首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Oxidative stress has been related to ageing and risk of death. To determine whether oxidative status was associated with all-cause risk of death we carried out a prospective study in 154 non-smoking Spanish elderly without major illness. Baseline glutathione peroxidase (GPx) and superoxide dismutase (SOD) were analysed in plasma and erythrocytes. alpha-tocopherol, beta-carotene, lycopene and retinol were determined in serum samples and malondialdehyde (MDA), as a lipid peroxidation marker, in plasma. Mean survival time was 4.3 years. A total of 31 death cases (20.1%) occurred during the follow-up. Plasma-MDA predicted mortality independently of all other variables, while erythrocyte-SOD (e-SOD), beta-carotene and alpha-tocopherol were positively associated with survival. alpha-tocopherol and MDA were revealed as independent predictors in a joint survival model, being the group with low MDA and high alpha-tocopherol that with the lowest mortality. In conclusion, a higher risk of death was associated with increased lipid peroxidation and lower antioxidant defenses.  相似文献   

2.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

3.
The present study investigated oxidative damage and neuroprotective effect of the antiparkinsonian drug, L-deprenyl in neuronal death produced by intranigral infusion of a potent mitochondrial complex-I inhibitor, rotenone in rats. Unilateral stereotaxic intranigral infusion of rotenone caused significant decrease of striatal dopamine levels as measured employing HPLC-electrochemistry, and loss of tyrosine hydroxylase immunoreactivity in the perikarya of ipsilateral substantia nigra (SN) neurons and their terminals in the striatum. Rotenone-induced increases in the salicylate hydroxylation products, 2,3- and 2,5-dihydroxybenzoic acid indicators of hydroxyl radials in mitochondrial P2 fraction were dose-dependently attenuated by L-deprenyl. L-deprenyl (0.1-10mg/kg; i.p.) treatment dose-dependently attenuated rotenone-induced reductions in complex-I activity and glutathione (GSH) levels in the SN, tyrosine hydroxylase immunoreactivity in the striatum or SN as well as striatal dopamine. Amphetamine-induced stereotypic rotations in these rats were also significantly inhibited by deprenyl administration. The rotenone-induced elevated activities of cytosolic antioxidant enzymes superoxide dismutase and catalase showed further significant increase following L-deprenyl. Our findings suggest that unilateral intranigral infusion of rotenone reproduces neurochemical, neuropathological and behavioral features of PD in rats and L-deprenyl can rescue the dopaminergic neurons from rotenone-mediated neurodegeneration in them. These results not only establish oxidative stress as one of the major causative factors underlying dopaminergic neurodegeneration as observed in Parkinson's disease, but also support the view that deprenyl is a potent free radical scavenger and an antioxidant.  相似文献   

4.
The present study examined the effects of derivatives of galactosides and glucosides in a polysaccharide extract from Euphorbia kansui (Euphorbiaceae) on exercise-induced oxidative stress in mice. Exhaustive swimming exercise significantly increases the degree of lipid peroxidation in terms of malondialdehyde content and reduces the antioxidant activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Our findings revealed that chronic oral treatment with the extract elevates enzymatic activities of SOD and GPx accompanied by a corresponding decrease in malondialdehyde. The antioxidative activities of these compounds against exercise-induced oxidative stress are correlated with various activities such as reducing the production of superoxide and hydroxyl radicals, inhibiting lipid peroxidation, enhancing antioxidative defenses, and increasing the production of SOD and GPx activity and expression in different tissues. These compounds may be involved in glycogen metabolism to meet the requirement of working skeletal muscles and act as antioxidants by terminating the chain reaction of lipid peroxidation to maintain the morphological stability of mitochondria in spinal motor neurons. These observations suggest that E. kansui has antioxidative and antifatigue properties and can be given as prophylactic and (or) therapeutic supplements for increasing antioxidant enzyme activities and preventing lipid peroxidation during strenuous exercise.  相似文献   

5.
Abstract: Excessive free radical formation or antioxidant enzyme deficiency can result in oxidative stress, a mechanism proposed in the toxicity of MPTP and in the etiology of Parkinson's disease (PD). However, it is unclear if altered antioxidant enzyme activity is sufficient to increase lipid peroxidation in PD. We therefore investigated if MPTP can alter the activity of the antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX) and the level of lipid peroxidation. l -Deprenyl, prior to MPTP administration, is used to inhibit MPP+ formation and its subsequent effect on antioxidant enzymes. MPTP induced a threefold increase in SOD activity in the striatum of C57BL/6 mice. No parallel increase in GSH-PX or CAT activities was observed, while striatal lipid peroxidation decreased. At the level of the substantia nigra (SN), even though increases in CAT activity and reduction in SOD and GSH-PX activities were detected, lipid peroxidation was not altered. Interestingly, l -deprenyl induced similar changes in antioxidant enzymes and lipid peroxidation levels, as did MPTP. Taken together, these results suggest that an alteration in SOD activity, without compensatory increases in CAT or GSH-PX activities, is not sufficient to induce lipid peroxidation.  相似文献   

6.
Role of oxidative stress in paraquat-induced dopaminergic cell degeneration   总被引:8,自引:1,他引:7  
Systemic treatment of mice with the herbicide paraquat causes the selective loss of nigrostriatal dopaminergic neurons, reproducing the primary neurodegenerative feature of Parkinson's disease. To elucidate the role of oxidative damage in paraquat neurotoxicity, the time-course of neurodegeneration was correlated to changes in 4-hydroxy-2-nonenal (4-HNE), a lipid peroxidation marker. When mice were exposed to three weekly injections of paraquat, no nigral dopaminergic cell loss was observed after the first administration, whereas a significant reduction of neurons followed the second exposure. Changes in the number of nigral 4-HNE-positive neurons suggest a relationship between lipid peroxidation and neuronal death, since a dramatic increase in this number coincided with the onset and development of neurodegeneration after the second toxicant injection. Interestingly, the third paraquat administration did not cause any increase in 4-HNE-immunoreactive cells, nor did it produce any additional dopaminergic cell loss. Further evidence of paraquat-induced oxidative injury derives from the observation of nitrotyrosine immunoreactivity in the substantia nigra of paraquat-treated animals and from experiments with ferritin transgenic mice. These mice, which are characterized by a decreased susceptibility to oxidative stress, were completely resistant to the increase in 4-HNE-positive neurons and the cell death caused by paraquat. Thus, paraquat exposure yields a model that emphasizes the susceptibility of dopaminergic neurons to oxidative damage.  相似文献   

7.
Parkinson’s disease (PD) is characterized by selective degeneration and loss of dopaminergic neurons in the substantia nigra (SN) of the ventral mid brain leading to dopamine depletion in the striatum. Oxidative stress and mitochondrial damage have been implicated in the death of SN neurons during the evolution of PD. In our previous study on human PD brains, we observed that compared to SN, striatum was significantly protected against oxidative damage and mitochondrial dysfunction. To understand whether brain aging contributes to the vulnerability of midbrain to neurodegeneration in PD compared to striatum, we assessed the status of oxidant and antioxidant markers, glutathione metabolic enzymes, glial fibrillary acidic protein (GFAP) expression and mitochondrial complex I(CI) activity in SN (n = 23) and caudate nucleus (n = 24) during physiological aging in human brains. We observed a significant increase in protein oxidation (P < 0.001), loss of CI activity (P = 0.04) and increased astrocytic proliferation indicated by GFAP expression (P < 0.001) in SN compared to CD with increasing age. These changes were attributed to significant decrease in antioxidant function represented by superoxide dismutase (SOD) (P = 0.03), glutathione (GSH) peroxidase (GPx) (P = 0.02) and GSH reductase (GR) (P = 0.03) and a decreasing trend in total GSH and catalase with increasing age. However, these parameters were relatively unaltered in CD. We propose that SN undergoes extensive oxidative damage, loss of antioxidant and mitochondrial function and increased GFAP expression during physiological aging which might make it more vulnerable to neurotoxic insults thus contributing to selective degeneration during evolution of PD.  相似文献   

8.
Summary

The antioxidant potential of the brain in developing fetuses was assessed at gestational days (GD) 16, 18 and 20 and postnatal day (PND)1. Higher activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were noticed during fetal development which were reduced to about half and one-quarter, respectively, at PND 1. Glutathione reductase (GR) activity remained stationary throughout the experiment and the values were very high compared to those reported for weanling rats. In contrast, catalase (CAT) activity increased with development. Glutathione (GSH) and total sulfhydryls (TSH) were maximum in 16-day fetal brains and declined subsequently. Brain lipid peroxidation (LPO) was found to increase with age. A group of animals was exposed to 20 ppm cadmium (Cd) in drinking water from the day of conception up to PND 1. Cd was found to increase the activities of brain SOD, CAT, and GR significantly at all the time intervals. The metal exposure decreased fetal brain GPx at GD 18 and 20, whereas GPx activity declined precipitously in both groups on PND 1. Cd caused both increments and decrements in the GSH and TSH levels (depending on gestational day) and increased the LPO in brain. It may be concluded that the Cd-intoxicated fetal brain undergoes significant changes in antioxidant defense parameters which, overall, may be sufficient to permit near-normal development and prevent substantial oxidant damage.  相似文献   

9.
Laminarin is a tropical plant traditionally used in Chinese medicine. In this experiment, Laminarin polysaccharides were analysed using GC-MS method and result showed that the polysaccharides contained mannose (3.27%), arabinose (8.61%), glucose (4.23%), galactose (12.12%), fucose (46.93%). Laminarin polysaccharides were tested to evaluate their effect on lung oxidative stress and lipid peroxidation in rats. The animal were divided into model and polysaccharides-treated animal. Laminarin polysaccharides were administered by gavage over a 14-day period. The results indicated that Laminarin polysaccharides significantly normalized catalase (CAT) activity (P<0.01), increased glutathione peroxidase (GPx) activity (P<0.05), superoxide dismutase (SOD) activity and reduced malondialdehyde (MDA) concentrations in animal. It could be concluded that Laminarin polysaccharides appeared to be more effective in reducing sepsis-induced oxidative stress, lipid peroxidation in animal.  相似文献   

10.
The vulnerability of substantia nigral (SN) melaninized dopamine neurons to neurodegeneration in Parkinson's disease and the selective increases of iron and basal lipid peroxidation in SN indicate that iron-melanin interaction could be crucial to the pathogenesis of this disease. The present study describes, for the first time, the identification and characterization of a high-affinity (KD = 13 nM) and a lower affinity (KD = 200 nM) binding site for iron on dopamine melanin. The binding of iron to melanin is dependent on pH and the concentration of melanin. Iron chelators, U74500A, desferrioxamine, and to less extent 1,10-phenanthroline and chlorpromazine, but not the Parkinson-inducing neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, can inhibit the binding of iron to melanin and iron-induced lipid peroxidation. Although melanin alone diminishes basal lipid peroxidation in rat cortical homogenates, it can also potentiate that initiated by iron, a reaction inhibited by desferrioxamine. In the absence of an identifiable exogenous or endogenous neurotoxin in idiopathic Parkinson's disease, iron-melanin interaction in pars compacta of SN may be a strong candidate for the cytotoxic component of oxygen radical-induced neurodegeneration of melaninized dopamine neurons.  相似文献   

11.
Iron is known to induce lipid perocidation and recent evidence indicates that both iron and lipid peroxidation are elevated in the substantia nigra in Parkinson's disease (PD). To test whether excess intranigral iron induces lipid peroxidation, we infused an iron citrate solution (0.63 nmol in 0.25 μL) into the rat substantia nigra and measured nigral thiobarbituric acid reactive products at 1-h, 1-d, 1-wk, and 1-mo postinfusion. In a separate group of iron-infused animals, histologic analysis within the substantia nigra through 1-mo postinfusion was accomplished by thionine- and iron-staining, with concurrent assessment of striatal neurochemical markers. Concentrations of nigral thiobarbituric acid reactive products were significantly elevated at 1 h and 1 d in iron-infused animals compared to vehicle-infused and unoperated animals, with a return to control values by 1 wk. Similarly, striatal dopamine turnover was acutely elevated, suggesting damage to dopaminergic neurons, which was confirmed histologically. Although iron-staining within the iron diffusionary area was increased through the postinfusion month, there was an apparent progression of the cellular character of staining from predominantly neuronal to reactive glial and finally to oligodendroglial by 1 mo postinfusion. this progression of cellular iron-staining may indicate a shifting of infused iron to a more bound unreactive form, thus explaining only an acute elevation in lipid peroxidation through 1 d following intranigral iron infusion. The data indicate that damage to nigral neurons induced by iron infusion is transciently associated with a marker of oxidative damage and supports the possibility that iron-induced oxidative stress contributes to the pathogenesis of PD.  相似文献   

12.
It has been suggested that free oxygen radicals play a role in the genesis of epilepsy and in post-seizure neuronal death. The aim of this study was to investigate the dose dependent effect of ghrelin on pentylenetetrazole (PTZ)-induced oxidative stress in a rat seizure model. For this purpose, the ghrelin groups were treated with intraperitoneal injections of ghrelin at doses of 20, 40, 60 and 80 microg/kg before the PTZ injection. Superoxide dismutase (SOD) and catalase (CAT) activities, and reduced glutathione (GSH) and thiobarbituric acid-reactive substance (TBARS) levels were measured in erythrocytes, liver and brain tissue. TBARS, the indicator of lipid peroxidation, was significantly increased in erythrocytes, liver and brain tissue, while antioxidant enzyme activities and glutathione levels were significantly decreased in PTZ injected rats. Ghrelin pretreatment prevented lipid peroxidation and the reduction in antioxidant enzyme activities and GSH levels against PTZ-induced oxidative stress in a dose dependent manner. The present data indicates that PTZ at a convulsive dose induces an oxidative stress response by depleting the antioxidant defense systems and increasing lipid peroxidation in the erythrocytes, liver and brain of rats. Ghrelin pretreatment diminished oxidative stress and prevented the decrease in antioxidant enzyme activities, and thus may reduce neuronal death in the brain during seizures. However, further studies are needed in order to confirm our hypothesis.  相似文献   

13.
The equilibrium between antioxidant function and oxidative stress is implicated in brain pathology. However, human studies on oxidant and antioxidant markers rely on postmortem tissue that might be affected by pre and postmortem factors. To evaluate the effect of these variables, we tested whether antioxidant enzymes [superoxide dismutase (SOD), catalase] glutathione (GSH) and related enzymes [gamma glutamylcysteine ligase (GCL), GSH peroxidase (GPx), GSH reductase (GR), GSH-S-transferase (GST)] and malondialdehyde (MDA, marker of lipid peroxidation) are affected in postmortem human brains (n = 50) by increase in postmortem interval (2.5–26 h), gender difference and agonal state [based on Glasgow coma scale (GCS): range: 3–15] in different anatomical regions-frontal cortex (FC), cerebellum (CB) medulla oblongata (MO), substantia nigra (SN) and hippocampus (HC). While SOD and catalase activities were relatively unaltered, GR and GPx activities were affected by agonal state (GR in CB, p < 0.05; GPx in MO, p < 0.05) indicating altered GSH dynamics during the secondary events following neuronal injury. MO, SN and HC displayed low GSH compared to FC and CB. Total GSH level was decreased with PMI (MO, p = 0.02) which could be partly attributed to increase in MDA levels with increasing PMI in MO (p < 0.05). Total GSH level was higher in CB (p < 0.017) and MO (p < 0.04) in female brains compared to males. Interestingly, HC and SN regions showed significant stability in most of the markers tested. We suggest that while SOD and catalase were relatively unaffected by the pre and postmortem factors, GSH and its metabolic enzymes were significantly altered and this was more pronounced in MO of postmortem human brains. These data highlight the influence of pre and postmortem factors on GSH dynamics and the inherent differences in brain regions, with implications for studies on brain pathophysiology employing human samples.  相似文献   

14.
Sub-acute hepatotoxicity was induced in mice by exposure to pesticides. The effect of pretreatment with aqueous black tea extract on lipid peroxidation and antioxidants in the liver was investigated. Administering a combination dose of chlorpyriphos and cypermethrin (20 mg kg(-1) each) on alternate days over a 15-day period to male mice resulted in induction of sub-acute toxicity as reflected by elevated levels of liver damage marker enzymes alkaline phosphatase(ALP), aspartate transaminase(AST) and alanine transaminase(ALT). Significantly elevated levels of lipid peroxidation were observed in the experimental group (group III) as compared with control mice. Decreased activities of superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), total thiol, glutathione peroxidase (GPx), glutathione reductase(GR) and glutathione-S-transferase (GST) were also observed in pesticide-treated as compared to control mice. Aqueous black tea extract was given as a pretreatment to group IV mice at a dose of 200 mg ml(-1) polyphenols before the pesticide dose, which significantly decreased the levels of lipid peroxidation and significantly elevated the activities of SOD, CAT, GSH, total thiol, GPx, GR and GST in liver to levels similar to the controls. Thus, the data offer support for the claim that the central mechanism of pesticide action occurs via changes in cellular oxidative status and shows conclusively that supplementation with black tea extract protects against the free radical-mediated oxidative stress in hepatocytes of animals with pesticide-induced liver injury.  相似文献   

15.
Oxidative stress has been suggested as one of the physiopathologic conditions underlying the association of total plasma homocysteine (p-tHcy) with cardiovascular disease (CVD), but this hypothesis has not been validated in human epidemiological studies. We measured plasma and erythrocyte antioxidant enzymes glutathione peroxidase (GPx) and superoxide dismutase (SOD), along with serum lipid-soluble antioxidants alpha-tocopherol, beta-carotene, lycopene and retinol, in a sample of 123 healthy elderly subjects (54 men, 69 women). Plasma malondialdehyde (p-MDA) was determined as a marker of lipid peroxidation, and p-tHcy was quantified by HPLC. No significant differences were found for p-MDA, GPx or SOD activities or serum antioxidant concentrations, in subjects with elevated p-tHcy (≥15 μmol/l) as compared to those with lower plasma homocysteine. Hyperhomocysteinemia did not lead to increased risk of having the highest p-MDA values, in either sex. We found no evidence that p-tHcy was associated with lipid peroxidation in this elderly human sample. Our results do not support the view that hyperhomocysteinemia would induce an adaptive response of antioxidant systems, either. More epidemiologic and clinical research is needed to clarify whether homocysteine promotes atherosclerosis by means of an oxidative stress mechanism.  相似文献   

16.
Oxidative stress in conjunction with glutathione depletion has been linked with various acute and chronic degenerative disorders, yet the molecular mechanisms have remained unclear. In contrast to the belief that oxygen radicals are detrimental to cells and tissues by unspecific oxidation of essential biomolecules, we now demonstrate that oxidative stress is sensed and transduced by glutathione peroxidase 4 (GPx4) into a-yet-unrecognized cell-death pathway. Inducible GPx4 inactivation in mice and cells revealed 12/15-lipoxygenase-derived lipid peroxidation as specific downstream event, triggering apoptosis-inducing factor (AIF)-mediated cell death. Cell death could be entirely prevented either by alpha-tocopherol (alpha-Toc), 12/15-lipoxygenase inhibitors, or siRNA-mediated AIF silencing. Accordingly, 12/15-lipoxygenase-deficient cells were highly resistant to glutathione depletion. Neuron-specific GPx4 depletion caused neurodegeneration in vivo and ex vivo, highlighting the importance of this pathway in neuronal cells. Since oxidative stress is common in the etiology of many human disorders, the identified pathway reveals promising targets for future therapies.  相似文献   

17.
BACKGROUND: The use of psychoactive drugs during adolescence and early adult life has increased in the last few decades. It is known that developmental exposure to psychostimulants affects the sensory systems, and the retina has been shown to be a target tissue. This work was conducted to evaluate the pattern of lipid peroxidation in the rat retina following prenatal exposure to methamphetamine (MA). METHODS: Pregnant female Wistar rats were given MA (5 mg/kg of body weight/day; SC, in 0.9% saline) from GD 8 to 22. Offspring were sacrificed at postnatal days (PNDs) 7, 14, and 21. The retinas were homogenized, and both the total antioxidant and superoxide dismutase (SOD) activities were measured by enzymatic-colorimetric methods. The lipid peroxidation byproducts (malondialdehyde [MDA] and MDA-like metabolites) were measured by the thiobarbituric acid test. RESULTS: Total antioxidant levels were lower in the MA group at PND 21 in both males and females. The activity of SOD was higher in PND 7 females from the MA group. MDA levels were higher in the MA group at PND 21 in both genders. CONCLUSIONS: These findings suggest that prenatal-induced MA toxicity in the retina may be related to lipid peroxidation processes and oxidative stress.  相似文献   

18.
Abstract

Objective: Multiple pregnancy is associated with an enhanced metabolism and demand for O2, which may lead to the overproduction of reactive oxygen species and the development of oxidative stress. The degree of oxidative damage depends on the level of the antioxidant protection system of the foetus. The objective of the study was to identify the relationship between the state of the maturity and the antioxidant status of twin neonates. Investigations of the umbilical cord blood were carried out to detect differences in the antioxidant defence system between mature and premature twin neonates.

Methods: The activities of the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) enzymes, the levels of reduced glutathione (GSH), protein carbonyls and oxidized lipids and the total antioxidant capacity of the plasma were determined.

Results: The level of lipid peroxidation was significantly higher in the premature neonates. An increase in the total antioxidant capacity was accompanied by a decrease in the damaged protein concentration. Significantly elevated activities of GPx alone were observed in the premature twins, though the GSH content too tended to be increased. The activity of SOD was decreased in the premature neonates.

Discussion: The antioxidant status of twin neonates are mainly influenced by maturity. We suggest that the level of lipid peroxidation might be of clinical value as a marker of pre- and perinatal distress in twins.  相似文献   

19.
Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by loss of neurons in the substantia nigra that project to the striatum and release dopamine. The cause of PD remains uncertain, however, evidence implicates mitochondrial dysfunction and oxidative stress. Although most cases of PD are sporadic, 5-10% of cases are caused by inherited mutations. Loss-of-function mutations in Parkin and DJ-1 were the first to be linked to recessively inherited Parkinsonism. Surprisingly, mice bearing similar loss-of-function mutations in Parkin and DJ-1 do not show age-dependent loss of nigral dopaminergic neurons or depletion of dopamine in the striatum. Although the normal cellular functions of Parkin and DJ-1 are not fully understood, we hypothesized that loss-of-function mutations in Parkin and DJ-1 render cells more sensitive to mitochondrial dysfunction and oxidative stress. To test this hypothesis, we crossed mice deficient for Parkin and DJ-1 with mice deficient for the mitochondrial antioxidant protein Mn-superoxide dismutase (SOD2) or the cytosolic antioxidant protein Cu-Zn-superoxide dismutase (SOD1). Aged Parkin -/- DJ-1 -/- and Mn-superoxide dismutase triple deficient mice have enhanced performance on the rotorod behavior test. Cu/Zn-superoxide dismutase triple deficient mice have elevated levels of dopamine in the striatum in the absence of nigral cell loss. Our studies demonstrate that on a Parkin/DJ-1 null background, mice that are also deficient for major antioxidant proteins do not have progressive loss of dopaminergic neurons but have behavioral and striatal dopamine abnormalities.  相似文献   

20.
Dystrophin is a protein found at the plasmatic membrane in muscle and postsynaptic membrane of some neurons, where it plays an important role on synaptic transmission and plasticity. Its absence is associated with Duchenne's muscular dystrophy (DMD), in which cognitive impairment is found. Oxidative stress appears to be involved in the physiopathology of DMD and its cognitive dysfunction. In this regard, the present study investigated oxidative parameters (lipid and protein peroxidation) and antioxidant enzymes activities (superoxide dismutase and catalase) in prefrontal cortex, cerebellum, hippocampus, striatum and cortex tissues from male dystrophic mdx and normal C57BL10 mice. We observed (1) reduced lipid peroxidation in striatum and protein peroxidation in cerebellum and prefrontal cortex; (2) increased superoxide dismutase activity in cerebellum, prefrontal cortex, hippocampus and striatum; and (3) reduced catalase activity in striatum. It seems by our results, that the superoxide dismutase antioxidant mechanism is playing a protective role against lipid and protein peroxidation in mdx mouse brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号