首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Quantitative trait loci (QTLs) contributing to salt tolerance during the vegetative stage in tomato were investigated using an interspecific backcross between a salt-sensitive Lycopersicon esculentum breeding line (NC84173, maternal and recurrent parent) and a salt-tolerant Lycopersicon pimpinellifolium accession (LA722). One hundred and nineteen BC1 individuals were genotyped for 151 RFLP markers and a linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of the BC1 individuals) were evaluated for salt tolerance in aerated saline-solution cultures with the salt concentration gradually raised to 700 mM NaCl+70 mM CaCl2 (equivalent to an electrical conductivity of approximately 64 dS/m and a water potential of approximately −35.2 bars). The two parental lines were distinctly different in salt tolerance: 80% of the LA722 plants versus 25% of the NC84173 plants survived for at least 2 weeks after the final salt concentration was reached. The BC1S1 population exhibited a continuous variation, typical of quantitative traits, with the survival rate of the BC1S1 families ranging from 9% to 94% with a mean of 51%. Two QTL mapping techniques, interval mapping (using MAPMAKER/QTL) and single-marker analysis (using QGENE), were used to identify QTLs. The results of both methods were similar and five QTLs were identified on chromosomes 1 (two QTLs), 3, 5 and 9. Each QTL accounted for between 5.7% and 17.7%, with the combined effects (of all five QTLs) exceeding 46%, of the total phenotypic variation. All QTLs had the positive QTL alleles from the salt-tolerant parent. Across QTLs, the effects were mainly additive in nature. Digenic epistatic interactions were evident among several QTL-linked and QTL-unlinked markers. The overall results indicate that tomato salt tolerance during the vegetative stage could be improved by marker-assisted selection using interspecific variation. Received: 4 January 1999 / Accepted: 4 January 1999  相似文献   

2.
This study was conducted to identify randomly amplified polymorphic DNA (RAPD) markers associated with quantitative trait loci (QTLs) conferring salt tolerance during germination in tomato. Germination response of an F2 population (2000 individuals) of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl+17.5 mM CaCl2 (water potential ca. –9.5 bars). Germination was scored visually as radicle protrusion at 6-h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerants and salt-sensitives) were selected. The selected individuals were genotyped for 53 RAPD markers and allele frequencies at each marker locus were determined. The linkage association among the markers was determined using a “Mapmaker” program. Trait-based marker analysis (TBA) identified 13 RAPD markers at eight genomic regions that were associated with QTLs affecting salt tolerance during germination in tomato. Of these genomic regions, five included favorable QTL alleles from LA716, and three included favorable alleles from UCT5. The approximate effects of individual QTLs ranged from 0.46 to 0.82 phenotypic standard deviation. The results support our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The identification of favorable QTLs in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these genotypes. Results from this study are discussed in relation to using marker-assisted selection in breeding for salt tolerance. Received: 16 June 1997 / Revision received: 11 August 1997 / Accepted: 2 September 1997  相似文献   

3.
This study was conducted to identify genomic regions (quantitative trait loci, QTLs) affecting salt tolerance during germination in tomato. Germination response of an F2 population of a cross between UCT5 (Lycopersicon esculentum, salt-sensitive) and LA716 (L. pennellii, salt-tolerant) was evaluated at a salt-stress level of 175 mM NaCl + 17.5 mM CaCl2 (water potential ca. –950 kPa). Germination was scored visually as radicle protrusion at 6 h intervals for 30 consecutive days. Individuals at both extremes of the response distribution (i.e., salt-tolerant and salt-sensitive individuals) were selected. The selected individuals were genotyped at 84 genetic markers including 16 isozymes and 68 restriction fragment length polymorphisms (RFLPs). Trait-based marker analysis (TBA) which measures changes (differences) in marker allele frequencies in selected lines was used to identify marker-linked QTLs. Eight genomic regions were identified on seven tomato chromosomes bearing genes (QTLs) with significant effects on this trait. The results confirmed our previous suggestion that salt tolerance during germination in tomato is polygenically controlled. The salt-tolerant parent contributed favorable QTL alleles on chromosomes 1, 3, 9 and 12 whereas the salt sensitive parent contributed favorable QTL alleles on chromosomes 2, 7 and 8. The identification of favorable alleles in both parents suggests the likelihood of recovering transgressive segregants in progeny derived from these parental genotypes. The results can be used for marker-assisted selection and breeding of salt-tolerant tomatoes.  相似文献   

4.
 Salt tolerance was studied comparatively in three families derived from crosses between Lycopersicon esculentum Mill. and two related wild species [two accessions of Lycopersicon pimpinellifolium (Jusl.) Mill. and one accession of Lycopersicon chesmannii f.minor (Hook.f.) Mull.] by means of QTL analysis of fruit yield and earliness under conditions of salinity. From six polymorphic genomic regions involved in salt tolerance, three contained segregant salt-tolerant QTLs for the three families; two were found only in both families derived from L.pimpinellifolium; and one, involved in fruit number, was detected only in one of the L.pimpinellifolium families. Some differences regarding the effects of the wild alleles at orthologous QTLs were found. These effects were always negative in the L. chesmannii family. Comparing both L. pimpinellifolium families, the “wild” alleles at two out of nine common QTLs for fruit number and weight had effects with opposite directions, and the mode of gene action was clearly different at five of them. QTL analysis of earliness revealed the largest genotypic differences among families. Most drastic differences were found for the epistatic interactions in which all genomic regions containing QTLs were involved. These interactions between unlinked genes increased the range of variation of means, mainly upwards, as compared with genotypes at individual QTLs. Only one (affecting fruit weight) out of 27 interactions was detected in both L.pimpinellifolium families. Heterotic effects found for salt tolerance in one of the families can be explained by the presence of overdominant (or pseudo-overdominant) and dominant gene effects at QTLs controlling final fruit yield under conditions of salinity. Allelic variation at salt-tolerant QTLs exists, changing the additive and, mainly, the non-additive components of the genotypic value. Consequently, it may negatively affect the general applicability (or efficiency) of marker-assisted selection to improve salt tolerance in other segregant populations where QTLs were not studied. The use of more informative co-dominant markers, like microsatelites, might overcome these problems. Received: 5 August 1996/Accepted: 25 October 1996  相似文献   

5.
The two-spotted spider mite (Tetranychus urticae Koch) is an important pest of tomato (Lycopersicon esculentum Mill.) crops in temperate regions as this spider mite has a very large capacity for population increase and causes severe tomato yield losses. There is no described tomato cultivar fully resistant to this pest, although resistant accessions have been reported within the green-fruited tomato wild species L. pennellii (Corr.) D’Arcy and L. hirsutum Humb. & Bonpl. We observed a L. pimpinellifolium (Jusl.) Mill. accession, ‘TO-937’, which seemed to be completely resistant to mite attacks and we crossed it with the susceptible L. esculentum cultivar. ‘Moneymaker’ to obtain a family of generations consisting of the two parents, the F1, the F2, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium. This family was evaluated for mite resistance in a polyethylene greenhouse using an experimental design in 60 small complete blocks distributed along 12 double rows. Each block consisted of five F2 plants in one row and one plant of each of the two parents, the F1, the BC1 to L. esculentum, and the BC1 to L. pimpinellifolium in the adjacent row. Plants at the 10–15 leaf stage were artificially infested by putting on them two pieces of French bean leaf heavily infested with T. urticae. After two months, evaluations of infestation were made by visual observation of mite nets and leaf damage. Plants that were free of signs of mite reproduction on the top half were considered as resistant, plants with silky nets only on their basal leaves, intermediate, and plants with mite reproduction on both basal and top canopies were scored as susceptible. Dominance for resistance appeared because all the ‘To-937’, BC1 to L. pimpinellifolium, and F1 plants were resistant. Not all ‘Moneymaker’ plants behaved as susceptible because 35% of plants were intermediate. In the BC1 to L. pimpinellifolium and the F2, most plants were scored as resistant, only 7 % BC1 and 3 % F2 plants were intermediate, and a single F2 plant (0.3 %) was susceptible. With these figures, resistance seemed to be controlled by either four or two genes according to whether segregation in the BC1 or in the F2, respectively, were considered. These results could in part be explained because of appearance of negative interplot interference due to the high frequency of resistant genotypes within most of the generations. Therefore, the family was evaluated again but using a different experimental design. In the new experiment, 16 ‘TO-937’, 17 ‘Moneymaker’, 17 F1, 37 BC1 to L. pimpinellifolium, 38 BC1 to L. esculentum, and 125 F2 plants were included. Each of these test plants was grown besides a susceptible ‘Moneymaker’ auxilliary plant that served to keep mite population high and homogeneous in the greenhouse. Negative interplot interference was avoided with this design and all the ‘TO-937’, F1, and BC1 to L. pimpinellifolium plants were resistant, all ‘Moneymaker’ test plants were susceptible, and 52 % BC1 to L. esculentum and 25 % F2 plants were susceptible, which fitted very well with the expected for resistance governed by a single dominant gene. The simple inheritance mode found will favour sucessful introgression of mite resistance into commercial tomatoes from the very close relative L. pimpinellifolium.  相似文献   

6.
 A study of genotype-by-salinity interaction was carried out to compare the behavior of quantitative trait loci (QTLs) in two F2 populations derived from crosses between the cherry tomato, Lycopersicon esculentum Mill. var. cerasiforme, and two wild relatives Lycopersicon pimpinellifolium (Jusl.) Mill. and Lycopersicon chesmannii f. minor (Hook. f.) Mull., grown at two environmental conditions (optimum and high salinity). QTLs for earliness and fruit yield could be classified into four groups: “response-sensitive”, those detected only under control conditions or whose contribution significantly decreased in salinity; “response-tolerant”, detected only in salinity or in which the direction of their additive effects changed; “constitutive”, detected in both growing conditions; and “altered” QTLs, those where the degree of dominance changed according to the presence or absence of salt. Epistatic interactions were also influenced by the salt treatment. This differential allele effect at some (non-constitutive) QTLs induced by salt stress will make selection under an “optimum environment” unfruitful for the “response-tolerant” QTLs. Similarly, selection under salinity will ignore “response-sensitive” QTLs. Given that salinity is highly variable in the field, marker-assisted selection should take into account not only the “response-tolerant” but also the “response-sensitive” QTLs although there might be cases where selection in some QTLs for both conditions is not feasible. Comparing both populations, very few QTLs showed the same behavior. Received: 5 August 1996 / Accepted: 25 October 1996  相似文献   

7.
Molecular markers were used to map and characterize quantitative trait loci (QTLs) for several characters of agronomic and biological importance in an interspecific backcross of tomato. The parents of the cross were an elite processing inbred Lycopersicon esculentum cv M82-1-7 and the closely related red-fruited wild species L. pimpinellifolium (LA1589). A total of 257 BC1 plants were grown under field conditions in Ithaca, New York and scored for 19 quantitative traits. A genetic linkage map was constructed for the same population using 115 RFLP, 3 RAPD and 2 morphological markers that spanned 1,279 cM of the tomato genome with an average interval length of 10.7 cM. A minimum of 54 putatively significant QTLs (P<0.001; LOD> 2.4) were detected for all characters with a range of 1–7 QTLs detected per character. Of the total 54 QTLs 11% had alleles with effects opposite to those predicted by the parental phenotypes. The percentage of phenotypic variation associated with single QTLs ranged from 4% to 47%. Multilocus analysis showed that the cumulative action of all QTLs detected for each trait accounted for 12–59% of the phenotypic variation. The difference in fruit weight was controlled largely by a single major QTL (fw2.2). Digenic epistasis was not evident. Several regions of the genome (including the region near sp on chromosome 6) showed effects on more than one trait. Implications for variety improvement and inferences about the domestication of the cultivated tomato are discussed.  相似文献   

8.
 A BC3 population previously developed from a backcross of Lycopersicon peruvianum, a wild relative of tomato, into the cultivated variety L. esculentum was analyzed for QTLs. Approximately 200 BC4 families were scored for 35 traits in four locations worldwide. One hundred and sixty-six QTLs were detected for 29 of those traits. For more than half of those 29 traits at least 1 QTL was detected for which the presence of the wild allele was associated with an agronomically beneficial effect despite the inferior phenotype of the wild parent. Eight QTLs for fruit weight could be followed through the BC2, BC3, and BC4, generations, supporting the authenticity of these QTLs. Comparisons were made between the QTLs found in this study and those found in studies involving two other wild species; the results showed that while some of these QTLs can be presumed to be allelic, most of the QTLs detected in this study are ones not previously discovered. Received: 9 April 1997 / Accepted: 20 May 1997  相似文献   

9.
Most cultivars of tomato, Lycopersicon esculentum, are sensitive to low (chilling) temperatures (0–15 °C) during seed germination; however, genetic sources of cold (chilling) tolerance have been identified within the related wild species. The purpose of this study was to identify quantitative trait loci (QTLs) that contribute to cold tolerance during germination in tomato using a backcross population of an interspecific cross between a cold-sensitive tomato line (NC84173, recurrent parent) and a L. pimpinellifolium accession (LA722) that germinates rapidly under low temperatures. A total of 119 BC1 individuals were genotyped for 151 restriction fragment length polymorphism (RFLP) markers and a genetic linkage map was constructed. The parental lines and 119 BC1S1 families (self-pollinated progeny of the BC1 individuals) were evaluated for germination at a low temperature (11±0.5 °C). Germination was scored visually as radicle protrusion at 8 h intervals for 28 consecutive days. Germination response was analyzed by the survival analysis and the times to 25, 50 and 75% germination were calculated. In addition, a germination index (GI) was calculated as the weighted mean of the time from imbibition to germination for each family/line. Two QTL mapping techniques, interval mapping (using MAPMAKER/QTL) and single-point analysis (using QGENE), were used to identify QTLs. The results of both methods were similar and two chromosomal locations (3–5 putative QTLs) with significant effects on low temperature germination were identified. The L. pimpinellifolium accession had favorable QTL alleles on chromosomes 1 and NC84173 had favorable QTL alleles on chromosome 4. The percentage of phenotypic variation explained (PVE) by individual QTLs ranged from 11.9% to 33.4%. Multilocus analysis indicated that the cumulative action of all significant QTLs accounted for 43.8% of the total phenotypic variance. Digenic epistatic interactions were evident between two of the QTL-linked markers and two unlinked markers. Transgressive phenotypes were observed in the direction of cold sensitivity. The results indicate that low temperature germination of tomato seed can be improved by marker-assisted selection.  相似文献   

10.
Blackmold, caused by the fungus Alternaria alternata, is a major ripe fruit disease of processing tomatoes. Previously, we found blackmold resistance in a wild tomato (Lycopersicon cheesmanii) and quantitative trait loci (QTL) for resistance were mapped in an interspecific population. Five QTLs were selected for introgression from L. cheesmanii into cultivated tomato using marker-assisted selection (MAS). Restriction fragment length polymorphism and PCR-based markers flanking, and within, the chromosomal regions containing QTLs were used for MAS during backcross and selfing generations. BC1 plants heterozygous at the QTLs, and subsequent BC1S1 and BC1S2 lines possessing different homozygous combinations of alleles at the target QTLs, were identified using DNA markers. Field experiments were conducted in 1998 (with 80 marker-selected BC1S2 lines) and 1999 (with 151 marker-selected BC1S2 and BC1S3 lines) at three California locations. Blackmold resistance was assessed during both years, and horticultural traits were evaluated in 1999. The BC1S2 and BC1S3 lines containing L. cheesmanii alleles at the QTLs were associated with a large genetic variance for resistance to blackmold and moderate heritability, suggesting that significant genetic gain may be achieved by selection in this genetic material. L. cheesmanii alleles at three of the five introgressed QTLs showed a significant, positive effect on blackmold resistance. A QTL on chromosome 2 had the largest positive effect on blackmold resistance, alone and in combination with other QTLs, and was also associated with earliness, a positive horticultural trait. The other four QTLs were associated primarily with negative horticultural traits. Fine mapping QTLs using near isogenic lines could help determine if such trait associations are due to linkage drag or pleiotropy.  相似文献   

11.
In this study, the advanced backcross QTL (AB-QTL) mapping strategy was used to identify loci for yield, processing and fruit quality traits in a population derived from the interspecific cross Lycopersicon esculentum E6203 × Lycopersicon pennellii accession LA1657. A total of 175 BC2 plants were genotyped with 150 molecular markers and BC2F1 plots were grown and phenotyped for 25 traits in three locations in Israel and California, U.S.A. A total of 84 different QTLs were identified, 45% of which have been possibly identified in other wild-species-derived populations of tomato. Moreover, three fruit-weight/size and shape QTLs (fsz2b.1, fw3.1/fsz3.1 and fs8.1) appear to have putative orthologs in the related solanaceous species, pepper and eggplant. For the 23 traits for which allelic effects could be deemed as favorable or unfavorable, 26% of the identified loci had L. pennellii alleles that enhanced the performance of the elite parent. Alleles that could be targeted for further introgression into cultivated tomato were also identified.Communicated by G. Wenzel  相似文献   

12.
Summary Interspecific segregating populations derived from a cross between tomato (Lycopersicon esculentum) cv M82-1 -8 (M82) and the wild species L. pennellii accession LA-716 (Lpen716) were used to study the genetic basis of salt tolerance and its implications for breeding. BC1 (M82 x (M82 x Lpen716)) and BC1 S1 (progenies of selfed BC1 plants) populations were grown under arid field conditions and irrigated with water having electrical conductivities of 1.5 (control), 10 and 20 dSm-1. The evaluation of salt tolerance was based on total fruit yield (TY), total dry matter (TD) and TD under salinity relative to the control (RD). Sodium, potassium and chloride concentrations were measured in the leaves and stems. The methods for estimating heritability were adapted to BC1 plants and BC1S1 families. TY, TD and RD had heritability estimates of 0.3–0.45, indicating that salt tolerance can be improved by selection. Genetic correlations between traits indicated that high yield may be combined with salt tolerance and that ion contents are not likely to provide an efficient selection criteria for salt tolerance. Genetic correlations between performances under various salinity levels suggested that similar mechanisms affect the responses to salinity treatments of 10 and 20 dSm-1. Responses to paper selection confirmed that salt tolerance of the tomato may be improved by selection, and that this selection should be based on dry matter and yield parameters under salinity.Passed away May 1986  相似文献   

13.
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small‐ to large‐effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non‐stress, as well as salt, osmotic, cold, high‐temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co‐locating. Co‐location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.  相似文献   

14.
Approximately 170 BC2 plants from a cross between an elite processing inbred (recurrent parent) and the wild species Lycopersicon pimpinellifolium LA1589 (donor parent) were analyzed with segregating molecular markers covering the entire tomato genome. Marker data were used to identify QTLs controlling a battery of horticultural traits measured on BC2F1 and BC3 families derived from the BC2 individuals. Despite its overall inferior appearance, L. pimpinellifolium was shown to possess QTL alleles capable of enhancing most traits important in processing tomato production. QTL-NIL lines, containing specific QTLs modifying fruit size and shape, were subsequently constructed and shown to display the transgressive phenotypes predicted from the original BC2 QTL analysis. The potential of exploiting unadapted and wild germplasm via advanced backcross QTL analysis for the enhancement of elite crop varieties is discussed.  相似文献   

15.
S. P. C. Groot  C. M. Karssen 《Planta》1987,171(4):525-531
The germination of seeds of tomato [Lycopersicon esculentum (L.) Mill.] cv. Moneymaker has been compared with that of seeds of the gibberellin-deficient dwarf-mutant line ga-1, induced in the same genetic background. Germination of tomato seeds was absolutely dependent on the presence of either endogenous or exogenous gibberellins (GAs). Gibberellin A4+7 was 1000-fold more active than commercial gibberellic acid in inducing germination of the ga-1 seeds. Red light, a preincubation at 2°C, and ethylene did not stimulate germination of ga-1 seeds in the absence of GA4+7; however, fusicoccin did stimulate germination independently. Removal of the endosperm and testa layers opposite the radicle tip caused germination of ga-1 seeds in water. The seedlings and plants that develop from the detipped ga-1 seeds exhibited the extreme dwarfy phenotype that is normal to this genotype. Measurements of the mechanical resistance of the surrounding layers showed that the major action of GAs was directed to the weakening of the endosperm cells around the radicle tip. In wild-type seeds this weakening occurred in water before radicle protrusion. In ga-1 seeds a similar event was dependent on GA4+7, while fusicoccin also had some activity. Simultaneous incubation of de-embryonated endosperms and isolated axes showed that wild-type embryos contain and endosperm-weakening factor that is absent in ga-1 axes and is probably a GA. Thus, an endogenous GA facilitates germination in tomato seeds by weakening the mechanical restraint of the endosperm cells to permit radicle protrusion.Abbreviations GA(s) gibberellin(s) - GA3 gibberellic acid  相似文献   

16.
We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.  相似文献   

17.
Recent Advances in Genetics of Salt Tolerance in Tomato   总被引:13,自引:0,他引:13  
Salinity is an important environmental constraint to crop productivity in arid and semi-arid regions of the world. Most crop plants, including tomato, Lycopersicon esculentum Mill., are sensitive to salinity throughout the ontogeny of the plant. Despite considerable research on salinity in plants, there are only a few instances where salt-tolerant cultivars have been developed. This is due in part to the complexity of the trait. A plant's response to salt stress is modulated by many physiological and agronomical characteristics, which may be controlled by the actions of several to many genes whose expressions are influenced by various environmental factors. In addition, salinity tolerance is a developmentally regulated, stage-specific phenomenon; tolerance at one stage of plant development is often not correlated with tolerance at other stages. Specific ontogenic stages should be evaluated separately for the assessment of tolerance and the identification, characterization, and utilization of useful genetic components. In tomato, genetic resources for salt tolerance have been identified largely within the related wild species, and considerable efforts have been made to characterize the genetic controls of tolerance at various developmental stages. For example, the inheritance of several tolerance-related traits has been determined and quantitative trait loci (QTLs) associated with tolerance at individual developmental stages have been identified and characterized. It has been determined that at each stage salt tolerance is largely controlled by a few QTLs with major effects and several QTLs with smaller effects. Different QTLs have been identified at different developmental stages, suggesting the absence of genetic relationships among stages in tolerance to salinity. Furthermore, it has been determined that in addition to QTLs which are population specific, several QTLs for salt tolerance are conserved across populations and species. Research is currently underway to develop tomatoes with improved salt tolerance throughout the ontogeny of the plant by pyramiding QTLs through marker-assisted selection (MAS). Transgenic approaches also have been employed to gain a better understanding of the genetics of salt tolerance and to develop tomatoes with improved tolerance. For example, transgenic tomatoes with overexpression of a single-gene-controlled vacuolar Na+/H+ antiport protein, transferred from Arabidopsis thaliana, have exhibited a high level of salt tolerance under greenhouse conditions. Although transgenic plants are yet to be examined for field salt tolerance and salt-tolerant tomatoes are yet to be developed by MAS, the recent genetic advances suggest a good prospect for developing commercial cultivars of tomato with enhanced salt tolerance in near future.  相似文献   

18.
Salt tolerance has been analysed in two populations of F7 lines developed from a salt sensitive genotype of Solanum lycopersicum var. cerasiforme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Salinity effects on 19 quantitative traits including fruit yield were investigated by correlation, principal component analysis, ANOVA and QTL analysis. A total of 153 and 124 markers were genotyped in the P and C populations, respectively. Some flowering time and salt tolerance candidate genes were included. Since most traits deviated from a normal distribution, results based on the Kruskal–Wallis non-parametric test were preferred. Interval mapping methodology and ANOVA were also used for QTL detection. Eight out of 15 QTLs at each population were detected for the target traits under both control and high salinity conditions, and among them, only average fruit weight (FW) and fruit number (FN) QTLs (fw1.1, fw2.1 and fn1.2) were detected in both populations. The individual contribution of QTLs were, in general, low. After leaf chloride concentration, flowering time is the trait most affected by salinity because different QTLs are detected and some of their QTL×E interactions have been found significant. Also reinforcing the interest on information provided by QTL analysis, it has been found that non-correlated traits may present QTL(s) that are associated with the same marker. A few salinity specific QTLs for fruit yield, not associated with detrimental effects, might be used to increase tomato salt tolerance. The beneficial allele at two of them, fw8.1 (in C) and tw8.1 (for total fruit weight in P) corresponds to the salt sensitive parent, suggesting that the effect of the genetic background is crucial to breed for wide adaptation using wild germplasm.  相似文献   

19.
 Segregation of the Lycopersicon peruvianum genome was followed through three generations of backcrossing to the cultivated tomato L. esculentum cv ‘E6203’ using molecular markers. Thirteen BC1 plants were genotyped with 113 markers, 67 BC2 plants with 84 markers, and finally 241 BC3 plants were genotyped with 177 markers covering the entire genome and a BC3 map constructed. Several segments of the genome, including parts of chromosomes 3, 4, 6, and 10, quickly became fixed for esculentum alleles, possibly due to sterility problems encountered in the BC1. Observed overall heterozygosity and chromosome segment lengths at each generation were very near the expected theoretical values. Markers located near the top telomeric region of chromosome 9 showed segregation highly skewed towards the wild allele through all generations, suggesting the presence of a gamete promoter gene. One markers, TG9, mapped to a new position on chromosome 9, implying an intrachromosomal translocation event. Despite the great genetic distance between the two parents, overall recombination was only 25% less than that observed in a previous tomato cross, indicating that L. peruvianum genes may be more readily introgressed into cultivated germplasm than originally believed. Received: 9 April 1997 / Accepted : 20 May 1997  相似文献   

20.
In vitro pollen germination and tube length studies are valuable in elucidating mechanisms (germination capacity and rate, tube growth rate) possibly associated with genetic differences in male transmission. On each of two collection dates, the percentage germination and tube length of the binucleate pollen grains from five diverse sesame (Sesamum indicum L.) genotypes were determined at eight times (30, 60, 90, 120, 150, 180, 240, 300 min) after inoculation on a semisolid medium containing 10% (100 g l-1) sucrose (C12H22O11), 0.4% (4 g l-1) purified agar (Fisher Lot 914409), 0.1% (1 g l-1) calcium nitrate [Ca(NO3)2 ⋅ 4H2O] and 0.01% (100 mg l-1) boric acid (H3BO3). Before heating, the pH of the medium was adjusted to 7.0 with a 0.1 N potassium hydroxide (KOH) solution. Over the five genotypes, 5% germination was found 30 min after inoculation and a maximum of 37% germination 120 min after inoculation with no significant changes thereafter. As indicated by the highly significant genotype×time after inoculation interaction, the genotypes differed in the time at which germination was initiated and maximum germination attained. Over all five genotypes, the tube length was 91 μm 30 min after inoculation, reaching a maximum of 1000 μm 300 min after inoculation. As shown by the highly significant genotype×time after inoculation interaction, the genotypes differed in the time at which tube length was observed and the maximum tube length was attained. Little or no relationship between percent germination and tube length was observed among the genotypes. For both percent germination and tube length, the statistical significance of collection date and its interactions with genotype and time after inoculation indicated that environment in the form of collection date was also an influencing factor. These results indicated that genetic differences among genotypes were present for in vitro germination capacity, germination rate and tube growth rate and that these factors singly or in combination could alter male transmission of genetic elements. Received: 5 February 1997 / Accepted: 23 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号