首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Transgenic plants of a tetraploid potato cultivar were obtained in which the amylose content of tuber starch was reduced via antisense RNA-mediated inhibition of the expression of the gene encoding granule-bound starch synthase (GBSS). GBSS is one of the key enzymes in the biosynthesis of starch and catalyses the formation of amylose. The antisense GBSS genes, based on the full-length GBSS cDNA driven by the 35S CaMV promoter or the potato GBSS promoter, were introduced into the potato genome by Agrobacterium tumefaciens-mediated transformation. Expression of each of these genes resulted in the complete inhibition of GBSS gene expression, and thus in the production of amylose-free tuber starch, in mature field-grown plants originating from rooted in vitro plantlets of 4 out of 66 transgenic clones. Clones in which the GBSS gene expression was incompletely inhibited showed an increase of the extent of inhibition during tuber growth. This is likely to be due to the increase of starch granule size during tuber growth and the specific distribution pattern of starch components in granules of clones with reduced GBSS activity. Expression of the antisense GBSS gene from the GBSS promoter resulted in a higher stability of inhibition in tubers of field-grown plants as compared to expression from the 35S CaMV promoter. Field analysis of the transgenic clones indicated that inhibition of GBSS gene expression could be achieved without significantly affecting the starch and sugar content of transgenic tubers, the expression level of other genes involved in starch and tuber metabolism and agronomic characteristics such as yield and dry matter content.  相似文献   

3.
The aim of this work was to investigate the extent to which starch synthesis in potato (Solanum tuberosum L.) tubers is controlled by the activity of ADPglucose pyrophosphorylase (EC 2.7.7.27; AGPase). In order to do this, fluxes of carbohydrate metabolism were measured in tubers that had reduced AGPase activity as a result of the expression of a cDNA encoding the B subunit in the antisense orientation. Reduction in AGPase activity led to a reduction in starch accumulation, and an increase in sucrose accumulation. The control coefficient of AGPase on starch accumulation in intact plants was estimated to be around 0.3. The fluxes of carbohydrate metabolism were measured in tuber discs from wild-type and transgenic plants by investigating the metabolism of [U-14C]glucose. In tuber discs, the control coefficient of AGPase over starch synthesis was estimated as 0.55, while the control coefficient of the enzyme over sucrose synthesis was −0.47. The values obtained suggest that AGPase activity exerts appreciable control over tuber metabolism in potato. Received: 24 February 1999 / Accepted: 8 April 1999  相似文献   

4.
An important goal in biotechnological research is to improve the yield of crop plants. Here, we genetically modified simultaneously source and sink capacities in potato (Solanum tuberosum cv. Desirée) plants to improve starch yield. Source capacity was increased by mesophyll‐specific overexpression of a pyrophosphatase or, alternatively, by antisense expression of the ADP‐glucose pyrophosphorylase in leaves. Both approaches make use of re‐routing photoassimilates to sink organs at the expense of leaf starch accumulation. Simultaneous increase in sink capacity was accomplished by overexpression of two plastidic metabolite translocators, that is, a glucose 6‐phosphate/phosphate translocator and an adenylate translocator in tubers. Employing such a ‘pull’ approach, we have previously shown that potato starch content and yield can be increased when sink strength is elevated. In the current biotechnological approach, we successfully enhanced source and sink capacities by a combination of ‘pull’ and ‘push’ approaches using two different attempts. A doubling in tuber starch yield was achieved. This successful approach might be transferable to other crop plants in the future.  相似文献   

5.
Summary Granule-bound starch synthase [GBSS; EC 24.1.21] determines the presence of amylose in reserve starches. Potato plants were transformed to produce antisense RNA from a gene construct containing a full-length granule-bound starch synthase cDNA in reverse orientation, fused between the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator. The construct was integrated into the potato genome by Agrobacterium rhizogenes-mediated transformation. Inhibition of GBSS activity in potato tuber starch was found to vary from 70% to 100%. In those cases where total suppression of GBSS activity was found both GBSS protein and amylose were absent, giving rise to tubers containing amylose-free starch. The variable response of the transformed plants indicates that position effects on the integrated sequences might be important. The results clearly demonstrate that in tubers of potato plants which constitutively synthesize antisense RNA the starch composition is altered.  相似文献   

6.
Potato (Solanum tuberosum) plants were transformed with a cDNA encoding the 59-kD subunit of the potato tuber NAD-dependent malic enzyme (NADME) in the antisense orientation. Measurements of the maximum catalytic activity of NADME in tubers revealed a range of reductions in the activity of this enzyme down to 40% of wild-type activity. There were no detrimental effects on plant growth or tuber yield. Biochemical analyses of developing tubers indicated that a reduction in NADME activity had no detectable effects on flux through the tricarboxylic acid cycle. However, there was an effect on glycolytic metabolism with significant increases in the concentration of 3-phosphoglycerate and phosphoenolpyruvate. These results suggest that alterations in the levels of intermediates toward the end of the glycolytic pathway may allow respiratory flux to continue at wild-type rates despite the reduction in NADME. There was also a statistically significant negative correlation between NADME activity and tuber starch content, with tubers containing reduced NADME having an increased starch content. The effect on plastid metabolism may result from the observed glycolytic perturbations.  相似文献   

7.
Three isoforms of starch synthase were shown to be present in soluble potato tuber extracts by activity staining after native gel electrophoresis. An antibody directed against a domain conserved in starch synthases was used to clone a cDNA for one of these isoforms by screening a tuber-specific expression library. A partial cDNA of 2.6 kbp was obtained and used to isolate a full-length cDNA of 4167 bp. The deduced amino acid sequence identifies the protein as a novel type of starch synthase from potato with a molecular mass of 139.2 kDa for the immature enzyme including its transit peptide. This novel isoform was designated SS III. An analysis of the expression pattern of the gene indicates that SS III is equally expressed in tubers of different developmental stages as well as in sink and source leaves. In several independent transgenic potato lines, where the expression of SS III was repressed using the antisense approach, the activity of a specific starch synthase isoform was reduced to non-detectable levels as determined through activity staining after native gel electrophoresis. The reduction of this isoform of starch synthase leads to the synthesis of a structurally modified starch in the transgenic plants: there is a drastic change in granule morphology and an increased level of covalently linked phosphate.  相似文献   

8.
In an attempt to study the importance of starch synthesis inleaves with respect to sink-source interactions, we investigateddaily turnover of carbohydrates in leaves of transgenic potatoplants inhibited for ADP-glucose pyrophosphorylase (AGPase).Down-regulation of AGPase has been performed using two differentpromoters: the near-constitutive CaMV 35S promoter, and theSTLSI promoter which is active in photosynthetic cells only.Residual AGPase activity in leaves was between 6 and 30% inindividual transformants as compared to wild-type potato plants.We found that: (i) photosynthesis is not significantly alteredrelative to wild-type plants; (ii) levels of starch are markedlyreduced in leaves of transgenic plants; (iii) levels of solublesugars and malate are largely unaffected by the inhibition ofAGPase; (iv) the reduction of starch synthesis leads to a higherportion of assimilated carbon being transported from leavesto sink tissues during the light period; (v) altered leaf exportcharacteristics do not change tuber yield under greenhouse conditions.Collectively, these data demonstrate a striking flexibilityof the potato plant with respect to day/night rhythms of carbonexport from leaves and utilization by the major storage sinks,i.e. developing tubers. (Received November 1, 1994; Accepted March 2, 1995)  相似文献   

9.
Inhibition of starch biosynthesis in transgenic potato (Solanum tuberosum L. cv. Désirée) plants (by virtue of antisense inhibition of ADP-glucose pyrophosphorylase) has recently been reported to influence tuber formation and drastically reduce dry matter content of tubers, indicating a reduction in sink strength (Müller-Röber et al. 1992, EMBO J 11: 1229–1238). Transgenic tubers produced low levels of starch, but instead accumulated high levels of soluble sugars. We wanted to know whether these changes in tuber development/sink strength could be reversed by the production of a new high-molecular-weight polymer, i.e. fructan, that incorporates sucrose and thereby should reduce the level of osmotically active compounds. To this end the enzyme levan sucrase from the gram-negative bacterium Erwinia amylovora was expressed in tubers of transgenic potato plants inhibited for starch biosynthesis. Levan sucrase was targeted to different subcellular compartments (apoplasm, vacuole and cytosol). Only in the case of apoplastic and vacuolar targeting was significant accumulation of fructan observed, leading to fructan representing between 12% and 19% of the tuber dry weight. Gel filtration and 13C-nuclear magnetic resonance spectroscopy showed that the molecular weight and structure of the fructan produced in transgenic plants is identical to levan isolated from E. amylovora. Whereas apoplastic expression of levansucrase had deleterious effects on tuber development, tubers containing the levansucrase in the vacuole did not differ in phenotype from tubers of the starch-deficient plants used as starting material for transformation with the levansucrase. When tuber yield was analysed, no increase but rather a further decrease relative to ADP-glucose pyrophosphorylase antisense plants was observed.Abbreviations CaMV cauliflower mosaic virus - NMR nuclear magnetic resonance We gratefully acknowledge Dr. Ulrich Eder (Schering AG, Berlin, Germany) for performing 13C-NMR spectroscopy, and Dr. Susanne Hoffmann-Benning (Institut für Genbiologische Forschung) for introducing us to immunohistochemistry. We thank Jessyca Dietze for plant transformations, Birgit Burose for taking care of greenhouse plants, and Antje Voigt for photographic work.  相似文献   

10.
Three isoforms of starch synthase (SS) were shown to be present in soluble potato tuber extracts by activity staining after native gel electrophoresis. A cDNA encoding SSI from rice was used as a probe to clone a corresponding cDNA from potato. The deduced amino acid sequence identified the protein as an SS from potato with an Mr of 70.6 kDa for the immature enzyme including its transit peptide. This novel isoform was designated SSI. An analysis of the expression pattern of the gene indicated that SSI is predominantly expressed in sink and source leaves, and, to a lower extent in tubers. In several independent transgenic potato lines, where the expression of SSI was repressed using the antisense approach, the activity of a specific SS isoform was reduced to non-detectable levels as determined through activity staining after native gel electrophoresis. The reduction in the amount of this isoform of SS did not lead to any detectable changes in starch structure, probably due to the fact that this isoform only represents a minor activity in potato tubers. Received: 19 August 1998 / Accepted: 17 December 1998  相似文献   

11.
We have increased the productivity and yield of potato (Solanum tuberosum) by developing a novel method to enhance photosynthetic carbon fixation based on expression of a polyprotein (DEFp) comprising all three subunits (D, E and F) of Escherichia coli glycolate dehydrogenase (GlcDH). The engineered polyprotein retained the functionality of the native GlcDH complex when expressed in Ecoli and was able to complement mutants deficient for the D, E and F subunits. Transgenic plants accumulated DEFp in the plastids, and the recombinant protein was active in planta, reducing photorespiration and improving CO2 uptake with a significant impact on carbon metabolism. Transgenic lines with the highest DEFp levels and GlcDH activity produced significantly higher levels of glucose (5.8‐fold), fructose (3.8‐fold), sucrose (1.6‐fold) and transitory starch (threefold), resulting in a substantial increase in shoot and leaf biomass. The higher carbohydrate levels produced in potato leaves were utilized by the sink capacity of the tubers, increasing the tuber yield by 2.3‐fold. This novel approach therefore has the potential to increase the biomass and yield of diverse crops.  相似文献   

12.
Sink strength of growing potato tubers is believed to be limited by sucrose metabolism and/or starch synthesis. Sucrose synthase (Susy) is most likely responsible for the entire sucrose cleavage in sink tubers, rather than invertases. To investigate the unique role of sucrose synthase with respect to sucrose metabolism and sink strength in growing potato tubers, transgenic potato plants were created expressing Susy antisense RNA corresponding to the T-type sucrose synthase isoform. Although the constitutive 35S CaMV promotor was used to drive the expression of the antisense RNA the inhibition of Susy activity was tuber-specific, indicating that independent Susy isoforms are responsible for Susy activity in different potato organs. The inhibition of Susy leads to no change in sucrose content, a strong accumulation of reducing sugars and an inhibition of starch accumulation in developing potato tubers. The increase in hexoses is paralleled by a 40-fold increase in invertase activities but no considerable changes in hexokinase activities. The reduction in starch accumulation is not due to an inhibition of the major starch biosynthetic enzymes. The changes in carbohydrate accumulation are accompanied by a decrease in total tuber dry weight and a reduction of soluble tuber proteins. The reduced protein accumulation is mainly due to a decrease in the major storage proteins patatin, the 22 kDa proteins and the proteinase inhibitors. The lowered accumulation of storage proteins is not a consequence of the availability of the free amino acid pool in potato tubers. Altogether these data are in agreement with the assumption that sucrose synthase is the major determinant of potato tuber sink strength. Contradictory to the hypothesis that the sink strength of growing potato tubers is inversely correlated with the tuber number per plant, no increase in tuber number per plant was found in Susy antisense plants.  相似文献   

13.
14.
The aim of this work was to establish whether plastidial phosphoglucomutase is involved in the starch biosynthetic pathway of potato tubers and thereby to determine the form in which carbon is imported into the potato amyloplast. For this purpose, we cloned the plastidial isoform of potato PGM (StpPGM), and using an antisense approach generated transgenic potato plants that exhibited decreased expression of the StpPGM gene and contained significantly reduced total phosphoglucomutase activity. We confirmed that this loss in activity was due specifically to a reduction in plastidial PGM activity. Potato lines with decreased activities of plastidial PGM exhibited no major changes in either whole-plant or tuber morphology. However, tubers from these lines exhibited a dramatic (up to 40%) decrease in the accumulation of starch, and significant increases in the levels of sucrose and hexose phosphates. As tubers from these lines exhibited no changes in the maximal catalytic activities of other key enzymes of carbohydrate metabolism, we conclude that plastidial PGM forms part of the starch biosynthetic pathway of the potato tuber, and that glucose-6-phosphate is the major precursor taken up by amyloplasts in order to support starch synthesis.  相似文献   

15.
The aim of this work was to investigate the role of cytosolic phosphoglucomutase (PGM; EC 5.4.2.2) in the regulation of carbohydrate metabolism. Many in vitro studies have indicated that PGM plays a central role in carbohydrate metabolism; however, until now the importance of this enzyme in plants has not been subject to reverse-genetics investigations. With this intention we cloned the cytosolic isoform of potato PGM (StcPGM) and expressed this in the antisense orientation under the control of the CaMV 35 S promoter in potato plants. We confirmed that these plants contained reduced total PGM activity and that loss in activity was due specifically to a reduction in cytosolic PGM activity. These plants were characterised by a severe phenotype: stunted aerial growth combined with limited root growth and a reduced tuber yield. Analysis of the metabolism of these lines revealed that leaves of these plants were inhibited in sucrose synthesis whereas the tubers exhibited decreased levels of sucrose and starch as well as decreased levels of glycolytic intermediates but possessed unaltered levels of adenylates. Furthermore, a broader metabolite screen utilising GC-MS profiling revealed that these lines contained altered levels of several intermediates of the TCA cycle and of amino acids. In summary, we conclude that cytosolic PGM plays a crucial role in the sucrose synthetic pathway within the leaf and in starch accumulation within the tuber, and as such is important in the maintenance of sink-source relationships.  相似文献   

16.
Water stress stimulates sucrose synthesis and inhibits starch synthesis in wild-type tubers. Antisense and co-suppression potato transformants with decreased expression of sucrose–phosphate synthase (SPS) have been used to analyse the importance of SPS for the regulation of this water-stress induced change in partitioning. (i) In the absence of water stress, a 70–80% decrease in SPS activity led to a 30–50% inhibition of sucrose synthesis and a slight (10–20%) increase of starch synthesis in tuber discs in short-term labelling experiments with low concentrations of labelled glucose. Similar changes were seen in short-term labelling experiments with intact tubers attached to well-watered plants. Provided plants were grown with ample light and water, transformant tubers had a slightly lower water and sucrose content and a similar or even marginally higher starch content than wild-type tubers. (ii) When wild-type tuber slices were incubated with labelled glucose in the presence of mannitol to generate a moderate water deficit (between –0.12 and –0.72 MPa), there was a marked stimulation of sucrose synthesis and inhibition of starch synthesis. A similar stimulation was seen in labelling experiments with wild-type tubers that were attached to water-stressed wild-type plants. These changes were almost completely suppressed in transformants with a 70–80% reduction of SPS activity. (iii) Decreased irrigation led to an increase in the fraction of the dry-matter allocated to tubers in wild-type plants. This shift in allocation was prevented in transformants with reduced expression of SPS. (iv) The results show that operation of SPS and the sucrose cycle in growing potato tubers may lead to a marginal decrease in starch accumulation in non-stressed plants. However, SPS becomes a crucial factor in water-stressed plants because it is required for adaptive changes in tuber metabolism and whole plant allocation.  相似文献   

17.
18.
Transgenic potato plants were created in which the expression of ADP-glucose pyrophosphorylase (AGPase) was inhibited by introducing a chimeric gene containing the coding region of one of the subunits of the AGPase linked in an antisense orientation to the CaMV 35S promoter. Partial inhibition of the AGPase enzyme was achieved in leaves and almost complete inhibition in tubers. This resulted in the abolition of starch formation in tubers, thus proving that AGPase has a unique role in starch biosynthesis in plants. Instead up to 30% of the dry weight of the transgenic potato tubers was represented by sucrose and up to 8% by glucose. The process of tuber formation also changed, resulting in significantly more tubers both per plant and per stolon. The accumulation of soluble sugars in tubers of antisense plants resulted in a significant increase of the total tuber fresh weight, but a decrease in dry weight of tubers. There was no significant change in the RNA levels of several other starch biosynthetic enzymes, but there was a great increase in the RNA level of the major sucrose synthesizing enzyme sucrose phosphate synthase. In addition, the inhibition of starch biosynthesis was accompanied by a massive reduction in the expression of the major storage protein species of potato tubers, supporting the idea that the expression of storage protein genes is in some way connected to carbohydrate formation in sink storage tissues.  相似文献   

19.
Differential expression of potato tuber protein genes   总被引:2,自引:1,他引:1       下载免费PDF全文
  相似文献   

20.
Changes in carbon flow and sink/source activities can affect floral, architectural, and reproductive traits of plants. In potato, overexpression (OE) of the purple acid phosphatase 2 of Arabidopsis (AtPAP2) resulted in earlier flowering, faster growth rate, increased tubers and tuber starch content, and higher photosynthesis rate. There was a significant change in sucrose, glucose and fructose levels in leaves, phloem and sink biomass of the OE lines, consistent with an increased expression of sucrose transporter 1 (StSUT1). Furthermore, the expression levels and enzyme activity of sucrose-phosphate synthase (SPS) were also significantly increased in the OE lines. These findings strongly suggest that higher carbon supply from the source and improved sink strength can improve potato tuber yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号