首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
4.
Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells.  相似文献   

5.
IRX1 is originally characterized as a tumor suppressor gene of gastric cancer (GC) by our group based on serially original studies. However, the molecular regulatory mechanisms of IRX1 are not clear yet. Here, we identified protein arginine methyltransferase 5 (PRMT5) as a major upstream regulator of IRX1 for determining GC progression. Expression of PRMT5 was significantly increased in human GC tissues (433 out of 602 cases, 71.93%) compared with normal gastric mucosa, and exhibited diagnostic and prognostic potential. Overexpression of PRMT5 promoted tumorigenicity and metastasis of GC cells, while knockdown of PRMT5 abrogated tumorigenicity and metastasis of GC cells in vitro and in vivo. By co-immunoprecipitation and chromatin immunoprecipitation assays, we proved that PRMT5 elevated methylation levels of tumor suppressor IRX1 promoter via recruiting DNMT3A at promoter region. Knockdown of PRMT5 in SGC7901 and NCI-N87 cells decreased the recruitment of DNMT3A at IRX1 promoter, and reduced the methylation level of IRX1 promoter, then re-activated IRX1 expression. Whereas, overexpression of PRMT5 could epigenetically suppress IRX1 expression. Overall, PRMT5 promoted tumorigenicity and metastasis of gastric cancer cells via epigenetic silencing of IRX1. Targeting PRMT5 in GC might inhibit the malignant characters of GC and drawing a novel therapeutic potential.  相似文献   

6.
Ovarian cancer is the leading cause of gynecological cancer-related death in women, and is difficult to treat. The aim of our study is to explore the role and action mechanism of hsa_circ_0000119 in ovarian cancer, thus to analyze whether the circular RNA is a potential target for the treatment of the disease. In this present study, our data shows that hsa_circ_0000119 and DNA methyltransferase 1 (DNMT1) was increased, while miR-142-5p was decreased in ovarian cancer. Overexpression of hsa_circ_0000119 promoted tumor growth, while silencing of hsa_circ_0000119 resulted in an opposite effects. Decreasing of hsa_circ_0000119 also notably inhibited the proliferation, migration, and invasion of the ovarian cancer cells. Moreover, the data proves that hsa_circ_0000119 negatively regulated miR-142-5p and cadherin 13 (CDH13) expression, but positively regulated DNMT1 expression. miR-142-5p could interact with hsa_circ_0000119 and DNMT1 3′-UTR. Silencing of DNMT1 could reverse the inhibition of hsa_circ_0000119 to miR-142-5p and CDH13 expression. Importantly, higher level of CDH13 promoter methylation existed in the ovarian tumors than that in matched normal tissues. DNA methyltransferase inhibitor could increase the expression of CDH13 in ovarian cancer cells. In addition, our results also prove that increasing of CDH13 or miR-142-5p effectively reversed the inhibition of hsa _circ_0000119 to the cell malignant phenotypes. Overall, our data demonstrate that hsa_circ_0000119 facilitated ovarian cancer development through increasing CDH13 expression via promoting DNMT1 expression by sponging miR-142-5p. Our data demonstrate the potential role of hsa_circ_0000119 in the treatment of ovarian cancer.  相似文献   

7.
Controversy has reigned for some time over the biological connection between DNA methylation and cancer. For this reason, the methylation mechanism responsible for increased cancer risk has received greater attention in recent years. Tumor suppressor genes are often hypermethylated resulting in gene silencing. Although some have questioned this interpretation of the link between methylation and cancer, it appears that both hypermethylation and hypomethylation events can create epigenetic changes that can contribute to cancer development. Recent studies have shown that the methyltransferases DNMT1 and DNMT3b cooperatively maintain DNA methylation and gene silencing in human cancer cells. Disruption of the human DNMT3b only slightly reduces the overall global DNA methylation; however, demethylation was markedly potentiated when both DNMT1 and DNMT3b were simultaneously deleted. The results to these experiments provide compelling evidence towards a role for DNA methylation in cancer. This review discusses the current understanding of cancer-epigenetic information and highlights recent studies that connect the methylation machinery and chromatin remodelling with cancer susceptibility.  相似文献   

8.
Loss of E-cadherin and epithelial to mesenchymal transition (EMT) are key steps in cancer progression. Reactive oxygen species (ROS) play significant roles in cellular physiology and homeostasis. Roles of E-cadherin (CDH1), EMT and ROS are intriguingly illustrated in many cancers without focusing their collective concert during cancer progression. We report that hydrogen peroxide (H2O2) treatment modulate CDH1 gene expression by epigenetic modification(s). Sublethal dosage of H2O2 treatment decrease E-cadherin, increase DNMT1, HDAC1, Snail, Slug and enrich H3K9me3 and H3K27me3 in the CDH1 promoter. The effect of H2O2 was attenuated by ROS scavengers; NAC, lupeol and beta-sitosterol. DNMT inhibitor, AZA prevented the H2O2 induced promoter-CpG-island methylation of CDH1. Treatment of cells with U0126 (inhibitor of ERK) reduced the expression of DNMT1, Snail and Slug, increased CDH1. This implicates that CDH1 is synergistically repressed by histone methylation, DNA methylation and histone deacetylation mediated chromatin remodelling and activation of Snail and Slug through ERK pathway. Increased ROS leads to activation of epigenetic machineries and EMT activators Snail/Slug which in their course of action inactivates CDH1 gene and lack of E-cadherin protein promotes EMT in breast cancer cells. ROS and ERK signaling facilitate epigenetic silencing and support the fact that subtle increase of ROS above basal level act as key cell signaling molecules. Free radical scavengers, lupeol and beta-sitosterol may be tested for therapeutic intervention of breast cancer. This work broadens the amplitude of epigenome and open avenues for investigations on conjoint effects of canonical and intrinsic metabolite signaling and epigenetic modulations in cancer.  相似文献   

9.
10.
11.
乙型肝炎病毒x (hepatitis B virus x,HBx)蛋白是导致肝癌(hepatocellular Carcinoma,HCC)的重要因素.但HBX在HCC形成过程中表观遗传机制尚有待阐明.本研究发现microRNA-200c (miR-200c)在过表达乙型肝炎病毒的HCC中下调,并且其直接靶向DNA甲基转移酶3A (DNA methyltransferase 3A,DNMT3A).此外,miR-200c和DNMT3A在HB诱发的肝癌组织中呈现负相关.乙型肝炎病毒诱导miR-200c下调,进而引起DNMT3A表达上调,导致细胞中肿瘤相关基因的启动子超甲基化.我们对乙型肝炎病毒诱导的肝癌表观遗传学改变进行了进一步研究,并提出一种基于miRNA的靶向治疗乙型肝炎病毒相关肝癌的潜在方法.  相似文献   

12.
13.
14.
《Epigenetics》2013,8(1):119-128
It was previously demonstrated that miR-199a was downregulated in testicular germ cell tumor (TGCT), probably due to hypermethylation of its promoter. Further study found that re-expression of miR-199a in testicular cancer cells (NT2) led to suppression of cell growth, cancer migration, invasion and metastasis. More detailed analyses showed that these properties of miR-199a could be assigned to miR-199a-5p, one of its two derivatives. The biological role of the other derivative, miR-199a-3p in TGCT, remains largely uncharacterized. In this report, we identified DNA (cytosine-5)-methyltransferase 3A (DNMT3A), the de novo methyltransferase, as a direct target of miR-199a-3p using a 3′-UTR reporter assay. Transient expression of miR-199a-3p in NT2 cells led to decrease, while knocking down of miR-199a-3p in a normal human testicular cell line (HT) led to elevation, of DNMT3A2 (DNMT3A gene isoform 2) mRNA and protein levels. In clinical samples, DNMT3A2 was significantly overexpressed in malignant testicular tumor, and the expression of DNMT3A2 was inversely correlated with the expression of miR-199a-3p. However, DNMT3A did not affect miR-199a expression in NT2 cells. Further characterization of miR-199a-3p revealed that it negatively regulated DNA methylation, partly through targeting DNMT3A. Overexpression of miR-199a-3p restored the expression of APC and MGMT tumor-suppressor genes in NT2 cells by affecting DNA methylation of their promoter regions. Our studies demonstrated the deregulation of miR-199a-3p expression in TGCT may provide novel mechanistic insights into TGCT carcinogenesis and suggested a potentially therapeutic use of synthetic miR-199a-3p oligonucleotides as effective hypomethylating compounds in the treatment of TGCT.  相似文献   

15.
16.
Long non‐coding RNAs (LncRNAs) and DNA methylation are important epigenetic mark play a key role in liver fibrosis. Currently, how DNA methylation and LncRNAs control the hepatic stellate cell (HSC) activation and fibrosis has not yet been fully characterized. Here, we explored the role of antisense non‐coding RNA in the INK4 locus (ANRIL) and DNA methylation in HSC activation and fibrosis. The expression levels of DNA methyltransferases 3A (DNMT3A), ANRIL, α‐Smooth muscle actin (α‐SMA), Type I collagen (Col1A1), adenosine monophosphate‐activated protein kinase (AMPK) and p‐AMPK in rat and human liver fibrosis were detected by immunohistochemistry, qRT‐PCR and Western blotting. Liver tissue histomorphology was examined by haematoxylin and eosin (H&E), Sirius red and Masson staining. HSC was transfected with DNMT3A‐siRNA, over‐expressing ANRIL and down‐regulating ANRIL. Moreover, cell proliferation ability was examined by CCK‐8, MTT and cell cycle assay. Here, our study demonstrated that ANRIL was significantly decreased in activated HSC and liver fibrosis tissues, while Col1A1, α‐SMA and DNMT3A were significantly increased in activated HSC and liver fibrosis tissues. Further, we found that down‐regulating DNMT3A expression leads to inhibition of HSC activation. Reduction in DNMT3A elevated ANRIL expression in activated HSC. Furthermore, we performed the over expression ANRIL suppresses HSC activation and AMPK signalling pathways. In sum, our study found that epigenetic DNMT3A silencing of ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway. Targeting epigenetic modulators DNMT3A and ANRIL, and offer a novel approach for liver fibrosis therapy.  相似文献   

17.
DNA甲基化是重要的表观遗传修饰,主要发生在DNA的CpG岛. DNA的甲基化通过DNA甲基转移酶(DNA methyltransferases, DNMTs)完成. DNA甲基化参与了细胞分化、基因组稳定性、X染色体失活、基因印记等多种细胞生物学过程.单基因水平及基因组范围内的DNA甲基化改变在肿瘤发生发展中亦发挥重要作用. 抑癌基因的异常甲基化引起的表达抑制,可导致肿瘤细胞的增殖失控和侵袭转移,并参与肿瘤组织的血管生成过程.在许多肿瘤的研究中都发现了基因组整体DNA低甲基化所导致的染色体不稳定性. 本文从DNA的异常高甲基化和低甲基化两方面论述了DNA甲基化在细胞恶变发生发展过程中的改变及其影响,并阐述了DNA甲基化改变在肿瘤诊断和治疗中的作用.  相似文献   

18.
The deregulation of miR-101 and DNMT3a has been implicated in the pathogenesis of multiple tumor types, but whether and how miR-101 silencing and DNMT3a overexpression contribute to lung tumorigenesis remain elusive. Here we show that miR-101 downregulation associates with DNMT3a overexpression in lung cancer cell lines and patient tissues. Ectopic miR-101 expression remarkably abrogated the DNMT3a 3′-UTR luciferase activity corresponding to the miR-101 binding site and caused an attenuated expression of endogenous DNMT3a, which led to a reduction of global DNA methylation and the re-expression of tumor suppressor CDH1 via its promoter DNA hypomethylation. Functionally, restoration of miR-101 expression suppressed lung cancer cell clonability and migration, which recapitulated the DNMT3a knockdown effects. Interestingly, miR-101 synergized with decitabine to downregulate DNMT3a and to reduce DNA methylation. Importantly, ectopic miR-101 expression was sufficient to trigger in vivo lung tumor regression and the blockage of metastasis. Consistent with these phenotypes, examination of xenograft tumors disclosed an increase of miR-101, a decrease of DNMT3a and the subsequent DNA demethylation. These findings support that the loss or suppression of miR-101 function accelerates lung tumorigenesis through DNMT3a-dependent DNA methylation, and suggest that miR-101-DNMT3a axis may have therapeutic value in treating refractory lung cancer.Owing to a high propensity for recurrence and a high rate of metastasis at the advanced stages,1, 2, 3 lung cancer remains the leading cause of cancer-related mortality. DNA methylation is a major epigenetic rule controlling chromosomal stability and gene expression.4, 5 It is under control of DNA methyltransferases (DNMTs), whose overexpression in lung cancer cells predicts worse outcomes.6, 7 It is postulated that DNMT overexpression induces DNA hypermethylation and silencing of tumor suppressor genes (TSGs), leading to an aggressive lung cancer. Indeed, enforced expression of DNMT1 or DNMT3a increases DNA methylation, while the abolition of DNMT expression by genetic depletion, microRNAs (miRs) or small molecules reduces genome-wide and gene-specific DNA methylation and restores TSG expression.8, 9, 10, 11, 12, 13 As TSGs are the master controllers for cell multiplicity and their silencing predicts poor prognosis,14, 15 TSG re-expression via promoter DNA hypomethylation inhibits cell proliferation and induces cell differentiation.13, 16 Thus, DNMT gene abundance could serve as a target for anticancer therapy, but how DNMT upregulation occurs in lung cancer is incompletely understood.MiRs are small non-coding RNAs that crucially regulate target gene expression. Up to 30% of all protein-coding genes are predicted to be targeted by miRs,17, 18 supporting the key roles of miRs in controlling cell fate.19, 20, 21, 22 Research is showing that certain miRs are frequently dysregulated in cancers, including lung cancer.7, 23, 24 As miR targets can promote or inhibit cancer cell expansion, miRs have huge potential for acting as bona fide oncogenes (i.e., miR-21) or TSGs (i.e., miR-29b).7, 25 We and others demonstrated that the levels of DNMT1 or DNMT3a or DNMT3b are regulated by miR-29b, miR-148, miR-152 or miR-30c,7, 13, 26, 27 and overexpression of these miRs results in DNA hypomethylation and TSG reactivation with the concurrent blockage of cancer cell proliferation.7, 13 These findings underscore the importance of miRs as epigenetic modulators and highlight their therapeutic applications.MiR-101 is frequently silenced in human cancers28, 29, 30, 31 and, importantly, exhibits antitumorigenic properties when overexpressed. Mechanistically, miR-101 inactivation by genomic loss causes the overexpression of EZH2, a histone methyltransferase, via 3′-UTR targeting, which is followed by histone hypermethylation and aggressive tumorigenesis.29, 30, 32 However, whether and how miR-101 silencing contributes to DNA hypermethylation patterning in lung cancer is unclear. In this study, we explore the role of miR-101 in regulating DNMT3a expression and the impacts of miR-101-DNMT3a nexus on lung cancer pathogenesis. We showed that the expression of miR-101 and DNMT3a was negatively correlated in lung cancer. We presented evidence that ectopic miR-101 expression decreased DNMT3a levels, reduced global DNA methylation and upregulated CDH1 via its promoter DNA demethylation. The biological significance of miR-101-mediated DNA hypomethylation and CDH1 re-expression was evident by its inhibition of lung tumor cell growth in vitro and in vivo. Thus, our findings mechanistically and functionally link miR-101 silencing to DNA hypermethylation in lung cancer cells.  相似文献   

19.
DNA methylation serves as the principal form of post-replicative epigenetic modification. It is intricately involved in gene regulation and silencing in eukaryotic cells, making significant contributions to cell phenotype. Much of it is mitotically inherited; some is passed on from one filial generation to the next. Establishment and maintenance of DNA methylation patterns in mammals is governed by three catalytically active DNA methyltransferases – DNMT3a, DNMT3b and DNMT1. While the first two are responsible mainly for de novo methylation, DNMT1 maintains the methylation patterns by preferentially catalyzing S-adenosyl methionine-dependant transfer of a methyl group to cytosine at hemimethylated CpG sites generated as a result of semi-conservative DNA replication. DNMT1 contains numerous regulatory domains that fine-tune associated catalytic activities, deregulation of which is observed in several diseases including cancer. In this minireview, we analyze the regulatory mechanisms of various sub-domains of DNMT1 protein and briefly discuss its pathophysiological and pharmacological implications. A better understanding of DNMT1 function and structure will likely reveal new applications in the treatment of associated diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号