首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Sodium-dependent glucose co-transporter 2 (SGLT2) inhibition has been demonstrated to efficiently control hyperglycemia via an insulin secretion-independent pathway. The unique mode of action eliminates the risk of hypoglycemia and makes SGLT2 inhibitors an attractive option for the treatment of type 2 diabetes. In a continuation of our previous studies on SGLT2 inhibitors bearing different sugar moieties, sixteen new N-glucosyl indole derivatives were designed, synthesized, and evaluated for their inhibitory activity against hSGLT2. Of these sixteen, acethydrazide-containing N-glucosyl indole 9d was found to be the most potent SGLT2 inhibitor, and caused a significant elevation in urine glucose excretion in rats at 50 mg/kg, relative to the vehicle control.  相似文献   

2.
The sodium glucose co-transporter 2 (SGLT2) was considered as an important target for the treatment of type 2 diabetes mellitus in recent years. This report describes the design and synthesis of a series of novel SGLT2 inhibitors (11a17a) as well as their dehydrate dihydrofuran derivatives (11b17b), which were prepared by Mitsunobu reaction. Their SGLT2 inhibitory activity was also evaluated, and 16a and 17a were found to be the most potent compounds with IC50 values of 0.63 and 0.81?nM, respectively. However, all the dehydrate derivatives lose the SGLT2 inhibitory activity, with inhibition percentage no more than 66.5% at the concentration of 0.5?μM, which might because of the configuration inversion at C-2 of glucose. In conclusion, the present study improves understanding of the SAR of SGLT2 inhibitors, and provided more information that could be applied to design new molecules.  相似文献   

3.
Gamma-secretase modulators (GSMs) selectively lower amyloid-β42 (Aβ42) and are therefore potential disease-modifying drugs for Alzheimer’s disease (AD). Here, we report the discovery of imidazopyridine derivatives as GSMs with oral activity on not only Aβ42 levels but also cognitive function. Structural optimization of the biphenyl group and pyridine-2-amide moiety of compound 1a greatly improved GSM activity and rat microsomal stability, respectively. 5-{8-[(3,4′-Difluoro[1,1′-biphenyl]-4-yl)methoxy]-2-methylimidazo[1,2-a]pyridin-3-yl}-N-methylpyridine-2-carboxamide (1o) showed high in vitro potency and brain exposure, induced a robust reduction in brain Aβ42 levels, and exhibited undetectable inhibition of cytochrome p450 enzymes. Moreover, compound 1o showed excellent efficacy against cognitive deficits in AD model mice. These findings suggest that compound 1o is a promising candidate for AD therapeutics.  相似文献   

4.
Inhibition of renal sodium-dependent glucose cotransporter 2 (SGLT2) increases urinary glucose excretion (UGE), and thus reduces blood glucose levels in hyperglycemia. A series of N-glucosides was synthesized for biological evaluation as human SGLT2 (hSGLT2) inhibitors. Among these compounds, N-glucoside 9d possessing an indole core structure showed good in vitro activity (IC50 = 7.1 nM against hSGLT2). Furthermore, 9d exhibited favorable in vivo potency with regard to UGE in rats based on good pharmacokinetic profiles.  相似文献   

5.
Sodium-glucose co-transporter (SGLT) inhibitors are a novel class of therapeutic agents for the treatment of type 2 diabetes by preventing renal glucose reabsorption. In our efforts to identify novel inhibitors of SGLT, we synthesized a series of l-rhamnose derived acyclic C-nucleosides with 1,2,3-triazole core. The key β-ketoester building block 4 prepared from l-rhamnose in five steps, was reacted with various aryl azides to produce the respective 1,2,3-triazole derivatives in excellent yields. Deprotection of acetonide group gave the desired acyclic C-nucleosides 7ao. All the new compounds were screened for their sodium-glucose co-transporters (SGLT1 and SGLT2) inhibition activity using recently developed cell-based nonradioactive fluorescence glucose uptake assay. Among them, 7m with IC50: 125.9 nM emerged as the most potent SGLT2 inhibitor. On the other hand compound 7d exhibited best selectivity for inhibition of SGLT2 (IC50: 149.1 nM) over SGLT1 (IC50: 693.2 nM). The results presented here demonstrated the utility of acyclic C-nucleosides as novel SGLT inhibitors for future investigations.  相似文献   

6.
Inhibition of sodium-dependent glucose transporter 2 (SGLT2), the transporter that is responsible for renal re-uptake of glucose, leads to glucosuria in animals. SGLT-mediated glucosuria provides a mechanism to shed excess plasma glucose to ameliorate diabetes-related hyperglycemia and associated complications. The current study demonstrates that the proper relationship of a 4′-substituted benzyl group to a β-1C-phenylglucoside is important for potent and selective SGLT2 inhibition. The lead C-arylglucoside (7a) demonstrates superior metabolic stability to its O-arylglucoside counterpart (4) and it promotes glucosuria when administered in vivo.  相似文献   

7.
A series of novel O-spiroketal C-arylglucosides have been prepared and evaluated in cell-based functional assays for activity against human sodium-dependent glucose co-transporters 1 and 2 (SGLT1 and 2). The core spiro[isobenzofuran-1,2′-pyran] structure proved to be an effective scaffold for diversification and a number of compounds with single digit nanomolar potency and high selectivity have been synthesized. Compound 5a promoted glucosuria when administered in vivo in rats and produced a significant blood glucose reduction effect.  相似文献   

8.
Canagliflozin (1), a novel inhibitor for sodium-dependent glucose cotransporter 2 (SGLT2), has been developed for the treatment of type 2 diabetes. To investigate the effect of replacement of the phenyl ring in 1 with heteroaromatics, C-glucosides 2 were designed, synthesized, and evaluated for their inhibitory activities against SGLT2. Of these, 3-pyridyl, 2-pyrimidyl or 5-membered heteroaryl substituted derivatives showed highly potent inhibitory activity against SGLT2, while 5-pyrimidyl substitution was associated with slightly reduced activity. In particular, 2g (TA-3404) had remarkable anti-hyperglycemic effects in high-fat diet fed KK (HF-KK) mice.  相似文献   

9.
A group of novel l-serinamides, substituted (S)-2-(benzylideneamino)-3-hydroxy-N-tetradecylpropanamides (3ao) and substituted (S)-2-(benzylamino)-3-hydroxy-N-tetradecyl propanamides (4c, 4i, 4l, and 4o), were synthesized as potential anti-tumor lead compounds. In vitro cell viability assay results indicate treatment with 3ao compounds resulted in significant inhibition of cell viability in the chemoresistant breast cancer cell line, MCF-7TN-R. Compounds 3i and 3l, both ortho-substituted analogs, show the greatest efficacy with IC50 values of 10.3 μM and 12.5 μM, respectively. The SAR analysis indicate that the imine functional group of 3ao is critical for the cellular anti-viability effect, and the partial atomic charge (PAC) value of imine C atom is a valuable structural parameter for predicting the activity of these ceramide analogs.  相似文献   

10.
As potential inhibitors of pyruvate dehydrogenase complex E1 (PDHc-E1), a series of 19 1-((4-amino-2-methylpyrimidin-5-yl)methyl)-5-methyl-N′-(substituent)benzylidene-1H-1,2,3-triazole-4-carbohydrazide 4 has been synthesized and tested for their PDHc-E1 inhibitory activity in vitro. Some of these compounds such as 4a, 4g, 4l, 4o, 4p, and 4q were demonstrated to be effective inhibitors by the bioassay of Escherichia coli PDHc-E1. SAR analysis indicated that the PDHc-E1 inhibitory activity could be further enhanced by optimizing the substituted groups in the parent compound. Molecular modeling study with compound 4o as a model was performed to evaluate docking. The results of modeling study suggested a probable inhibition mechanism.  相似文献   

11.
A new series of (2S,3R,4R,5S,6R)-5-fluoro-6-(hydroxymethyl)-2-aryltetrahydro-2H-pyran-3,4-diols as dual inhibitors of sodium glucose co-transporter proteins (SGLTs) were disclosed. Two methods were developed to efficiently synthesize C5-fluoro-lactones 3 and 4, which are key intermediates to the C5-fluoro-hexose based C-aryl glucosides. Compound 2b demonstrated potent hSGLT1 and hSGLT2 inhibition (IC50?=?43?nM for SGLT1 and IC50?=?9?nM for SGLT2). It showed robust inhibition of blood glucose excursion in oral glucose tolerance test (OGTT) in Sprague Dawley (SD) rats and exerted pronounced antihyperglycemic effects in db/db mice and high-fat diet-fed ZDF rats when dosed orally at 10?mg/kg.  相似文献   

12.
(2S,3R,4R,5S,6R)-2-Aryl-5,5-difluoro-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols and (2S,3R,4R,5S,6R)-2-aryl-5-fluoro-5-methyl-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4-diols were discovered as dual inhibitors of sodium glucose co-transporter proteins (e.g. SGLT1 and SGLT2) through rational drug design, efficient synthesis, and in vitro and in vivo evaluation. Compound 6g demonstrated potent dual inhibitory activities (IC50 = 96 nM for SGLT1 and IC50 = 1.3 nM for SGLT2). It showed robust inhibition of blood glucose excursion in an oral glucose tolerance test (OGTT) in Sprague Dawley (SD) rats when dosed at both 1 mg/kg and 10 mg/kg orally. It also demonstrated postprandial glucose control in db/db mice when dosed orally at 10 mg/kg.  相似文献   

13.
The cardiovascular complications were highly prevalent in type 2 diabetes mellitus (T2DM), even at the early stage of T2DM or the state of intensive glycemic control. Therefore, there is an urgent need for the intervention of cardiovascular complications in T2DM. Herein, the new hybrids of NO donor and SGLT2 inhibitor were design to achieve dual effects of anti-hyperglycemic and anti-thrombosis. As expected, the preferred hybrid 2 exhibited moderate SGLT2 inhibitory effects and anti-platelet aggregation activities, and its anti-platelet effect mediated by NO was also confirmed in the presence of NO scavenger. Moreover, compound 2 revealed significantly hypoglycemic effects and excretion of urinary glucose during an oral glucose tolerance test in mice. Potent and multifunctional hybrid, such as compound 2, is expected as a potential candidate for the intervention of cardiovascular complications in T2DM.  相似文献   

14.
Sodium glucose co-transporter 1 (SGLT1) plays a dominant role in the absorption of glucose in the gut and is considered a promising target in the development of therapeutic options for postprandial hyperglycemia. Previously, we reported potent and selective SGLT1 inhibitors 1 and 2 showing efficacy in oral carbohydrate tolerance tests in diabetic rat models. In a pharmacokinetic (PK) study of 2, excessive systemic exposure to metabolites of 2 was observed, presumably due to the high permeability of its aglycone (2a). To further improve SGLT1 inhibitory activity and reduce aglycone permeability, a series of 4-benzyl-5-isopropyl-1H-pyrazol-3-yl β-d-glycopyranoside derivatives bearing novel hydrophilic substitution groups on the phenyl ring were synthesized and their inhibitory activity toward SGLTs was evaluated. Optimized compound 14c showed an improved profile satisfying both higher activity and lower permeability of its aglycone (22f) compared with initial leads 1 and 2. Moreover, the superior efficacy of 14c in various carbohydrate tolerance tests in diabetic rat models was confirmed compared with acarbose, an α-glucosidase inhibitor (α-GI) widely used in the clinic.  相似文献   

15.
Three new picraline-type alkaloids, alstiphyllanines E–G (13) and a new ajmaline-type alkaloid, alstiphyllanine H (4) were isolated from the leaves of Alstonia macrophylla together with 16 related alkaloids (520). Structures and stereochemistry of 14 were fully elucidated and characterized by 2D NMR analysis. Alstiphyllanines E and F (1 and 2) showed moderate Na+-glucose cotransporter (SGLT1 and SGLT2) inhibitory activity. A series of a hydroxy substituted derivatives 2128 at C-17 of the picraline-type alkaloids have been derived as having potent SGLT inhibitory activity. 10-Methoxy-N(1)-methylburnamine-17-O-veratrate (6) exhibited potent inhibitory activity, suggesting that the presence of an ester side chain at C-17 may be important to show SGLT inhibitory activity. Structure activity relationship of alstiphyllanines on inhibitory activity of SGLT was discussed.  相似文献   

16.
Ongoing effort to gather further knowledge about the structural requirements on histone deacetylase inhibitors led to the synthesis of novel N-hydroxybenzamide-based HDAC inhibitors 1ao, introducing branched hydrophobic groups at the capping group, and their inhibition activity against HDACs and anti-proliferation activity in four tumor cell lines were determined. Compounds 1jo were further tested against recombinant human HDAC1 and HDAC4 to evaluate their selectivity profile. This work further suggests that the chemical nature of the capping group is critical for subtle discrimination between the class I and the class II HDAC isoforms.  相似文献   

17.
Here, a series of C-glucosides with azulene rings in the aglycon moiety was synthesized and the inhibitory activities toward hSGLT1 and hSGLT2 were evaluated. Starting from the azulene derivative 7 which had relatively good SGLT2 inhibitory activity, compound 8a which has a 3-[(azulen-2-yl)methyl]phenyl group was identified as a lead compound for further optimization. Introduction of a phenolic hydroxyl group onto the central benzene ring afforded a potent and selective SGLT2 inhibitor 8e, which reduced blood glucose levels in a dose-dependent manner in rodent diabetic models. A mono choline salt of 8e (YM543) was selected as a clinical candidate for use in treating type 2 diabetes mellitus.  相似文献   

18.
In the present study, fifteen novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one (6a-o) derivatives were designed as inhibitor of HIV-1 RT using ligand based drug design approach and in-silico evaluated for drug-likeness properties. Designed compounds were synthesized, characterized and in-vitro evaluated for RT inhibitory activity against wild HIV-1 RT strain. Among the tested compounds, four compounds (6a, 6b, 6j and 6o) exhibited significant inhibition of HIV-1 RT (IC50  10 μg/ml). All synthesized compounds were also evaluated for anti-HIV-1 activity as well as cytotoxicity on T lymphocytes, in which compounds 6b and 6l exhibited significant anti-HIV activity (EC50 values 4.72 and 5.45 μg/ml respectively) with good safety index.Four compounds (6a, 6b, 6j and 6o) found significantly active against HIV-1 RT in the in-vitro assay were in-silico evaluated against two mutant RT strains as well as one wild strain. Further, titled compounds were evaluated for in-vitro antibacterial (Escherichia coli, Pseudomonas putida, Staphylococcus aureus and Bacillus cereus) and antifungal (Candida albicans and Aspergillus niger) activities.  相似文献   

19.
In order to investigate SAR regarding glucose moiety in novel C-aryl glucoside SGLT2 inhibitors containing a thiazole motif, a series of chemical modifications on glucose was conducted to explore potential utility as a suitable replacement of glucose per se. Among the compounds prepared, deshydroxy 29 (IC50 = 7.01 nM) demonstrated the best in vitro inhibitory activity against SGLT2 in this series to date. But, none of the compounds were better than the parent molecule 5 (IC50 = 1.75 nM).  相似文献   

20.
Modifications to the sugar portion of C-aryl glycoside sodium glucose transporter 2 (SGLT2) inhibitors were explored, including systematic deletion and modification of each of the glycoside hydroxyl groups. Based on results showing activity to be quite tolerant of structural change at the C-5 position, a series of novel C-5 spiro analogues was prepared. Some of these analogues exhibit low nanomolar potency versus SGLT2 and promote urinary glucose excretion (UGE) in rats. However, due to sub-optimal pharmacokinetic parameters (in particular half-life), predicted human doses did not meet criteria for further advancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号