S rRNA sequencing and gas-chromatography, respectively. Nutrient intake was assessed using 3-day food diaries and dietary patterns were empirically derived from a food frequency questionnaire. Using a factor loading of >0.45 for a food group to be a major contributor to the overall dietary pattern, two dietary patterns were found to be associated with distinct microbiome composition. Dietary Pattern 1 (DP1), characterized by intake of fish, protein foods, refined carbohydrates, vegetables, fruit, juice and sweetened beverages, kid’s meals and snacks and sweets, was associated with higher relative abundance of Bacteroidetes, Bacteroides and Ruminococcus and lower abundance of Bifidobacterium, Prevotella, Blautia and Roseburia. Dietary Pattern 2 (DP2), characterized by intake of grains, dairy and legumes, nuts and seeds, was associated with higher relative abundance of Cyanobacteria and Phascolarctobacterium and lower abundance of Dorea and Eubacterium. Fruit and starchy foods were present in both patterns, but were more associated with DP1 and DP2, respectively. Temporal stability of microbiota over a 6-month period was associated with baseline dietary patterns. Understanding how dietary intake contributes to microbiota composition and stability in early life in important for dietary recommendations and designing clinical interventions for microbiota-associated diseases.  相似文献   

19.
Beyond changing dietary patterns, there is a paucity of data to fully explain the high prevalence of obesity and hypertension in urban African populations. The aim of this study was to determine whether other environmental factors (including sleep duration, smoking and physical activity) are related to body anthropometry and blood pressure (BP). Data were collected on 1311 subjects, attending two primary health care clinics in Soweto, South Africa. Questionnaires were used to obtain data on education, employment, exercise, smoking and sleep duration. Anthropometric and BP measurements were taken. Subjects comprised 862 women (mean age 41 ± 16 years and mean BMI 29.9 ± 9.2 kg/m2) and 449 men (38 ± 14 years and 24.8 ± 8.3 kg/m2). In females, ANOVA showed that former smokers had a higher BMI (p<0.001) than current smokers, while exposure to second hand smoking was associated with a lower BMI (p<0.001) in both genders. Regression analyses demonstrated that longer sleep duration was associated with a lower BMI (p<0.05) in older females only, and not in males, whilst in males napping during the day for > 30 minutes was related to a lower BMI (β = -0.04, p<0.01) and waist circumference (β = -0.03, p<0.001). Within males, napping for >30 minutes/day was related to lower systolic (β = -0.02, p<0.05) and lower diastolic BP (β = -0.02, p = 0.05). Longer night time sleep duration was associated with higher diastolic (β = 0.005, p<0.01) and systolic BP (β = 0.003, p<0.05) in females. No health benefits were noted for physical activity. These data suggest that environmental factors rarely collected in African populations are related, in gender-specific ways, to body anthropometry and blood pressure. Further research is required to fully elucidate these associations and how they might be translated into public health programs to combat high levels of obesity and hypertension.  相似文献   

20.
For captive primates, greater provisioning of leafy greens or foliage can promote natural foraging behavior while boosting fiber intake. Recalcitrant fiber, although minimally available to endogenous metabolism, is readily fermented into nutrients by gut microbes. Whereas most primates in captivity consume fiber-limited diets and harbor imbalanced gut microbiota compared to their wild conspecifics, the importance of fiber provisioning to primate gut microbiota has predominately been studied in folivores. We, therefore, determined if commercial lettuce could be used to encourage foraging behavior and modify the gut microbiota of captive frugivores. We provisioned ruffed lemurs (Varecia rubra and V. variegata) with romaine lettuce, on top of the standard dietary fare, for 10 consecutive days. Before and across the period of lettuce supplementation, we collected observational data of animal feeding and fecal samples for microbiome analysis, determined via amplicon sequencing. The ruffed lemurs and their gut microbes responded to lettuce provisioning. In particular, younger animals readily ate lettuce and showed no decline in consumption across study days. When controlling for the effects of host species and social-group membership, lettuce consumption shifted the composition of the gut microbiome away from each lemur's own baseline, an effect that became stronger as the study progressed. In the final study days, Ruminococcaceae UCG-008 and Akkermansia, microbes typically and respectively associated with fiber metabolism and host health, were significantly enriched in the consortia of lettuce-provisioned subjects. Ultimately, the routine offering of lettuce, leafy greens, or foliage to captive frugivores may benefit animal wellbeing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号