首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The U5 small nuclear ribonucleoprotein particle (snRNP) forms the heart of the spliceosome which is required for intron removal from pre‐mRNA. The proteins Prp8, Snu114 and Brr2 all assemble with the U5 small nuclear RNA (snRNA) to produce the U5 snRNP. Successful assembly of the U5 snRNP, then incorporation of this snRNP into the U4/U6.U5 tri‐snRNP and the spliceosome, is essential for producing an active spliceosome. We have investigated the requirements for Prp8, Snu114 and Brr2 association with the U5 snRNA to form the U5 snRNP in yeast. Mutations were constructed in the highly conserved loop 1 and internal loop 1 (IL1) of the U5 snRNA and their function assessed in vivo. The influence of these U5 mutations on association of Prp8, Snu114 and Brr2 with the U5 snRNA were then determined. U5 snRNA loop 1 and both sides of IL1 in U5 were important for association of Prp8, Snu114 and Brr2 with the U5 snRNA. Mutations in the 3′ side of U5 IL1 resulted in the greatest reduction of Prp8, Snu114 and Brr2 association with the U5 snRNA. Genetic screening of brr2 and U5 snRNA mutants revealed synthetic lethal interactions between alleles in Brr2 and the 3′ side of U5 snRNA IL1 which reflects reduced association between Brr2 and U5 IL1. We propose that the U5 snRNA IL1 is a platform for protein binding and is required for Prp8, Brr2 and Snu114 association with the U5 snRNA to form the U5 snRNP. J. Cell. Biochem. 114: 2770–2784, 2013. © 2013 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.  相似文献   

2.
Snu114 is a U5 snRNP protein essential for pre-mRNA splicing. Based on its homology with the ribosomal translocase EF-G, it is thought that GTP hydrolysis by Snu114 induces conformational rearrangements in the spliceosome. We recently identified allele-specific genetic interactions between SNU114 and genes encoding three other U5 snRNP components, Prp8 and two RNA-dependent ATPases, Prp28 and Brr2, required for destabilization of U1 and U4 snRNPs prior to catalysis. To shed more light onto the function of Snu114, we have now directly analyzed snRNP and spliceosome assembly in SNU114 mutant extracts. The Snu114-60 C-terminal truncation mutant, which is synthetically lethal with the ATPase mutants prp28-1 and brr2-1, assembles spliceosomes but subsequently blocks U4 snRNP release. Conversely, mutants in the GTPase domain fail to assemble U5 snRNPs. These mutations prevent the interaction of Snu114 with Prp8 as well as with U5 snRNA. Since Prp8 is thought to regulate the activity of the DEAD-box ATPases, this strategy of snRNP assembly could ensure that Prp8 activity is itself regulated by a GTP-dependent mechanism.  相似文献   

3.
Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain is an alpha/beta structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn(2+) coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn(2+)-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.  相似文献   

4.
RNA helicase Brr2 is implicated in multiple phases of pre-mRNA splicing and thus requires tight regulation. Brr2 can be auto-inhibited via a large N-terminal region folding back onto its helicase core and auto-activated by a catalytically inactive C-terminal helicase cassette. Furthermore, it can be regulated in trans by the Jab1 domain of the Prp8 protein, which can inhibit Brr2 by intermittently inserting a C-terminal tail in the enzyme's RNA-binding tunnel or activate the helicase after removal of this tail. Presently it is unclear, whether these regulatory mechanisms functionally interact and to which extent they are evolutionarily conserved. Here, we report crystal structures of Saccharomyces cerevisiae and Chaetomium thermophilum Brr2-Jab1 complexes, demonstrating that Jab1-based inhibition of Brr2 presumably takes effect in all eukaryotes but is implemented via organism-specific molecular contacts. Moreover, the structures show that Brr2 auto-inhibition can act in concert with Jab1-mediated inhibition, and suggest that the N-terminal region influences how the Jab1 C-terminal tail interacts at the RNA-binding tunnel. Systematic RNA binding and unwinding studies revealed that the N-terminal region and the Jab1 C-terminal tail specifically interfere with accommodation of double-stranded and single-stranded regions of an RNA substrate, respectively, mutually reinforcing each other. Additionally, such analyses show that regulation based on the N-terminal region requires the presence of the inactive C-terminal helicase cassette. Together, our results outline an intricate system of regulatory mechanisms, which control Brr2 activities during snRNP assembly and splicing.  相似文献   

5.
前体mRNA(precursor messager RNA,pre-mRNA)剪接是去除内含子和将外显子彼此连接形成成熟mRNA的过程。剪接过程在一个呈动态变化的大核糖核蛋白(ribonucleoprotein, RNP)复合体,即剪接体催化作用下完成。DExD/H-box RNA解旋酶在剪接体组装、激活及解聚过程中都发挥着重要作用。Brr2(bad response to refrigeration 2)这种DExD/H-box RNA解旋酶是构成U5稳定的亚单位。Brr2含有两个串联解旋酶盒结构,在剪接体激活中负责U4/U6的解旋,还参与剪接体催化及解聚过程,因此Brr2在剪接过程中必需具备严格的调控机制。在剪接过程中,Prp8的C端包含两个连续的RNase H域和Jab1/MPN域,能够正负调控Brr2活性。Snu114在调节Brr2活性中具有非常重要的作用。此外,Brr2通过C端解旋酶盒(C-terminal cassette, CC)与N末端域(N-terminal region)进行分子内的自我活性调节。本文综述了近年来在Brr2的分子间和分子内活性调节机制的研究进展,这些不同的调节机制协同作用才确保真核生物pre-mRNA可变剪接的保真性。  相似文献   

6.
van Nues RW  Beggs JD 《Genetics》2001,157(4):1451-1467
Mapping of functional protein interactions will help in understanding conformational rearrangements that occur within large complexes like spliceosomes. Because the U5 snRNP plays a central role in pre-mRNA splicing, we undertook exhaustive two-hybrid screening with Brr2p, Prp8p, and other U5 snRNP-associated proteins. DExH-box protein Brr2p interacted specifically with five splicing factors: Prp8p, DEAH-box protein Prp16p, U1 snRNP protein Snp1p, second-step factor Slu7p, and U4/U6.U5 tri-snRNP protein Snu66p, which is required for splicing at low temperatures. Co-immunoprecipitation experiments confirmed direct or indirect interactions of Prp16p, Prp8p, Snu66p, and Snp1p with Brr2p and led us to propose that Brr2p mediates the recruitment of Prp16p to the spliceosome. We provide evidence that the prp8-1 allele disrupts an interaction with Brr2p, and we propose that Prp8p modulates U4/U6 snRNA duplex unwinding through another interaction with Brr2p. The interactions of Brr2p with a wide range of proteins suggest a particular function for the C-terminal half, bringing forward the hypothesis that, apart from U4/U6 duplex unwinding, Brr2p promotes other RNA rearrangements, acting synergistically with other spliceosomal proteins, including the structurally related Prp2p and Prp16p. Overall, these protein interaction studies shed light on how splicing factors regulate the order of events in the large spliceosome complex.  相似文献   

7.
In Saccharomyces cerevisiae, Cwc21p is a protein of unknown function that is associated with the NineTeen Complex (NTC), a group of proteins involved in activating the spliceosome to promote the pre-mRNA splicing reaction. Here, we show that Cwc21p binds directly to two key splicing factors—namely, Prp8p and Snu114p—and becomes the first NTC-related protein known to dock directly to U5 snRNP proteins. Using a combination of proteomic techniques we show that the N-terminus of Prp8p contains an intramolecular fold that is a Snu114p and Cwc21p interacting domain (SCwid). Cwc21p also binds directly to the C-terminus of Snu114p. Complementary chemical cross-linking experiments reveal reciprocal protein footprints between the interacting Prp8 and Cwc21 proteins, identifying the conserved cwf21 domain in Cwc21p as a Prp8p binding site. Genetic and functional interactions between Cwc21p and Isy1p indicate that they have related functions at or prior to the first catalytic step of splicing, and suggest that Cwc21p functions at the catalytic center of the spliceosome, possibly in response to environmental or metabolic changes. We demonstrate that SRm300, the only SR-related protein known to be at the core of human catalytic spliceosomes, is a functional ortholog of Cwc21p, also interacting directly with Prp8p and Snu114p. Thus, the function of Cwc21p is likely conserved from yeast to humans.  相似文献   

8.
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-specific crosslinking showed that Snu114p contacts the 5' side of internal loop 1, whereas Prp8p interacts with five different regions of the 5' stem-loop, but not with the Sm site or 3' stem-loop. Both internal loops in the 5' domain are essential for Prp8p to associate with the snRNP, but the conserved loop 1 is not, although this is the region to which Prp8p crosslinks most strongly. The extensive contacts between Prp8p and the 5' stem-loop of U5 RNA support the hypothesis that, in spliceosomes, Prp8p stabilizes loop 1-exon interactions. Moreover, data showing that Prp8p contacts the exons even in the absence of loop 1 indicate that Prp8p may be the principal anchoring factor for exons in the spliceosome. This and the close proximity of the spliceosomal translocase, Snu114p, to U5 loop 1 and Prp8p support and extend the proposal that Snu114p mimics U5 loop 1 during a translocation event in the spliceosome.  相似文献   

9.
We present here the first insights into the organization of proteins on the RNA in the U5 snRNP of Saccharomyces cerevisiae. Photo-crosslinking with uniformly labeled U5 RNA in snRNPs reconstituted in vitro revealed five contacting proteins, Prp8p, Snu114p, p30, p16, and p10, contact by the three smaller proteins requiring an intact Sm site. Site-specific crosslinking showed that Snu114p contacts the 5' side of internal loop 1, whereas Prp8p interacts with five different regions of the 5' stem-loop, but not with the Sm site or 3' stem-loop. Both internal loops in the 5' domain are essential for Prp8p to associate with the snRNP, but the conserved loop 1 is not, although this is the region to which Prp8p crosslinks most strongly. The extensive contacts between Prp8p and the 5' stem-loop of U5 RNA support the hypothesis that, in spliceosomes, Prp8p stabilizes loop 1-exon interactions. Moreover, data showing that Prp8p contacts the exons even in the absence of loop 1 indicate that Prp8p may be the principal anchoring factor for exons in the spliceosome. This and the close proximity of the spliceosomal translocase, Snu114p, to U5 loop 1 and Prp8p support and extend the proposal that Snu114p mimics U5 loop 1 during a translocation event in the spliceosome.  相似文献   

10.
The spliceosome assembles on a pre‐mRNA intron by binding of five snRNPs and numerous proteins, leading to the formation of the pre‐catalytic B complex. While the general morphology of the B complex is known, the spatial arrangement of proteins and snRNP subunits within it remain to be elucidated. To shed light on the architecture of the yeast B complex, we immuno‐labelled selected proteins and located them by negative‐stain electron microscopy. The B complex exhibited a triangular shape with main body, head and neck domains. We located the U5 snRNP components Brr2 at the top and Prp8 and Snu114 in the centre of the main body. We found several U2 SF3a (Prp9 and Prp11) and SF3b (Hsh155 and Cus1) proteins in the head domain and two U4/U6 snRNP proteins (Prp3 and Lsm4) in the neck domain that connects the main body with the head. Thus, we could assign distinct domains of the B complex to the respective snRNPs and provide the first detailed picture of the subunit architecture and protein arrangements of the B complex.  相似文献   

11.
Brenner TJ  Guthrie C 《Genetics》2005,170(3):1063-1080
Snu114 is the only GTPase required for mRNA splicing. As a homolog of elongation factor G, it contains three domains (III-V) predicted to undergo a large rearrangement following GTP hydrolysis. To assess the functional importance of the domains of Snu114, we used random mutagenesis to create conditionally lethal alleles. We identified three main classes: (1) mutations that are predicted to affect GTP binding and hydrolysis, (2) mutations that are clustered in 10- to 20-amino-acid stretches in each of domains III-V, and (3) mutations that result in deletion of up to 70 amino acids from the C terminus. Representative mutations from each of these classes blocked the first step of splicing in vivo and in vitro. The growth defects caused by most alleles were synthetically exacerbated by mutations in PRP8, a U5 snRNP protein that physically interacts with Snu114, as well as in genes involved in snRNP biogenesis, including SAD1 and BRR1. The allele snu114-60, which truncates the C terminus, was synthetically lethal with factors required for activation of the spliceosome, including the DExD/H-box ATPases BRR2 and PRP28. We propose that GTP hydrolysis results in a rearrangement between Prp8 and the C terminus of Snu114 that leads to release of U1 and U4, thus activating the spliceosome for catalysis.  相似文献   

12.
Pre-mRNA splicing entails the stepwise assembly of an inactive spliceosome, its catalytic activation, splicing catalysis and spliceosome disassembly. Transitions in this reaction cycle are accompanied by compositional and conformational rearrangements of the underlying RNA-protein interaction networks, which are driven and controlled by 8 conserved superfamily 2 RNA helicases. The Ski2-like helicase, Brr2, provides the key remodeling activity during spliceosome activation and is additionally implicated in the catalytic and disassembly phases of splicing, indicating that Brr2 needs to be tightly regulated during splicing. Recent structural and functional analyses have begun to unravel how Brr2 regulation is established via multiple layers of intra- and inter-molecular mechanisms. Brr2 has an unusual structure, including a long N-terminal region and a catalytically inactive C-terminal helicase cassette, which can auto-inhibit and auto-activate the enzyme, respectively. Both elements are essential, also serve as protein-protein interaction devices and the N-terminal region is required for stable Brr2 association with the tri-snRNP, tri-snRNP stability and retention of U5 and U6 snRNAs during spliceosome activation in vivo. Furthermore, a C-terminal region of the Prp8 protein, comprising consecutive RNase H-like and Jab1/MPN-like domains, can both up- and down-regulate Brr2 activity. Biochemical studies revealed an intricate cross-talk among the various cis- and trans-regulatory mechanisms. Comparison of isolated Brr2 to electron cryo-microscopic structures of yeast and human U4/U6?U5 tri-snRNPs and spliceosomes indicates how some of the regulatory elements exert their functions during splicing. The various modulatory mechanisms acting on Brr2 might be exploited to enhance splicing fidelity and to regulate alternative splicing.  相似文献   

13.
PAP-1 has been identified by us as a Pim-1-binding protein and has recently been implicated as the defective gene in RP9, one type of autosomal dominant retinitis pigmentosa (adRP). We have then shown that PAP-1 plays a role in pre-mRNA splicing. Because four causative genes for adRP, including PAP-1, Prp31, Prp8, and Prp3, encode proteins that function as splicing factors or splicing-modulating factors, we investigated the interaction of PAP-1 with Prp3p and Prp31p in this study. The results showed that PAP-1 interacted with Prp3p but not Prp31p in human cells and yeast, and that the basic region of PAP-1 and the C-terminal region of Prp3p, regions beside spots found in adRP mutations, were needed for binding. Furthermore, both Prp3p and a part of PAP-1 were found to be components of the U4/U6.U5-tri-snRNP complex, one form of the spliceosome, in Ba/F3 and K562 cells by analysis of sucrose density gradients, suggesting that PAP-1 is weakly associated with the spliceosome. These results also suggest that splicing factors implicated in adRP contribute alone or mutually to proper splicing in the retina and that loss of their functions leads to onset of adRP.  相似文献   

14.
Prp8p dissection reveals domain structure and protein interaction sites   总被引:1,自引:0,他引:1  
We describe a novel approach to characterize the functional domains of a protein in vivo. This involves the use of a custom-built Tn5-based transposon that causes the expression of a target gene as two contiguous polypeptides. When used as a genetic screen to dissect the budding yeast PRP8 gene, this showed that Prp8 protein could be dissected into three distinct pairs of functional polypeptides. Thus, four functional domains can be defined in the 2413-residue Prp8 protein, with boundaries in the regions of amino acids 394-443, 770, and 2170-2179. The central region of the protein was resistant to dissection by this approach, suggesting that it represents one large functional unit. The dissected constructs allowed investigation of factors that associate strongly with the N- or the C-terminal Prp8 protein fragments. Thus, the U5 snRNP protein Snu114p associates with Prp8p in the region 437-770, whereas fragmenting Prp8p at residue 2173 destabilizes its association with Aar2p.  相似文献   

15.
Binding of a pre-mRNA substrate triggers spliceosome activation, whereas the release of the mRNA product triggers spliceosome disassembly. The mechanisms that underlie the regulation of these rearrangements remain unclear. We find evidence that the GTPase Snu114p mediates the regulation of spliceosome activation and disassembly. Specifically, both unwinding of U4/U6, required for spliceosome activation, and disassembly of the postsplicing U2/U6.U5.intron complex are repressed by Snu114p bound to GDP and derepressed by Snu114p bound to GTP or nonhydrolyzable GTP analogs. Further, similar to U4/U6 unwinding, spliceosome disassembly requires the DExD/H box ATPase Brr2p. Together, our data define a common mechanism for regulating and executing spliceosome activation and disassembly. Although sequence similarity with EF-G suggests Snu114p functions as a molecular motor, our findings indicate that Snu114p functions as a classic regulatory G protein. We propose that Snu114p serves as a signal-dependent switch that transduces signals to Brr2p to control spliceosome dynamics.  相似文献   

16.
The yeast pre-mRNA retention and splicing complex counteracts the escape of unspliced pre-mRNAs from the nucleus and activates splicing of a subset of Mer1p-dependent genes. A homologous complex is present in activated human spliceosomes. In many components of the spliceosome, RNA recognition motifs (RRMs) serve as versatile protein-RNA or protein-protein interaction platforms. Here, we show that in the retention and splicing complex, an atypical RRM of the Snu17p (small nuclear ribonucleoprotein-associated protein 17) subunit acts as a scaffold that organizes the other two constituents, Bud13p (bud site selection 13) and Pml1p (pre-mRNA leakage 1). GST pull-down experiments and size exclusion chromatography revealed that Snu17p constitutes the central platform of the complex, whereas Bud13p and Pml1p do not interact with each other. Fluorimetric structure probing showed the entire Bud13p and the N-terminal third of Pml1p to be natively disordered in isolation. Mutational analysis and tryptophan fluorescence confirmed that a conserved tryptophan-containing motif in the C terminus of Bud13p binds to the core RRM of Snu17p, whereas a different interaction surface encompassing a C-terminal extension of the Snu17p RRM is required to bind an N-terminal peptide of Pml1p. Isothermal titration calorimetry revealed 1:1 interaction stoichiometries, large negative binding entropies, and dissociation constants in the low nanomolar and micromolar ranges for the Snu17p-Bud13p and the Snu17p-Pml1p interactions, respectively. Our results demonstrate that the noncanonical Snu17p RRM concomitantly binds multiple ligand proteins via short, intrinsically unstructured peptide epitopes and thereby acts as a platform that displays functional modules of the ligands, such as a forkhead-associated domain of Pml1p and a conserved polylysine motif of Bud13p.  相似文献   

17.
Kuhn AN  Brow DA 《Genetics》2000,155(4):1667-1682
The highly conserved splicing factor Prp8 has been implicated in multiple stages of the splicing reaction. However, assignment of a specific function to any part of the 280-kD U5 snRNP protein has been difficult, in part because Prp8 lacks recognizable functional or structural motifs. We have used a large-scale screen for Saccharomyces cerevisiae PRP8 alleles that suppress the cold sensitivity caused by U4-cs1, a mutant U4 RNA that blocks U4/U6 unwinding, to identify with high resolution five distinct regions of PRP8 involved in the control of spliceosome activation. Genetic interactions between two of these regions reveal a potential long-range intramolecular fold. Identification of a yeast two-hybrid interaction, together with previously reported results, implicates two other regions in direct and indirect contacts to the U1 snRNP. In contrast to the suppressor mutations in PRP8, loss-of-function mutations in the genes for two other splicing factors implicated in U4/U6 unwinding, Prp44 (Brr2/Rss1/Slt22/Snu246) and Prp24, show synthetic enhancement with U4-cs1. On the basis of these results we propose a model in which allosteric changes in Prp8 initiate spliceosome activation by (1) disrupting contacts between the U1 snRNP and the U4/U6-U5 tri-snRNP and (2) orchestrating the activities of Prp44 and Prp24.  相似文献   

18.
19.
Snu114p, a yeast U5 small nuclear ribonucleoprotein (snRNP) homologous to the ribosomal GTPase EF-2, was recently found to play a part in the dissociation of U4 small nuclear RNA (snRNA) from U6 snRNA. Here, we show that purified Snu114p binds GTP specifically. To test the possibility that binding and hydrolysis of GTP by Snu114p are required to stimulate the unwinding of U4 from U6, we produced several mutations of Snu114p. Residues whose mutations led to lethal phenotypes were all clustered in the P loop and in the guanine-ring binding sequence (NKXD) of the G domain, which in elongation factor-G is required for the binding and hydrolysis of GTP. An arginine residue in domain II, which in EF-G forms a salt bridge with a residue of the G domain, when mutated in Snu114p (R487E), led to a temperature-sensitive phenotype. The substitution D271N in the NKXD sequence is predicted to bind XTP instead of GTP. Spliceosomes containing this mutant, isolated by affinity chromatography after heat treatment, retained U4 snRNA paired with the U6 snRNA. U4 snRNA was released efficiently only when these arrested spliceosomes were reactivated by lowering the temperature in the presence of a mixture of ATP and XTP. Because non-hydrolyzable XTP analogues did not consent the release of U4, we conclude that the release requires hydrolysis of XTP. This suggests that Snu114p needs GTP to influence, directly or indirectly, the unwinding of U4 from U6. An additional role for Snu114p is also demonstrated: after growth of the D271N and R487E strains at high temperatures, we observed decreased levels of the U5 and the U4/U6.U5 snRNPs. This indicates that, before splicing, Snu114p plays a part in the assembly of both particles.  相似文献   

20.
Retinitis pigmentosa is a leading cause of blindness and a progressive retinal disorder, affecting millions of people worldwide. This disease is characterized by photoreceptor degeneration, eventually leading to complete blindness. Autosomal dominant (adRP) has been associated with mutations in at least four ubiquitously expressed genes encoding pre-mRNA splicing factors—Prp3, Prp8, Prp31 and PAP1. Biological function of adRP-associated splicing factor genes and molecular mechanisms by which mutations in these genes cause cell-type specific photoreceptor degeneration in humans remain to be elucidated. To investigate the in vivo function of these adRP-associated splicing factor genes, we examined Drosophila in which expression of fly Prp31 homolog was down-regulated. Sequence analyses show that CG6876 is the likely candidate of Drosophila melanogaster Prp31 homolog (DmPrp31). Predicted peptide sequence for CG6876 shows 57% similarity to the Homo sapiens Prp31 protein (HsPrp31). Reduction of the endogenous Prp31 by RNAi-mediated knockdown specifically in the eye leads to reduction of eye size or complete absence of eyes with remarkable features of photoreceptor degeneration and recapitulates the bimodal expressivity of human Prp31 mutations in adRP patients. Such transgenic DmPrp31RNAi flies provide a useful tool for identifying genetic modifiers or interacting genes for Prp31. Expression of the human Prp31 in these animals leads to a partial rescue of the eye phenotype. Our results indicate that the Drosophila CG6876 is the fly ortholog of mammalian Prp31 gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号