首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taste receptor cells are innervated by primary gustatory neurons that relay sensory information to the central nervous system. The transmitter(s) at synapses between taste receptor cells and primary afferent fibers is (are) not yet known. By analogy with other sensory organs, glutamate might a transmitter in taste buds. We examined the presence of AMPA and NMDA receptor subunits in rat gustatory primary neurons in the ganglion that innervates the anterior tongue (geniculate ganglion). AMPA and NMDA type subunits were immunohistochemically detected with antibodies against GluR1, GluR2, GluR2/3, GluR4 and NR1 subunits. Gustatory neurons were specifically identified by retrograde tracing with fluorogold from injections made into the anterior portion of the tongue. Most gustatory neurons in the geniculate ganglion were strongly immunoreactive for GluR2/3 (68%), GluR4 (78%) or NR1 (71%). GluR1 was seen in few cells (16%). We further examined if glutamate receptors were present in the peripheral terminals of primary gustatory neurons in taste buds. Many axonal varicosities in fungiform and vallate taste buds were immunoreactive for GluR2/3 but not for NR1. We conclude that gustatory neurons express glutamate receptors and that glutamate receptors of the AMPA type are likely targeted to synapses within taste buds.  相似文献   

2.
The expression of ionotropic glutamate receptor subunits in the motoneuronal pools of the hypoglossal nucleus was studied using specific antibodies against subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) subtypes. The highest numbers of intensely immunolabelled motoneurons were found in the dorsal tier and caudoventromedial part of the hypoglossal nucleus with all antibodies except that against the GluR1 AMPA subunit. Labelling for the GluR1 subunit was weak except for caudally located groups of motoneurons which innervate tongue muscles related to respiratory activity. By contrast, most motoneurons were intensely immunostained with antibodies against GluR2/3 and GluR4 subunits of the AMPA subtype. The low staining observed using an antibody specific for the GluR2 subunit (which prevents Ca2+-entry through AMPA channels) strongly suggests that AMPA receptors in hypoglossal motoneurons are Ca2+-permeable. Immunolabelling for the GluR5/6/7 kainate receptor subunits was found in many motoneuronal somata as well as in thin axon-like profiles and puncta that resembled synaptic boutons. Most motoneurons were intensely immunostained for the NMDA receptor subunit NR1. These results show that the hypoglossal nucleus contains five heterogeneous pools of motoneurons which innervate functionally defined groups of tongue muscles. The uneven expression of the different receptor subunits analysed here could reflect diverse phenotypic properties of hypoglossal motoneurons which might be expected to generate different patterns of motor responses under different physiological or pathological conditions.  相似文献   

3.
Under standard conditions, cultured ventral spinal neurons cluster AMPA- but not NMDA-type glutamate receptors at excitatory synapses on their dendritic shafts in spite of abundant expression of the ubiquitous NMDA receptor subunit NR1. We demonstrate here that the NMDA receptor subunits NR2A and NR2B are not routinely expressed in cultured spinal neurons and that transfection with NR2A or NR2B reconstitutes the synaptic targeting of NMDA receptors and confers on exogenous application of the immediate early gene product Narp the ability to cluster both AMPA and NMDA receptors. The use of dominant-negative mutants of GluR2 further showed that the synaptic targeting of NMDA receptors is dependent on the presence of synaptic AMPA receptors and that synaptic AMPA and NMDA receptors are linked by Stargazin and a MAGUK protein. This system of AMPA receptor-dependent synaptic NMDA receptor localization was preserved in hippocampal interneurons but reversed in hippocampal pyramidal neurons.  相似文献   

4.
Unilateral hypoglossal nerve axotomy was used as a model to analyse immunohistochemically the expression of the GluR1, GluR2, GluR3, and GluR4 glutamate receptor subunits of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) subtype and the NR1 subunit of the N-methyl-D-aspartate (NMDA) subtype in the different morphofunctional hypoglossal pools from 1 to 45 days postaxotomy. Following hypoglossal nerve axotomy, the percentage of motoneurons that were GluR1-immunopositive and the labeling intensity for this subunit was increased in some hypoglossal pools. Immunolabeling for the GluR2 subunit was undetectable. These results contrast with the unchanged pattern for these two subunits after sciatic nerve axotomy previously described. Image analysis showed a significant decrease in the intensity of immunohistochemical labeling for the GluR2/3 and GluR4 subunits in motoneurons, although most motoneurons were still immunopositive for these 2 subunits after axotomy. The intensity of immunolabeling for the NR1 subunit was slightly decreased postlesion, whereas the percentage of NR1-immunopositive motoneurons increased. Immunoreactivity returned to basal levels 45 days postlesion. These findings show that in axotomized hypoglossal motoneurons, i) AMPA and NMDA receptor subunits are still expressed, ii) the composition of the ionotropic glutamate receptor subunit pool is subjected to continuous changes during the regeneration process, iii) AMPA receptors, if functional, would have physiological properties different to those in intact motoneurons, and iv) the various AMPA receptor subunits are differentially regulated. The present results also suggest a faster recovery of basal levels of immunoreactivity for caudally localised groups of motoneurons which could reflect a caudo-rostral sequential functional revovery in the hypoglossal nucleus.  相似文献   

5.
Human midbrain‐derived neural progenitor cells (NPCs) may serve as a continuous source of dopaminergic neurons for the development of novel regenerative therapies in Parkinson’s disease. However, the molecular and functional characteristics of glutamate receptors in human NPCs are largely unknown. Here, we show that differentiated human mesencepahlic NPCs display a distinct pattern of glutamate receptors. In whole‐cell patch‐clamp recordings, l ‐glutamate and NMDA elicited currents in 93% of NPCs after 3 weeks of differentiation in vitro. The concentration‐response plots of differentiated NPCs yielded an EC50 of 2.2 μM for glutamate and an EC50 of 36 μM for NMDA. Glutamate‐induced currents were markedly inhibited by memantine in contrast to 6‐cyano‐7‐nitroquinoxaline‐2,3‐dione (CNQX) suggesting a higher density of functional NMDA than alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA)/kainate receptors. NMDA‐evoked currents and calcium signals were blocked by the NR2B‐subunit specific antagonist ifenprodil indicating functional expression of NMDA receptors containing subunits NR1 and NR2B. In calcium imaging experiments, the blockade of voltage‐gated calcium channels by verapamil abolished AMPA‐induced calcium responses but only partially reduced NMDA‐evoked transients suggesting the expression of calcium‐impermeable, GluR2‐containing AMPA receptors. Quantitative real‐time PCR showed a predominant expression of subunits NR2A and NR2B (NMDA), GluR2 (AMPA), GluR7 (kainate), and mGluR3 (metabotropic glutamate receptor). Treatment of NPCs with 100 μM NMDA in vitro during proliferation (2 weeks) and differentiation (1 week) increased the amount of tyrosine hydroxylase‐immunopositive cells significantly, which was reversed by addition of memantine. These data suggest that NMDA receptors in differentiating human mesencephalic NPCs are important regulators of dopaminergic neurogenesis in vitro.  相似文献   

6.
Orexin is one of the orexigenic neuropeptides in the hypothalamus. Orexin neurons in the lateral hypothalamus (LH) project into the cerebral cortex and hippocampus in which the receptors are distributed in high concentrations. Therefore, to elucidate the actions of orexin in the cerebral cortex, we examined its effects on the mRNA expressions of N-methyl-d-aspartate (NMDA) receptor subunits (NR1, NR2A, NR2B) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits (GluR1, GluR2) following 6-day application of orexin-A or orexin-B to rat primary cortical neuron cultures. The mRNAs of NR1 and NR2A subunits were significantly decreased by orexin-A and orexin-B at concentrations over 0.1 μM and 0.01 μM, respectively. The mRNA expression of NR2B subunit was also significantly decreased by orexin-A and orexin-B only at the concentration of 1 μM. Moreover, orexin-A and orexin-B at concentrations over 0.01 μM significantly decreased the mRNA expressions of AMPA receptor subunits, GluR1 and GluR2. The present study demonstrated that orexins significantly suppressed RNA expressions of NMDA and AMPA receptor subunits in cortical neuron cultures, suggesting that orexin may regulate the higher functions of the cerebral cortex as well as be involved in energy regulation in the hypothalamus.  相似文献   

7.
ABSTRACT: BACKGROUND: Pain-related (nociceptive) information is carried from the periphery to the dorsal horn of the spinal cord mostly by two populations of small diameter primary afferents, the peptidergic and the non-peptidergic. The peptidergic population expresses neuropeptides, such as substance P and calcitonin gene-related peptide, while the non-peptidergic fibers are devoid of neuropeptides, express the purinergic receptor P2X3, and bind the isolectin B4 (IB4). Although it has been known for some time that in rat the peptidergic afferents terminate mostly in lamina I and outer lamina II and non-peptidergic afferents in inner lamina II, the extent of the termination of the latter population in lamina I was never investigated as it was considered as very minor. Because our preliminary evidence suggested otherwise, we decided to re-examine the termination of non-peptidergic afferents in lamina I, in particular with regards to their innervation of projection neurons expressing substance P receptors (NK-1r). We used retrograde labeling of neurons from the parabrachial nucleus combined with lectin IB4 binding and immunocytochemistry. Samples were examined by confocal and electron microscopy. RESULTS: By confocal microscopy, we studied the termination of non-peptidergic afferents in lamina I using IB4 binding and P2X3 immunoreactivity as markers, in relation to CGRP immunoreactivy, a marker of peptidergic afferents. The number of IB4 or P2X3-labeled fibers in lamina I was higher than previously thought, although they were less abundant than CGRP-labeled afferents. There were very few fibers double-labeled for CGRP and either P2X3 or IB4. We found a considerable number of IB4-positive fiber varicosities in close apposition to NK-1r-positive lamina I projection neurons, which were distinct from peptidergic varicosities. Furthermore, we confirmed at the ultrastructural level that there were bona fide synapses between P2X3-immunoreactive non-peptidergic boutons and neurokinin-1 receptor-positive lamina I dendrites. CONCLUSIONS: These results indicate the presence of direct innervation by non-peptidergic nociceptive afferents of lamina I projection neurons expressing NK-1r. Further investigations are needed to better understand the role of these connections in physiological conditions and chronic pain states.  相似文献   

8.
9.
棕榈酰化是一种可逆的翻译后修饰,其对蛋白质的定位和功能具有重要的调节意义.离子型谷氨酸受体有N-甲基-D-天冬氨酸(NMDA)受体、α-氨基羟甲基恶唑丙酸(AMPA)受体和人海藻酸受体.近期研究发现,它们的棕榈酰化修饰对其膜表面分布和内化均具有重要的意义.其中NMDA受体在其C末端有2个不同的棕榈酰化位点.1个位于C末端近膜区(CysclusterⅠ),它的棕榈酰化可以增高酪氨酸的磷酸化水平,增加受体膜表面分布,影响神经元中NMDA受体的组构性内化;另1个位于C末端中部(CysclusterⅡ),它受到蛋白质酰基转移酶GODZ的调节,使得受体在高尔基体大量积聚,从而影响受体的膜表面分布.与NMDA受体相似,AMPA受体也存在2个棕榈酰化位点.1个位于在第2跨膜域,受蛋白质酰基转移酶GODZ的调节,能导致AMPA受体在高尔基体的积聚.另1个位点在受体C末端近膜区,它的棕榈酰化能降低AMPA受体和4.1N蛋白的相互作用,并调节受体的内化.这两种离子型谷氨酸受体在棕榈酰化机制上虽然存在差异,但均对受体的运输、膜表面分布和内化具有十分重要的作用.  相似文献   

10.
Humans and laboratory animals remain highly vulnerable to relapse to cocaine-seeking after prolonged periods of withdrawal from the drug. It has been hypothesized that this persistent cocaine relapse vulnerability involves drug-induced alterations in glutamatergic synapses within the mesolimbic dopamine reward system. Previous studies have shown that cocaine self-administration induces long-lasting neuroadaptations in glutamate neurons of the ventral tegmental area and nucleus accumbens. Here, we determined the effect of cocaine self-administration and subsequent withdrawal on glutamate receptor expression in the amygdala, a component of the mesolimbic dopamine system that is involved in cocaine seeking and craving induced by drug-associated cues. Rats were trained for 10 days to self-administer intravenous cocaine (6 h/day) or saline (a control condition) and were killed after one or 30 withdrawal days. Basolateral and central amygdala tissues were assayed for protein expression of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunits (GluR1 and GluR2) and the NMDA receptor subunits (NR1, NR2A and NR2B). In the basolateral amygdala, GluR1 but not GluR2 levels were increased on days 1 and 30, NR2A levels were increased on day 1, and NR2B levels were decreased on day 30 of withdrawal from cocaine. In the central amygdala, GluR2 but not GluR1 levels were increased on days 1 and 30, NR1 levels were increased on day 30 and NR2A or NR2B levels were not altered after withdrawal from cocaine. These results indicate that cocaine self-administration and subsequent withdrawal induces long-lasting and differential neuroadaptations in basolateral and central amygdala glutamate receptors.  相似文献   

11.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

12.
The mesencephalic trigeminal nucleus is composed of large (35-50 microns) pseudo-unipolar neurons. Closely associated with them are small (< 20 microns) multipolar neurons. An unique peculiarity of the pseudo-unipolar perikarya is that they receive synaptic input from various sources, which sets them apart from the dorsal root and cranial nerves sensory ganglia neurons. Whereas glutamate is the best neurotransmitter candidate in pseudo-unipolar neurons, glutamatergic input into them has not yet been reported. AMPA glutamate receptors are implicated in fast excitatory glutamatergic synaptic transmission. They have been localized ultrastructurally at postsynaptic sites. This study demonstrates that the pseudo-unipolar neurons of the mesencephalic trigeminal nucleus express AMPA glutamate receptor subunits, which indicates that these neurons receive glutamatergic input. Serial sections from the rostral pons and midbrain of Sprague-Dawley rats were immunostained with antibodies against C-terminus of AMPA receptor subunits: GluR1, GluR2/3, and GluR4. The immunoreaction was visualized with avidin-biotin-peroxidase/DAB for light and electron microscopy. With GluR1 antibody only the smallest multipolar neurons were recognized as immunopositive within the mesencephalic trigeminal nucleus. GluR2/3 stained the pseudo-unipolar neurons intensely within the entire rostro-caudal extent of the nucleus. In addition the former antibody stained small multipolar neurons within the mesencephalic trigeminal nucleus, though with somewhat larger dimensions than those immunoreactive for GluR1. Whereas the overall staining with GluR4 antibody was scant, those pseudo-unipolar neurons that were stained, were strongly stained. Furthermore, a considerable number of microglial cells within and surrounding the mesencephalic trigeminal nucleus displayed very intense immunoreactivity for GluR4. These results are discussed in the light of the glutamate receptor subunit composition.  相似文献   

13.
The dynamics of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA)-type glutamate receptors, as represented by their exocytosis, endocytosis and cytoskeletal linkage, has often been implicated in N-methyl-d-aspartate (NMDA)-dependent synaptic plasticity. To explore the molecular mechanisms underlying the AMPA receptor dynamics, cultured hippocampal neurons were stimulated with 100 microm NMDA, and the biochemical and pharmacological changes in the ligand binding activity of AMPA receptor complexes and its subunits, GluR1 and GluR2/3, were investigated. The NMDA treatment reduced the total amount of bound [(3)H]AMPA on the surface of the neurons but not in their total membrane fraction. This process was mimicked by a protein kinase C activator, phorbol ester, but blocked by an inhibitor of the same kinase, calphostin C. The NMDA-induced down-regulation of the ligand binding activity was also reflected by the decreased AMPA-triggered channel activity as well as by the cells' reduced immunoreactivity for GluR1. In parallel, the NMDA treatment markedly altered the interaction between the AMPA receptor subunits and their associating molecule(s); the association of PDZ molecules, including Pick1, with GluR2/3 was enhanced in a protein-kinase-C-dependent manner. Viral expression vectors carrying GluR1 and GluR2 C-terminal decoys, both fused to enhanced green fluorescent protein, were transfected into hippocampal neurons to disrupt their interactions. The overexpression of the C-terminal decoy for GluR2 specifically and significantly blocked the NMDA-triggered reduction in [(3)H]AMPA binding, whereas that for GluR1 had no effects. Co-immunoprecipitation using anti-Pick1 antibodies revealed that the overexpressed GluR2 C-terminal decoy indeed prevented Pick1 from interacting with the endogenous GluR2/3. Therefore, these observations suggest that the NMDA-induced down-regulation of the functional AMPA receptors involves the interaction between GluR2/3 subunits and Pick1.  相似文献   

14.
Abstract: Brainstem nuclei serve a diverse array of functions in many of which ionotropic glutamate receptors are known to be involved. However, little detailed information is available on the expression of different glutamate receptor subunits in specific nuclei. We used RT‐PCR in mice to analyze the glutamate receptor subunit composition of the pre‐Bötzinger complex, the hypoglossal nucleus, the nucleus of the solitary tract, and the inferior olive. Analyzing 15 receptor subunits and five variants, we found all four α‐amino‐3‐hydroxy‐5‐methyl‐4‐propionic acid (AMPA) and six NMDA receptor (NR) subunits as well as three of five kainate (KA) receptors (GluR5, GluR6, and KA1) to be expressed in all nuclei. However, some distinct differences were observed: The inferior olive preferentially expresses flop variants of AMPA receptors, GluR7 is more abundant in the pre‐Bötzinger complex than in the other nuclei, and NR2C is most prominent in the nucleus of the solitary tract. In single hypoglossal motoneurons and interneurons of the pre‐Bötzinger complex investigation of GluR2 editing revealed strong expression of the GluR2‐R editing variant, suggesting low Ca2+ permeability of AMPA receptors. Thus, Ca2+ ‐permeable AMPA receptors are unlikely to be the cause for the reported selective vulnerability of hypoglossal motoneurons during excitotoxic events.  相似文献   

15.
Both tyrosine phosphorylation and calpain-mediated truncation of ionotropic glutamate receptors are important mechanisms for synaptic plasticity. Previous work from our laboratory has shown that calpain activation results in truncation of the C-terminal domains of several glutamate receptor subunits. To test whether and how tyrosine phosphorylation of glutamate ionotropic receptor subunits modulates calpain susceptibility, synaptic membranes were phosphorylated by Fyn or Src, two members of the Src family tyrosine kinases. Tyrosine phosphorylation of synaptic membranes by Src significantly reduced calpain-mediated truncation of both NR2A and NR2B subunits of NMDA receptors, but not of GluR1 subunits of AMPA receptors. In contrast, phosphorylation with Fyn significantly protected calpain-mediated truncation of GluR1 subunits of AMPA receptors, but enhanced calpain-mediated truncation of NR2A subunits of NMDA receptors. Similar results were observed with NR2A and NR2B C-terminal domain fusion proteins phosphorylated by Fyn or Src before incubation with calpain and calcium. In addition, phosphorylation of NR2A and NR2B C-terminal fusion proteins by Fyn or Src enhanced their binding to spectrin and PSD-95. Thus, tyrosine phosphorylation impairs or facilitates calpain-mediated truncation of glutamate receptor subunits, depending on which tyrosine kinase is activated. Such mechanisms could serve to regulate receptor integrity and location, in addition to modulating channel properties.  相似文献   

16.
Glutamate in the peripheral nervous system is involved in neuropathic pain, yet we know little how nerve injury alters responses to this neurotransmitter in primary sensory neurons. We recorded neuronal responses from the ex-vivo preparations of the dorsal root ganglia (DRG) one week following a chronic constriction injury (CCI) of the sciatic nerve in adult rats. We found that small diameter DRG neurons (<30 µm) exhibited increased excitability that was associated with decreased membrane threshold and rheobase, whereas responses in large diameter neurons (>30 µm) were unaffected. Puff application of either glutamate, or the selective ionotropic glutamate receptor agonists alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainic acid (KA), or the group I metabotropic receptor (mGluR) agonist (S)-3,5-dihydroxyphenylglycine (DHPG), induced larger inward currents in CCI DRGs compared to those from uninjured rats. N-methyl-D-aspartate (NMDA)-induced currents were unchanged. In addition to larger inward currents following CCI, a greater number of neurons responded to glutamate, AMPA, NMDA, and DHPG, but not to KA. Western blot analysis of the DRGs revealed that CCI resulted in a 35% increase in GluA1 and a 60% decrease in GluA2, the AMPA receptor subunits, compared to uninjured controls. mGluR1 receptor expression increased by 60% in the membrane fraction, whereas mGluR5 receptor subunit expression remained unchanged after CCI. These results show that following nerve injury, small diameter DRG neurons, many of which are nociceptive, have increased excitability and an increased response to glutamate that is associated with changes in receptor expression at the neuronal membrane. Our findings provide further evidence that glutamatergic transmission in the periphery plays a role in nociception.  相似文献   

17.
Toluene is a commonly abused solvent found in many industrial and commercial products. The neurobiological effects of toluene remain unclear, but many of them, like those of ethanol, may be mediated by gamma-aminobutyric acid (GABA) and glutamate receptors. Chronic ethanol administration has been shown to alter levels of specific subunits for GABA type A (GABA(A)), N-methyl-d-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. However, little is known about the effects of toluene on subunit levels of these receptors. To examine this, rats were exposed to toluene vapors (8000 ppm) or air for 10 days (30 min/day), and afterwards GABA(A) alpha1, NR1 and NR2B (NMDA) and GluR1 and GluR2/3 (AMPA) receptor subunit levels were determined in discrete brain regions of these animals by Western blotting. Toluene increased GABA(A) alpha1, NR1, NR2B and GluR2/3 subunits in the medial prefrontal cortex and decreased GABA(A) alpha1 and NR1 subunits in the substantia nigra compacta. Toluene inhalation produced modest increases in GABA(A) alpha1 subunits in the striatum, as well as slight decreases in this subunit in the ventral tegmental area. NR2B subunit levels were also slightly increased within the nucleus accumbens by toluene. These studies show that toluene differentially alters the levels of specific GABAergic and glutamatergic receptor subunits in a regionally selective manner.  相似文献   

18.
The vanilloid receptor VR1 (TRPV1) is a temperature- and capsaicin-sensitive cation channel expressed by a class of primary afferents involved in nociception. To confirm the hypothesis that VR1-positive primary afferents are glutamatergic and contact spinal neurons that express the main classes of ionotropic glutamate receptors, we performed multiple immunofluorescent staining for VR1 and the glutamate transporter VGLUT2 (a specific marker for glutamatergic transmission) or AMPA and NMDA receptor subunits. VR1-positive cells in the dorsal root ganglion and boutons of their central afferent fibers in the dorsal horn expressed VGLUT2, and the latter contacted AMPA- or NMDA receptor-positive perikarya. Based on our previous observations of preferential targeting of VR1-positive primary afferents to spinal neurons that express the neurokinin receptor NK1 (Hwang et al., 2003), we further quantified the frequency of termination of VR1-positive afferents onto NK1-positive neurons co-expressing glutamate receptors. A larger fraction of NK1/NMDA receptors-positive than NK1/AMPA receptors-positive sites were contacted by VR1-positive boutons. We conclude that VR1-positive primary afferents in the rat use glutamate as neurotransmitter and contact postsynaptic sites that co-express NK1 and ionotropic glutamate receptors.  相似文献   

19.
Excitatory synaptic transmission in the central nervous system (CNS) is mediated by three major classes of glutamate receptors, namely the ionotropic NMDA (N-Methyl-D-Aspartate) and KA/AMPA (kainate/alpha-amino-3-hydroxyl-5-methylisoxazole-4-propionic acid) receptors and the metabotropic receptor type. Among the ionotropic receptors, NMDA receptors are thought to mediate their physiological response mainly through the influx of extracellular calcium, while KA/AMPA receptor channels are mainly thought to carry the influx of monovalent cations. Recently, we have challenged this view by showing that cloned KA/AMPA receptor subunits GluR1 and GluR3 form ion channels which are permeable to calcium. We now directly demonstrate large increases in intracellular calcium concentrations induced by calcium fluxes through KA/AMPA receptor channels in solutions with physiological calcium concentrations. Calcium fluxes were observed through glutamate receptor channels composed of the subunits GluR1 and GluR3, which are both abundantly present in various types of central neurones. The calcium influx was fluorometrically monitored in Xenopus oocytes injected with the calcium indicator dye fura-2. Bath application of the membrane permeable analogue of adenosine cyclic monophosphate (cAMP) potentiated the current and also the flux of calcium through open KA/AMPA receptor channels. Further pharmacological experiments suggested that this effect was mediated by the activation of protein kinase A. Our results provide a molecular interpretation for the function of calcium permeable KA/AMPA receptor channels in neurones and identify two of the subunits of the KA/AMPA receptor channel which are regulated by the cAMP dependent second messenger system.  相似文献   

20.
Yuan TT  Qiao H  Dong SP  An SC 《生理学报》2011,63(4):333-341
本文旨在探讨在慢性应激性抑郁发生过程中多巴胺D1受体对谷氨酸及其离子型受体的影响。实验通过建立慢性不可预见性温和应激(chronic unpredictable mild stress,CUMS)抑郁模型,结合海马微量注射多巴胺D1受体激动剂SKF38393、非竞争性N-甲基-D-天冬氨酸(N-methyl-D-aspartic acid,NMDA)受体拮抗剂MK-801和α-氨基羟甲基异恶唑丙酸(α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid,AMPA)受体的拮抗剂NBQX,运用糖水偏爱测试、旷场实验和悬尾实验等方法检测动物的行为表现,采用高效液相色谱法(high-performance liquid chromatography,HPLC)和Western blot实验来检测海马内谷氨酸含量及其离子型受体关键亚基的表达。结果显示,与对照组相比,CUMS组大鼠表现出明显的抑郁样行为变化,且海马谷氨酸含量升高,其NMDA受体的NR1亚基与AMPA受体的GluR2/3亚基也明显下调;注射SKF38393后可明显改善应激引起的抑郁样行为,且海马谷氨酸含量显...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号