首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Background

HIV-1 infects the host cell by interacting with the primary receptor CD4 and a coreceptor CCR5 or CXCR4. Maraviroc, a CCR5 antagonist binds to CCR5 receptor. Thus, it is important to identify the coreceptor used by the HIV strains dominating in the patient. In past, a number of experimental assays and in-silico techniques have been developed for predicting the coreceptor tropism. The prediction accuracy of these methods is excellent when predicting CCR5(R5) tropic sequences but is relatively poor for CXCR4(X4) tropic sequences. Therefore, any new method for accurate determination of coreceptor usage would be of paramount importance to the successful management of HIV-infected individuals.

Results

The dataset used in this study comprised 1799 R5-tropic and 598 X4-tropic third variable (V3) sequences of HIV-1. We compared the amino acid composition of both types of V3 sequences and observed that certain types of residues, e.g., Asparagine and Isoleucine, were preferred in R5-tropic sequences whereas residues like Lysine, Arginine, and Tryptophan were preferred in X4-tropic sequences. Initially, Support Vector Machine-based models were developed using amino acid composition, dipeptide composition, and split amino acid composition, which achieved accuracy up to 90%. We used BLAST to discriminate R5- and X4-tropic sequences and correctly predicted 93.16% of R5- and 75.75% of X4-tropic sequences. In order to improve the prediction accuracy, a Hybrid model was developed that achieved 91.66% sensitivity, 81.77% specificity, 89.19% accuracy and 0.72 Matthews Correlation Coefficient. The performance of our models was also evaluated on an independent dataset (256 R5- and 81 X4-tropic sequences) and achieved maximum accuracy of 84.87% with Matthews Correlation Coefficient 0.63.

Conclusion

This study describes a highly efficient method for predicting HIV-1 coreceptor usage from V3 sequences. In order to provide a service to the scientific community, a webserver HIVcoPred was developed (http://www.imtech.res.in/raghava/hivcopred/) for predicting the coreceptor usage.  相似文献   

2.
Several members of the seven-transmembrane chemokine receptor family have been shown to serve, with CD4, as coreceptors for entry by human immunodeficiency virus type 1 (HIV-1). While coreceptor usage by HIV-1 primary isolates has been studied by several groups, there is only limited information available concerning coreceptor usage by primary HIV-2 isolates. In this study, we have analyzed coreceptor usage of 15 primary HIV-2 isolates, using lymphocytes from a donor with nonfunctional CCR5 (CCR5 −/−; homozygous 32-bp deletion). Based on the infections of PBMCs, seven of these primary isolates had an absolute requirement for CCR5 expression, whereas the remaining eight exhibited a broader coreceptor usage. All CCR5-requiring isolates were non-syncytium inducing, whereas isolates utilizing multiple coreceptors were syncytium inducing. Blocking experiments using known ligands for chemokine receptors provided indirect evidence for additional coreceptor utilization by primary HIV-2 isolates. Analysis of GHOST4 cell lines expressing various chemokine receptors (CCR1, CCR2b, CCR3, CCR4, CCR5, CXCR4, BONZO, and BOB) further defined specific coreceptor usage of primary HIV-2 isolates. The receptors used included CXCR4, CCR1-5, and the recently described receptors BONZO and BOB. However, the efficiency at which the coreceptors were utilized varied greatly among the various isolates. Analysis of V3 envelope sequences revealed no specific motif that correlated with coreceptor usage. Our data demonstrate that primary HIV-2 isolates are capable of using a broad range of coreceptors for productive infection in vitro. Additionally, our data suggest that expanded coreceptor usage by HIV-2 may correlate with disease progression.  相似文献   

3.
Accurate tools for multiple sequence alignment (MSA) are essential for comparative studies of the function and structure of biological sequences. However, it is very challenging to develop a computationally efficient algorithm that can consistently predict accurate alignments for various types of sequence sets. In this article, we introduce PicXAA (Probabilistic Maximum Accuracy Alignment), a probabilistic non-progressive alignment algorithm that aims to find protein alignments with maximum expected accuracy. PicXAA greedily builds up the multiple alignment from sequence regions with high local similarities, thereby yielding an accurate global alignment that effectively grasps the local similarities among sequences. Evaluations on several widely used benchmark sets show that PicXAA constantly yields accurate alignment results on a wide range of reference sets, with especially remarkable improvements over other leading algorithms on sequence sets with local similarities. PicXAA source code is freely available at: http://www.ece.tamu.edu/∼bjyoon/picxaa/.  相似文献   

4.
HIV-1 coreceptor usage and phenotype mainly determined by V3 loop are associated with the disease progression of AIDS. Predicting HIV-1 coreceptor usage and phenotype facilitates the monitoring of R5-to-X4 switch and treatment decision-making. In this study, we employed random forest to predict HIV-1 biological phenotype, based on 37 random features of V3 loop. In comparison with PSSM method, our RF predictor obtained higher prediction accuracy (95.1% for coreceptor usage and 92.1% for phenotype), especially for non-B non-C HIV-1 subtypes (96.6% for coreceptor usage and 95.3% for phenotype). The net charge, polarity of V3 loop and five V3 sites are seven most important features for predicting HIV-1 coreceptor usage or phenotype. Among these features, V3 polarity and four V3 sites (22, 12, 18 and 13) are first reported to have high contribution to HIV-1 biological phenotype prediction.  相似文献   

5.
In this paper we introduce an efficient algorithm for alignment of multiple large-scale biological networks. In this scheme, we first compute a probabilistic similarity measure between nodes that belong to different networks using a semi-Markov random walk model. The estimated probabilities are further enhanced by incorporating the local and the cross-species network similarity information through the use of two different types of probabilistic consistency transformations. The transformed alignment probabilities are used to predict the alignment of multiple networks based on a greedy approach. We demonstrate that the proposed algorithm, called SMETANA, outperforms many state-of-the-art network alignment techniques, in terms of computational efficiency, alignment accuracy, and scalability. Our experiments show that SMETANA can easily align tens of genome-scale networks with thousands of nodes on a personal computer without any difficulty. The source code of SMETANA is available upon request. The source code of SMETANA can be downloaded from http://www.ece.tamu.edu/~bjyoon/SMETANA/.  相似文献   

6.
7.
8.
Human immunodeficiency virus type 2 (HIV-2) is generally considered capable of using a broad range of coreceptors. Since HIV-2 variants from individuals with nonprogressive infection were not studied previously, the possibility that broad coreceptor usage is a property of variants associated with progressive infection could not be excluded. To test this, we determined the coreceptor usage of 43 HIV-2 variants isolated from six long-term-infected individuals with undetectable plasma viremia. Using GHOST indicator cells, we showed for the first time that the only coreceptors efficiently used by low-pathogenic HIV-2 variants are CCR5, GPR15 (BOB), and CXCR6 (BONZO). Surprisingly, control HIV-2 variants (n = 45) isolated from seven viremic individuals also mainly used these three coreceptors, whereas use of CCR1, CCR2b, or CCR3 was rare. Nearly a quarter of all HIV-2 variants tested could infect the parental GHOST cells, which could be partially explained by CXCR4 usage. Use of CXCR4 was observed only for HIV-2 variants from viremic individuals. Thirty-eight variants from aviremic and viremic HIV-2-infected individuals were additionally tested in U87 cells. All except one were capable of infecting the parental U87 cells, often with high efficiency. When virus production in parental cells was regarded as background in the coreceptor-transduced cell lines, the results in U87 cells were largely in agreement with the findings in GHOST cells. HIV-2 isolates from aviremic individuals commonly use as coreceptors CCR5, GPR15, and CXCR6, as well as an unidentified receptor expressed by U87 cells. Broad coreceptor usage, therefore, does not appear to be associated with pathogenicity of HIV-2.  相似文献   

9.
The chemokine receptors CCR-5 and CXCR-4, and possibly CCR-3, are the principal human immunodeficiency virus type 1 (HIV-1) coreceptors, apparently interacting with HIV-1 envelope, in association with CD4. Cell lines coexpressing CD4 and these chemokine receptors were infected with a panel of seven primary HIV-2 isolates passaged in peripheral blood mononuclear cells (PBMC) and three laboratory HIV-2 strains passaged in T-cell lines. The CCR-5, CCR-3, and CXCR-4 coreceptors could all be used by HIV-2. The ability to use CXCR-4 represents a major difference between HIV-2 and the closely related simian immunodeficiency viruses. Most HIV-2 strains using CCR-5 could also use CCR-3, sometimes with similar efficiencies. As observed for HIV-1, the usage of CCR-5 or CCR-3 was observed principally for HIV-2 strains derived from asymptomatic individuals, while HIV-2 strains derived from AIDS patients used CXCR-4. However, there were several exceptions, and the patterns of coreceptor usage seemed more complex for HIV-2 than for HIV-1. The two T-tropic HIV-2 strains tested used CXCR-4 and not CCR-5, while T-tropic HIV-1 can generally use both. Moreover, among five primary HIV-2 strains all unable to use CXCR-4, three could replicate in CCR-5-negative PBMC, which has not been reported for HIV-1. These observations suggest that the CCR-5 coreceptor is less important for HIV-2 than for HIV-1 and indicate that HIV-2 can use other cell entry pathways and probably other coreceptors. One HIV-2 isolate replicating in normal or CCR-5-negative PBMC failed to infect CXCR-4+ cells or the U87MG-CD4 and sMAGI cell lines, which are permissive to infection by HIV-2 but not by HIV-1. This suggests the existence of several HIV-2-specific coreceptors, which are differentially expressed in cell lines and PBMC.  相似文献   

10.
11.
The great majority of human immunodeficiency virus type 1 (HIV-1) strains enter CD4+ target cells by interacting with one of two coreceptors, CCR5 or CXCR4. Here we describe a transmitted/founder (T/F) virus (ZP6248) that was profoundly impaired in its ability to utilize CCR5 and CXCR4 coreceptors on multiple CD4+ cell lines as well as primary human CD4+ T cells and macrophages in vitro yet replicated to very high titers (>80 million RNA copies/ml) in an acutely infected individual. Interestingly, the envelope (Env) glycoprotein of this clade B virus had a rare GPEK sequence in the crown of its third variable loop (V3) rather than the consensus GPGR sequence. Extensive sequencing of sequential plasma samples showed that the GPEK sequence was present in virtually all Envs, including those from the earliest time points after infection. The molecularly cloned (single) T/F virus was able to replicate, albeit poorly, in cells obtained from ccr5Δ32 homozygous donors. The ZP6248 T/F virus could also infect cell lines overexpressing the alternative coreceptors GPR15, APJ, and FPRL-1. A single mutation in the V3 crown sequence (GPEK->GPGK) of ZP6248 restored its infectivity in CCR5+ cells but reduced its ability to replicate in GPR15+ cells, indicating that the V3 crown motif played an important role in usage of this alternative coreceptor. These results suggest that the ZP6248 T/F virus established an acute in vivo infection by using coreceptor(s) other than CCR5 or CXCR4 or that the CCR5 coreceptor existed in an unusual conformation in this individual.  相似文献   

12.
Watabe T  Kishino H  Okuhara Y  Kitazoe Y 《Genetics》2006,172(3):1385-1396
The third hypervariable (V3) region of the HIV-1 gp120 protein is responsible for many aspects of viral infectivity. The tertiary structure of the V3 loop seems to influence the coreceptor usage of the virus, which is an important determinant of HIV pathogenesis. Hence, the information about preferred conformations of the V3-loop region and its flexibility could be a crucial tool for understanding the mechanisms of progression from an initial infection to AIDS. Taking into account the uncertainty of the loop structure, we predicted the structural flexibility, diversity, and sequence fitness to the V3-loop structure for each of the sequences serially sampled during an asymptomatic period. Structural diversity correlated with sequence diversity. The predicted crown structure usage implied that structural flexibility depended on the patient and that the antigenic character of the virus might be almost uniform in a patient whose immune system is strong. Furthermore, the predicted structural ensemble suggested that toward the end of the asymptomatic period there was a change in the V3-loop structure or in the environment surrounding the V3 loop, possibly because of its proximity to the gp120 core.  相似文献   

13.
Binding of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 to both CD4 and one of several chemokine receptors (coreceptors) permits entry of virus into target cells. Infection of tissues may establish latent viral reservoirs as well as cause direct pathologic effects that manifest as clinical disease such as HIV-associated dementia. We sought to identify the critical coreceptors recognized by HIV-1 tissue-derived strains as well as to correlate these coreceptor preferences with site of infection and dementia diagnosis. To reconstitute coreceptor use, we cloned HIV-1 envelope V3 sequences encoding the primary determinants of coreceptor specificity from 13 brain-derived and 6 colon-derived viruses into an isogenic (NL4-3) viral background. All V3 recombinants utilized the chemokine receptor CCR5 uniformly and efficiently as a coreceptor but not CXCR4, BOB/GPR15, or Bonzo/STRL33. Other receptors such as CCR3, CCR8, and US28 were inefficiently and variably used as coreceptors by various envelopes. CCR5 without CD4 present did not allow for detectable infection by any of the tested recombinants. In contrast to the pathogenic switch in coreceptor specificity frequently observed in comparisons of blood-derived viruses early after HIV-1 seroconversion and after onset of AIDS, the characteristics of these V3 recombinants suggest that CCR5 is a primary coreceptor for brain- and colon-derived viruses regardless of tissue source or diagnosis of dementia. Therefore, tissue infection may not depend significantly on viral envelope quasispeciation to broaden coreceptor range but rather selects for CCR5 use throughout disease progression.  相似文献   

14.
15.
The V3 loop of human immunodeficiency virus type 1 (HIV-1) is critical for coreceptor binding and is the main determinant of which of the cellular coreceptors, CCR5 or CXCR4, the virus uses for cell entry. The aim of this study is to provide a large-scale data driven analysis of HIV-1 coreceptor usage with respect to the V3 loop evolution and to characterize CCR5- and CXCR4-tropic viral phenotypes previously studied in small- and medium-scale settings. We use different sequence similarity measures, phylogenetic and clustering methods in order to analyze the distribution in sequence space of roughly 1000 V3 loop sequences and their tropism phenotypes. This analysis affords a means of characterizing those sequences that are misclassified by several sequence-based coreceptor prediction methods, as well as predicting the coreceptor using the location of the sequence in sequence space and of relating this location to the CD4+ T-cell count of the patient. We support previous findings that the usage of CCR5 is correlated with relatively high sequence conservation whereas CXCR4-tropic viruses spread over larger regions in sequence space. The incorrectly predicted sequences are mostly located in regions in which their phenotype represents the minority or in close vicinity of regions dominated by the opposite phenotype. Nevertheless, the location of the sequence in sequence space can be used to improve the accuracy of the prediction of the coreceptor usage. Sequences from patients with high CD4+ T-cell counts are relatively highly conserved as compared to those of immunosuppressed patients. Our study thus supports hypotheses of an association of immune system depletion with an increase in V3 loop sequence variability and with the escape of the viral sequence to distant parts of the sequence space.  相似文献   

16.
Infection of CD4-positive cells by human immunodeficiency virus type 1 (HIV-1) requires functional interaction of the viral envelope protein with a coreceptor belonging to the chemokine receptor family of seven-membrane-spanning receptors. For the majority of macrophage-tropic HIV-1 isolates, the physiologically relevant coreceptor is the human CCR-5 (hCCR-5) receptor. Although the murine homolog of CCR-5 (mCCR-5) is unable to mediate HIV-1 infection, chimeric hCCR-5/mCCR-5 molecules containing single extracellular domains derived from hCCR-5 are effective coreceptors for certain macrophage-tropic HIV-1 isolates. Here, we have sought to identify residues in hCCR-5 critical for HIV-1 infection by substitution of mCCR-5-derived residues into the context of functional chimeric hCCR-5/mCCR-5 receptor molecules. Using this strategy, we demonstrate that residues 7, 13, and 15 in the first extracellular domain and residue 180 in the third extracellular domain of CCR-5 are important for HIV-1 envelope-mediated membrane fusion. Of interest, certain substitutions, for example, at residues 184 and 185 in the third extracellular domain, have no phenotype when introduced individually but strongly inhibit hCCR-5 coreceptor function when present together. We hypothesize that these changes, which do not preclude chemokine receptor function, may inhibit a conformational transition in hCCR-5 that contributes to HIV-1 infection. Finally, we report that substitution of glycine for valine at residue 5 in CCR-5 can significantly enhance the level of envelope-dependent cell fusion by expressing cells. The diversity of the mutant phenotypes observed in this mutational analysis, combined with their wide distribution across the extracellular regions of CCR-5, emphasizes the complexity of the interaction between HIV-1 envelope and coreceptor.Infection of cells by human immunodeficiency virus type 1 (HIV-1) requires interaction of the viral envelope protein with not only CD4 but also a second cell surface molecule, termed a coreceptor (reviewed in reference 19). Coreceptor usage varies significantly among different HIV-1 isolates, although all known coreceptors are members of the G-protein-coupled chemokine receptor family of seven-membrane-spanning receptors. The primary coreceptor used by non-syncytium-inducing, macrophage-tropic (M-tropic) HIV-1 isolates, which constitute the majority of primary isolates, is CCR-5 (1, 6, 8, 12, 27). In contrast, syncytium-inducing, T-cell-line-adapted (T-tropic) HIV-1 isolates predominantly use CXCR-4 as a coreceptor (13). Other chemokine receptors utilized by a small percentage of generally dualtropic HIV-1 isolates include CCR-2b and CCR-3 (6, 11). The importance of two orphan chemokine receptors, termed Bonzo/STRL33 and BOB/GPR15, in infection by HIV-1 remains to be established, although these proteins were recently shown to serve as coreceptors for several simian immunodeficiency virus and HIV-2 isolates (2, 9). The critical importance of CCR-5 for infection by primary, M-tropic HIV-1 isolates, however, has been highlighted by the finding that a small percentage of humans lack a functional CCR-5 gene and as a result appear highly, although not completely, resistant to infection by HIV-1 (17, 22). Importantly, primary T cells derived from such individuals are refractory to infection by M-tropic HIV-1 isolates in vitro (17, 22, 27), thus demonstrating that CCR-5 is the physiologically relevant coreceptor for the majority of primary isolates.At present, relatively little is known about how the viral envelope and coreceptor interact, although it appears clear that interaction is dependent upon a prior conformational shift induced by binding of the envelope gp120 subunit to CD4 (24, 26). This in turn is believed to lead to the formation of a ternary complex, consisting of gp120, coreceptor, and CD4, on the surface of the target cell (15, 24, 26). It is unknown how this protein complex then induces the fusion of the viral and host cell membranes, although the envelope gp41 subunit is believed to play a critical role at this stage.An important unresolved question is the identity of the amino acid residues in gp120 and the coreceptor that interact during infection. However, it is well established that HIV-1 tropism, and hence coreceptor usage, is largely controlled by a small number of residues located in the envelope V3 loop (6, 14, 23, 25). Efforts to identify residues in the CCR-5 coreceptor involved in mediating infection have thus far largely focused on the functional analysis of chimeric receptors generated with human CCR-5 (hCCR-5) and a chemokine receptor lacking coreceptor function, such as the murine CCR-5 homolog (mCCR-5) (3, 5, 20, 21). These studies have led to three major conclusions. Firstly, the residues in hCCR-5 involved in mediating HIV-1 infection are diffuse, being located on at least three of the four extracellular domains of CCR-5. Secondly, these residues are functionally redundant, so that several distinct regions of hCCR-5 can suffice independently to confer coreceptor function when substituted into mCCR-5. Lastly, different HIV-1 envelope proteins interact differently with CCR-5, such that CCR-5 residues important for mediating fusion by one envelope protein may be largely irrelevant to the interaction of CCR-5 with a second envelope protein. Overall, these data demonstrate that the envelope–CCR-5 interaction is likely to be highly complex and to involve the interaction of multiple residues in both proteins.As noted above, the mCCR-5 chemokine receptor, despite extensive sequence similarity to hCCR-5, fails to function as an HIV-1 coreceptor (3, 5, 20). Therefore, it is apparent that one or more of the 20 extracellular residues that differ between mCCR-5 and hCCR-5 must contribute to the interaction with the HIV-1 envelope protein. Using mutational analysis in the context of chimeric mCCR-5/hCCR-5 receptors, we have now identified several residues, located in three of the four extracellular domains of hCCR-5, that play roles in mediating infection by HIV-1.  相似文献   

17.

Background

Predicting type-1 Human Immunodeficiency Virus (HIV-1) protease cleavage site in protein molecules and determining its specificity is an important task which has attracted considerable attention in the research community. Achievements in this area are expected to result in effective drug design (especially for HIV-1 protease inhibitors) against this life-threatening virus. However, some drawbacks (like the shortage of the available training data and the high dimensionality of the feature space) turn this task into a difficult classification problem. Thus, various machine learning techniques, and specifically several classification methods have been proposed in order to increase the accuracy of the classification model. In addition, for several classification problems, which are characterized by having few samples and many features, selecting the most relevant features is a major factor for increasing classification accuracy.

Results

We propose for HIV-1 data a consistency-based feature selection approach in conjunction with recursive feature elimination of support vector machines (SVMs). We used various classifiers for evaluating the results obtained from the feature selection process. We further demonstrated the effectiveness of our proposed method by comparing it with a state-of-the-art feature selection method applied on HIV-1 data, and we evaluated the reported results based on attributes which have been selected from different combinations.

Conclusion

Applying feature selection on training data before realizing the classification task seems to be a reasonable data-mining process when working with types of data similar to HIV-1. On HIV-1 data, some feature selection or extraction operations in conjunction with different classifiers have been tested and noteworthy outcomes have been reported. These facts motivate for the work presented in this paper.

Software availability

The software is available at http://ozyer.etu.edu.tr/c-fs-svm.rar.The software can be downloaded at esnag.etu.edu.tr/software/hiv_cleavage_site_prediction.rar; you will find a readme file which explains how to set the software in order to work.  相似文献   

18.
Coreceptor usage of primary human immunodeficiency virus type 1 (HIV-1) isolates varies according to biological phenotype. The chemokine receptors CCR5 and CXCR4 are the major coreceptors that, together with CD4, govern HIV-1 entry into cells. Since CXCR4 usage determines the biological phenotype for HIV-1 isolates and is more frequent in patients with immunodeficiency, it may serve as a marker for viral virulence. This possibility prompted us to study coreceptor usage by HIV-2, known to be less pathogenic than HIV-1. We tested 11 primary HIV-2 isolates for coreceptor usage in human cell lines: U87 glioma cells, stably expressing CD4 and the chemokine receptor CCR1, CCR2b, CCR3, CCR5, or CXCR4, and GHOST(3) osteosarcoma cells, coexpressing CD4 and CCR5, CXCR4, or the orphan receptor Bonzo or BOB. The indicator cells were infected by cocultivation with virus-producing peripheral blood mononuclear cells and by cell-free virus. Our results show that 10 of 11 HIV-2 isolates were able to efficiently use CCR5. In contrast, only two isolates, both from patients with advanced disease, used CXCR4 efficiently. These two isolates also promptly induced syncytia in MT-2 cells, a pattern described for HIV-1 isolates that use CXCR4. Unlike HIV-1, many of the HIV-2 isolates were promiscuous in their coreceptor usage in that they were able to use, apart from CCR5, one or more of the CCR1, CCR2b, CCR3, and BOB coreceptors. Another difference between HIV-1 and HIV-2 was that the ability to replicate in MT-2 cells appeared to be a general property of HIV-2 isolates. Based on BOB mRNA expression in MT-2 cells and the ability of our panel of HIV-2 isolates to use BOB, we suggest that HIV-2 can use BOB when entering MT-2 cells. The results indicate no obvious link between viral virulence and the ability to use a multitude of coreceptors.  相似文献   

19.
The binding of protein HIV-1 gp120 to coreceptors CCR5 or CXCR4 is a key step of the HIV-1 entry to the host cell, and is predominantly mediated through the V3 loop fragment of HIV-1 gp120. In the present work, we delineate the molecular recognition of chemokine receptor CCR5 by a dual tropic HIV-1 gp120 V3 loop, using a comprehensive set of computational tools predominantly based on molecular dynamics simulations and free energy calculations. We report, what is to our knowledge, the first complete HIV-1 gp120 V3 loop : CCR5 complex structure, which includes the whole V3 loop and the N-terminus of CCR5, and exhibits exceptional agreement with previous experimental findings. The computationally derived structure sheds light into the functional role of HIV-1 gp120 V3 loop and CCR5 residues associated with the HIV-1 coreceptor activity, and provides insights into the HIV-1 coreceptor selectivity and the blocking mechanism of HIV-1 gp120 by maraviroc. By comparing the binding of the specific dual tropic HIV-1 gp120 V3 loop with CCR5 and CXCR4, we observe that the HIV-1 gp120 V3 loop residues 13–21, which include the tip, share nearly identical structural and energetic properties in complex with both coreceptors. This result paves the way for the design of dual CCR5/CXCR4 targeted peptides as novel potential anti-AIDS therapeutics.  相似文献   

20.
The natural ligands for the CCR5 chemokine receptor, macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES (regulated on T-cell activation, normal T-cell expressed and secreted), are known to inhibit human immunodeficiency virus (HIV) entry, and N-terminally modified RANTES analogues are more potent than native RANTES in blocking infection. However, potent CCR5 blocking agents may select for HIV-1 variants that use alternative coreceptors at less than fully inhibitory concentrations. In this study, two N-terminal chemical modifications of RANTES produced by total synthesis, aminooxypentane (AOP)-RANTES[2-68] and N-nonanoyl (NNY)-RANTES[2-68], were tested for their ability to prevent HIV-1 infection and to select for coreceptor switch variants in the human peripheral blood lymphocyte-SCID mouse model. Mice were infected with a CCR5-using HIV-1 isolate that requires only one or two amino acid substitutions to use CXCR4 as a coreceptor. Even though it achieved lower circulating concentrations than AOP-RANTES (75 to 96 pM as opposed to 460 pM under our experimental conditions), NNY-RANTES was more effective in preventing HIV-1 infection. However, in a subset of treated mice, these levels of NNY-RANTES rapidly selected viruses with mutations in the V3 loop of envelope that altered coreceptor usage. These results reinforce the case for using agents that block all significant HIV-1 coreceptors for effective therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号